大田肥料试验设计与数据处理_黄德明

大田肥料试验设计与数据处理_黄德明
大田肥料试验设计与数据处理_黄德明

实验设计与数据处理心得

实验设计与数据处理心得体会 刚开始选这门课的时候,我觉得这门课应该就是很难懂的课程,首先我们做过不少的实验了,当然任何自然科学都离不开实验,大多数学科(化工、化学、轻工、材料、环境、医药等)中的概念、原理与规律大多由实验推导与论证的,但我觉得每次到处理数据的时候都很困难,所以我觉得这就是门难懂的课程,却也就是很有必要去学的一门课程,它对于我们工科生来说也就是很有用途的,在以后我们实验的数据处理上有很重要的意义。 如何科学的设计实验,对实验所观测的数据进行分析与处理,获得研究观测对象的变化规律,就是每个需要进行实验的人员需要解决的问题。“实验设计与数据处理”课程就就是就是以概率论数理统计、专业技术知识与实践经验为基础,经济、科学地安排试验,并对试验数据进行计算分析,最终达到减少试验次数、缩短试验周期、迅速找到优化方案的一种科学计算方法。它主要应用于工农业生产与科学研究过程中的科学试验,就是产品设计、质量管理与科学研究的重要工具与方法,也就是一门关于科学实验中实验前的实验设计的理论、知识、方法、技能,以及实验后获得了实验结果,对实验数据进行科学处理的理论、知识、方法与技能的课程。 通过本课程的学习,我掌握了试验数据统计分析的基本原理,并能针对实际问题正确地运用,为将来从事专业科学的研究打下基础。这门课的安排很合理,由简单到复杂、由浅入深的思维发展规律,先讲单因素试验、双因素试验、正交试验、均匀试验设计等常用试验设计

方法及其常规数据处理方法、再讲误差理论、方差分析、回归分析等数据处理的理论知识,最后将得出的方差分析、回归分析等结论与处理方法直接应用到试验设计方法。 比如我对误差理论与误差分析的学习:在实验中,每次针对实验数据总会有误差分析,误差就是进行实验设计与数据评价最关键的一个概念,就是测量结果与真值的接近程度。任何物理量不可能测量的绝对准确,必然存在着测定误差。通过学习,我知道误差分为过失误差,系统误差与随机误差,并理解了她们的定义。另外还有对准确度与精密度的学习,了解了她们之间的关系以及提高准确度的方法等。对误差的学习更有意义的应该就是如何消除误差,首先消除系统误差,可以通过对照试验,空白试验,校准仪器以及对分析结果的校正等方法来消除;其次要减小随机误差,就就是要在消除系统误差的前提下,增加平行测定次数,可以提高平均值的精密度。 比如我对方差分析的理解:方差分析就是实验设计中的重要分析方法,应用非常广泛,它就是将不同因素、不同水平组合下试验数据作为不同总体的样本数据,进行统计分析,找出对实验指标影响大的因素及其影响程度。对于单因素实验的方差分析,主要步骤如下:建立线性统计模型,提出需要检验的假设;总离差平方与的分析与计算;统计分析,列出方差分析表。对于双因素实验的方差分析,分为两种,一种就是无交互作用的方差分析,另一种就是有交互作用的方差分析,对于这两种类型分别有各自的设计方法,但就是总体步骤都与单因素实验的方差分析一样。

不同施肥方法的施用效果有何不同

不同施肥方法的施用效果有何不同 施肥方法时将肥料施于土壤中的途径与方式。科学施肥方法的基本要求是:将肥料尽量施于作物根系易于吸收的土层,提高作物对化肥的利用率;选择适当的位置与方式,以减少肥料的固定、挥发和淋失。施肥方法因不同作物、不同施肥时期与肥料性质的不同而不同。最常用的方法有撒施、条施、穴施与放射状施肥、根外施肥。 1 撒施与条施撒施是将肥料用人工或机械均匀撒于田面的方法,属表土施肥,主要满足作物苗期根系分布较浅时的需要。一般未栽种作物的农田施用基肥时,或大田密植的粮食作物追肥时,常用此法。撒施结合土壤耕作措施,可增加土壤与化肥混合的均匀度,有利于作物根系的伸展和早期的吸收。但是,在土壤水分不足,地面干燥或作物种植密度低,又无其他措施使化肥与土壤混合,撒施的肥料易于被雨水或灌溉水冲走,导致挥发损失,也易于被地表杂草幼苗吸收。条施是将肥料成条施用于作物行间土壤的方法,条施比撒施肥料集中,有利于将肥料施到作物根系层,并可与灌溉撒施相结合,更易达到深施的目的。而深施是化肥施用时大力提倡的方法。在多数条件下,条施肥料都需开沟后施入并覆土,有利于提高肥效。在干旱条件或干旱季节,条施肥料结合灌水效果更好。 2 穴施在作物预定种植位置或种植穴内,或在作物生长期内的苗期,按株或在两侧株间开穴施肥称为穴施。穴施一般深度5~10厘米,施后覆土。穴施是一种比条施更能使化肥集中施用的方法。为避免伤害作物根系,一般施用的化肥较少,并与作物根系保持适当的位置和深度,施肥后覆土前结合灌水,化肥施用的效果更好。 3 轮施和放射状施肥轮施和放射状施肥是以作物主茎为圆心,将肥料作轮状或放射状施用。一般这种方法用于多年生木本作物,尤其是果树。这些作物密度低,间隔远,采用条施、撒施、穴施等,很难使化肥与作物根系充分接触,肥料利用率不高。 4 根外追肥这是将化肥喷洒于作物茎叶的施肥方法。根外追肥用量少,肥效快,是一种辅助性的施肥措施。对氮、磷、钾大量元素来说,作物生长后期,根系吸收力弱,可以及时补充养分吸收的不足。对微量元素根外追效果更好。但根外追肥并不能替代土壤追肥,气候状况对根外追肥的效果影响很大。 化肥使用注意事项

实验设计与数据处理试题库

一、名词解释:(20分) 1. 准确度和精确度:同一处理观察值彼此的接近程度同一处理的观察值与其真值的接近程度 2. 重复和区组:试验中同一处理的试验单元数将试验空间按照变异大小分成若干个相对均匀的局部,每个局部 就叫一个区组 3回归分析和相关分析:对能够明确区分自变数和因变数的两变数的相关关系的统计方法: 对不能够明确区分自变数和因变数的两变数的相关关系的统计方法 4?总体和样本:具有共同性质的个体组成的集合从总体中随机抽取的若干个个体做成的总体 5. 试验单元和试验空间:试验中能够实施不同处理的最小试验单元所有试验单元构成的空间 二、填空:(20分) 1. 资料常见的特征数有:(3空)算术平均数方差变异系数 2. 划分数量性状因子的水平时,常用的方法:等差法等比法随机法(3空) 3. 方差分析的三个基本假定是(3空)可加性正态性同质性 4. 要使试验方案具有严密的可比性,必须(2空)遵循“单一差异”原则设置对照 5. 减小难控误差的原则是(3空)设置重复随机排列局部控制 6. 在顺序排列法中,为了避免同一处理排列在同一列的可能,不同重复内各处理的排列方式常采用(2空)逆向式 阶梯式 7. 正确的取样技术主要包括:()确定合适的样本容量采用正确的取样方法 8. 在直线相关分析中,用(相关系数)表示相关的性质,用(决定系数)表示相关的程度。 三、选择:(20分) 1试验因素对试验指标所引起的增加或者减少的作用,称作(C) A、主要效应 B、交互效应 C、试验效应 D、简单效应 2. 统计推断的目的是用(A) A、样本推总体 B、总体推样本 C、样本推样本 D、总体推总体 3. 变异系数的计算方法是(B) 4. 样本平均数分布的的方差分布等于(A) 5. t检验法最多可检验(C)个平均数间的差异显著性。 6. 对成数或者百分数资料进行方差分析之前,须先对数据进行(B) A、对数 B、反正弦 C、平方根 D、立方根 7. 进行回归分析时,一组变量同时可用多个数学模型进行模拟,型的数据统计学标准是(B) A、相关系数 B、决定性系数 C、回归系数 D、变异系数 8. 进行两尾测验时,u0.10=1.64,u0.05=1.96,u0.01=2.58,那么进行单尾检验,u0.05=(A) 9. 进行多重比较时,几种方法的严格程度(LSD\SSR\Q)B 10. 自变量X与因变量Y之间的相关系数为0.9054,则Y的总变异中可由X与Y的回归关系解释的比例为(C) A、0.9054 B、0.0946 C、0.8197 D、0.0089 四、简答题:(15分) 1. 回归分析和相关分析的基本内容是什么?(6分)配置回归方程,对回归方程进行检验,分析多个自变量的主次 效益,利用回归方程进行预测预报: 计算相关系数,对相关系数进行检验 2. 一个品种比较试验,4个新品种外加1个对照品种,拟安排在一块具有纵向肥力差异的地块中,3次重复(区组),各重复内均随机排列。请画出田间排列示意图。(2分) 3. 田间试验中,难控误差有哪些?(4分)土壤肥力,小气候,相邻群体间的竞争差异,同一群体内个体间的竞争 差异。 4随即取样法包括哪几种方式?(3分)简单随机取样法分层随机取样法整群简单随机取样法 五、计算题(25分) 1. 研究变数x与y之间的关系,测得30组数据,经计算得出:x均值=10,y均值=20,l xy =60, l yy=300,r=0.6。根

实验设计与数据处理

《实验设计与数据处理》大作业 班级:环境17研 姓名: 学号: 1、 用Excel (或Origin )做出下表数据带数据点的折线散点图 余浊(N T U ) 加量药(mL) 总氮T N (m g /L ) 加量药(mL ) 图1 加药量与剩余浊度变化关系图 图2 加药量与总氮TN 变化关系图 总磷T P (m g /L ) 加量药(mL) C O D C r (m g /L ) 加量药(mL) 图3 加药量与总磷TN 变化关系图 图4 加药量与COD Cr 变化关系图 去除率(%) 加药量(mL)

图5 加药量与各指标去除率变化关系图

2、对离心泵性能进行测试的实验中,得到流量Q v 、压头H 和效率η的数据如表所示,绘制离心泵特性曲线。将扬程曲线和效率曲线均拟合成多项式(要求作双Y 轴图)。 η H (m ) Q v (m 3 /h) 图6 离心泵特性曲线 扬程曲线方程为:H=效率曲线方程为:η=+、列出一元线性回归方程,求出相关系数,并绘制出工作曲线图。 (1) 表1 相关系数的计算 Y 吸光度(A ) X X-3B 浓度(mg/L ) i x x - i y y - l xy l xx l yy R 10 -30 2800 20 -20 30 -10 40 ()() i i x x y y l R --= = ∑

50 10 60 20 70 30 平均值 40 吸光度 X-3B浓度(mg/L) 图7 水中染料活性艳红(X-3B )工作曲线 一元线性回归方程为:y=+ 相关系数为:R 2= (2) 代入数据可知: 样品一:x=样品二:x=、试找出某伴生金属c 与含量距离x 之间的关系(要求有分析过程、计算表格以及回归图形)。 表2 某伴生金属c 与含量距离x 之间的关系分析计算表 序号 x c lgx 1/x 1/c 1 2 2 3 3 4 4 5 5 7 6 8 7 10 1

试验设计与数据处理复习提纲

第0章 1 试验数据处理的主要作用 试验设计合理的规划试验,以通过较高效的试验方案获得更具代表性的数据 数据处理对试验数据进行分析研究,从而获得研究对象的变化规律,为生产和科研提供指导。 数据处理的具体作用: 第一章 2 真值的概念和特点 真值 某时刻和某一状态下,某量的可观值或实际值。 真值很多是位置的,但部分又是已知的。 3 平均值,尤其是算数平均值,加权平均值的概念。 平均值 科学实验中,经常将多次试验值得平均值作为真值的近似值。 (1) 算数平均值(arithmetic mean ) 同样试验条件下,如多次试验值服从正态分布,则算数平均值是这组等精度试验值中最佳或最可信赖的值。 (2) 加权平均值(weighted mean ) 若一组试验数据的精度或可靠度不一致,为了突出可靠性高的数值,可以采用加权平均值 权值的确定方法:①取试验值出现的频率ni/n ②若xi 为每组试验值的平均值,则权值为每组试验的次数 ③根据权与绝对误差的平方成反比确定 ④根据试验者的经验确定 4 误差的概念,包括绝对误差与相对误差。 判断影响结果的因素主次 优化试验或生产方案 确定试验因素与试验结果之间的近似函数关系 判断试验数据的可靠性 预测试验结果 控制试验结果 n n x i n ===121n x x x x i n ==+++= 121

5 误差的类型及产生的原因。 随机误差 系统误差 过失误差 6 精密度、正确度和准确度的概念。 1精密度定义:一定条件下多次试验值得彼此符合程度或一致程度。 正确度定义:大量试验结果的算数平均值与真值的一致程度。 准确度定义:反映系统误差与随机误差的综合 正确度:大量试验结果的算数平均值与真值的一致程度。 反映试验系统随机误差的大小 准确度:反映系统误差与随机误差的综合 7随机误差的检验法F 检验法。 1)检验两组实验数据精密度是否一致—双侧检验 (2)检验两组实验数据精密度优劣—单侧检验 a. 左侧检验 ① 取统计量为: ②给定显著性水平α ③查表确定临界值: ④ 判断:若 且 结论:S12相对S12两无显著减小。 b. 右侧检验 8 系统误差的t 检验法。 2122S F S = ① 取统计量为: ②给定显著性水平α ③查表确定临界值: 1212 (1,1) F n n α - --122(1,1) F n n α--④ 判断:若 121212 2 (1,1)F (1,1) F n n F n n αα- --<<--结论:则两组数据方差无显著差异。 2 122 S F S =112(1,1)F n n α---F 1<12F (1 ,1)F n n α<--12(1,1)F n n α--12F (1 ,1)F n n α<--

“3414”肥料试验方案设计

肥料效应田间试验 1. 试验目的 肥料效应田间试验是获得各种作物最佳施肥量、施肥比例、施肥时期、施肥方法的根本途径,也是筛选、验证土壤养分测试方法、建立施肥指标体系的基本环节。通过田间试验,可以掌握各个施肥单元不同作物优化施肥数量,基、追肥分配比例,施肥时期和施肥方法;摸清土壤养分校正系数、土壤供肥能力、不同作物养分吸收量和肥料利用率等基本参数;构建作物施肥模型,为施肥分区和肥料配方提供依据。 2. 试验设计 肥料效应田间试验设计,取决于研究目的。 (1)全国农业技术推广服务中心“测土配方施肥技术规范”推荐采用“3414”设计方案,我省在具体实施过程中可根据研究目的采用“3414”完全实施方案、“3414”部分实施方案及“3414”扩展实施方案。 (2)有机肥及中、微量元素应用效果试验。 (3)配方肥校正试验 3.“3414”完全实施方案 全称为:二次回归D—最优设计(3414方案)肥料试验设计 (1)“3414”方案设计吸收了回归最优设计处理少、效率高的优点,是目前国内外应用较为广泛的肥料效应田间试验方案。“3414”是指氮、磷、钾3个因素、4个水平、14个处理。4个水平的含义:0水平指不施肥,2水平指当地最佳施肥量,1水平=2水平×0.5,3水平=2水平×1.5(该水平为过量施肥水平)。 (与码值计算得到的结果相同,原因是此方案不含带有小数的码值。“311—B”,“311—A”等含带有小数的码值。) (2)该方案除了可应用14个处理,进行氮、磷、钾三元二次效应方程的拟合以外,还可分别进行氮、磷、钾中任意二元或一元效应方程的拟合。 (3)其具体操作参照有关的试验设计与统计技术手册。

肥料施用效果评价测算方法

肥料施用效果测算方法 肥料是重要的农业生产资料。科学评价肥料施用效果,对于改进施肥技术,提高肥料资源利用效率,实现农业增产增效,保障农业可持续发展具有十分重要的意义。评价肥料施用效果的主要方法和指标有肥料利用率、肥料农学效率、肥料偏生产力等。具体测算方法如下: 1、肥料利用率 1.1 定义 肥料利用率(RE )是指施用的肥料养分被作物吸收的百分数,随作物种类、肥料品种、土壤类型、气候条件、栽培管理以及施肥技术等因素发生变化而不同,是最常用的一个综合评价指标。肥料利用率包括当季利用率和累计利用率,这里是指当季利用率。 1.2 测算方法 1. 2.1 示踪法 示踪法是指将已知养分数量的放射性或稳定性示踪肥料施入土壤,作物成熟后测定作物所吸收的放射性或稳定性同位素养分的数量,计算肥料利用率。 1.2.2 差值法 差值法是施肥区作物吸收的养分量与不施肥区作物吸收的养分量之差与肥料投入量的比值。从农学意义上看,应采用差值法测算氮、磷、钾肥的利用率。计算式如下: % 1000 1?-= F U U RE 式中:RE 为肥料利用率;U 1、U 0分别为施肥区与缺素区作物吸收的养分量,单位为公斤/亩;F 为肥料养分(指N 、P 2O 5、K 2O )投入量,单位为公斤/亩。 一般通过田间试验测算氮、磷、钾肥利用率。包括以下几个步骤: 1.2.2.1 布置田间试验 根据本区域土壤类型、种植制度、主要作物等安排田间试验,一般每个县、每种作物安排10-15个试验,具体试验设计如下: 试验设5个处理: 处理1,空白对照; 处理2,无氮区(PK ); 处理3,无磷区(NK ); 处理4,无钾区(NP ); 处理5,氮磷钾区(NPK )。 1.2.2.2 测定作物吸收的养分 作物吸收的养分量,一般是指作物收获期收获取走部分(含果实和茎叶)的养分吸收量。对于根茎类作物,除地上部分外,还应包括地下的块根块茎部分;对于整枝打叉作物,应收集、称量每次整枝打叉的生物量,并计算到总量中。 分别测定田间试验各处理植株样品的茎叶和果实中的氮、磷、钾养分含量,计算不同试验处理作物养分的吸收量,用“U ”表示。如果没有测定植株样品养分含量,可根据收获的经济产量和形成每公斤经济产量所吸收的养分量计算获得。 1.2.2.3 测算氮、磷、钾肥利用率 氮肥利用率:

试验设计与数据处理

试验设计与数据处理方法总述及总结 王亚丽 (数学与信息科学学院 08统计1班 081120132) 摘要:实验设计与数据处理是一门非常有用的学科,是研究如何经济合理安排 试验可以解决社会中存在的生产问题等,对现实生产有很重要的指导意义。因此本文根据试验设计与数据处理进行了总述与总结,以期达到学习、理解、掌握的以及灵活运用的目的。 1 试验设计与数据处理基本知识总述 1.1试验设计与数据处理的基本思想 试验设计与数据处理是数理统计学中的一个重要分支。它是以概率论、数理统计及线性代数为理论基础,结合一定的专业知识和实践经验,研究如何经济、合理地安排实验方案以及系统、科学地分析处理试验结果的一项科学技术,从而解决了长期以来在试验领域中,传统的试验方法对于多因素试验往往只能被动地处理试验数据,而对试验方案的设计及试验过程的控制显得无能为力这一问题。 1.2试验设计与数据处理的作用 (1)有助于研究者掌握试验因素对试验考察指标影响的规律性,即各因素的水平改变时指标的变化情况。 (2)有助于分清试验因素对试验考察指标影响的大小顺序,找出主要因素。(3)有助于反映试验因素之间的相互影响情况,即因素间是否存在交互作用。(4)能正确估计和有效控制试验误差,提高试验的精度。 (5)能较为迅速地优选出最佳工艺条件(或称最优方案),并能预估或控制一定条件下的试验指标值及其波动范围。 (6)根据试验因素对试验考察指标影响规律的分析,可以深入揭示事物内在规律,明确进一步试验研究的方向。

1.3试验设计与数据处理应遵循的原则 (1)重复原则:重可复试验是减少和估计随机误差的的基本手段。 (2)随机化原则:随机化原则可有效排除非试验因素的干扰,从而可正确、无偏地估计试验误差,并可保证试验数据的独立性和随机性。 (3)局部控制原则:局部控制是指在试验时采取一定的技术措施方法减少非试验因素对试验结果的影响。用图形表示如下: 2试验设计与数据处理方法总述和总结 2.1方差分析 (1)概念:方差分析是用来检验两个或两个以上样本的平均值差异的显著程度。并由此判断样本究竟是否抽自具有同一均值的总体。 (2)优点:方差分析对于比较不同生产工艺或设备条件下产量、质量的差异,分析不同计划方案效果的好坏和比较不同地区、不同人员有关的数量指标差异是否显著时,是非常有用的。 (3)缺点:对所检验的假设会发生错判的情况,比如第一类错误或第二类错误的发生。 (4)基本原理:方差分析的基本思路是一方面确定因素的不同水平下均值之间的方差,把它作为对由所有试验数据所组成的全部总体的方差的第一个估计值;另一方面再考虑在同一水平下不同试验数据对于这一水平的均值的方差,由此计算出对由所有试验数据所组成的全部数据的总体方差的第 二个估计值。比较上述两个估计值,如果这两个方差的估计值比较接近就说明因素的不同水平下的均值间的差异并不大,就接受零假设;否则,说明因素的不同水平下的均值间的差异比较大。

各种肥料的正确使用方法

各种肥料的正确使用方法 当前肥料种类繁多,新型肥料品种更是令人眼花缭乱,让很多农户感到迷茫,以至于在施肥常常会陷入以下几方面的误区: 第一,肥料用得多,庄稼产出多,造成投入增加。 第二,用旋耕机打地前匆忙撒施肥料,表施现象严重,造成肥料挥发,浪费严重。 第三,有机肥用量下降,有机肥与化肥施用比例失调。重施化肥,少施或不施农家肥的现象很普通,只用地不养地,造成许多土地板结严重,抗旱、保肥、保水能力下降。 第四,在化肥施用上,各作物间极不平衡,经济作物用量大,粮食作物用量少。盲目施肥现象不仅造成化肥浪费严重,同时造成环境和地下水污染。 针对上述不合理施肥现象,在对任何一种作物施肥时,要根据你在什么地上种什么作物,确定施什么肥料。然后再计算出施多少肥,具体什么时期施,以什么方式施肥效果最佳。目的是要用最少的投资,获得最大的效益。 施用肥料的确定 植物为了生长发育,需要从土壤中吸收各种养分,包括大量元素和中微量元素。但是决定植物产量的却是土壤中那个相对含量最小的有效养分。无视最小养分而补充其它养分不能提高作物的产量。最小养分即土壤的供给能力最低的那种养分,这就是我们要补给的养分。 施肥时间选择 作物对养分的吸收有两个关键时期,即植物营养临界期和植物营养最大效率期。植物营养临界期:指在植物生育过程中,有一个时期对某种养分要求的绝对量不多,但很敏感,需要迫切。此时如缺乏这种养分,对植物生育的影响极其明显,由此造成的损失,即使以后补施这种养分也很难纠正和弥补。磷的临界期一般在 幼苗期:棉花出苗后10-20天,玉米出苗后一周;氮的临界期稍向后移:小 麦是在分蘖期,棉花是在现蕾初期,玉米是在幼穗分化期。植物营养最大效率期:某一时期植物需要养分的绝对数量最多,吸收速率最快,肥料的作用最大,增产效率最高,这时就是植物营养最大效率期。此时植物生长旺盛,对施肥的反应最为明显。玉米氮素最大效率期在喇叭口到抽穗初期,小麦在拨节到抽穗,棉花则是开花结铃的时期。 作物磷元素的营养临界期出现在作物生长发育早期,而土壤中施入磷肥后,由于磷元素在土壤中和作物体内的移动性较慢。为保证作物苗期对磷元素的需求,磷肥最好以基肥形式施入土壤,以防止作物磷元素的营养临界期出现供应不足。其他营养元素应在该元素的营养临界期少量追肥(此时,如果土壤供应充足时可不追肥),在各营养元素的最大效率期应重点追肥。

实验设计与数据处理试题库

一、名词解释:(20分) 1.准确度和精确度:同一处理观察值彼此的接近程度同一处理的观察值与其真值的接近程度 2.重复和区组:试验中同一处理的试验单元数将试验空间按照变异大小分成若干个相对均匀的局部,每个局部就叫一个区组 3回归分析和相关分析:对能够明确区分自变数和因变数的两变数的相关关系的统计方法: 对不能够明确区分自变数和因变数的两变数的相关关系的统计方法 4.总体和样本:具有共同性质的个体组成的集合从总体中随机抽取的若干个个体做成的总体 5.试验单元和试验空间:试验中能够实施不同处理的最小试验单元所有试验单元构成的空间 二、填空:(20分) 1.资料常见的特征数有:(3空)算术平均数方差变异系数 2.划分数量性状因子的水平时,常用的方法:等差法等比法随机法(3空) 3.方差分析的三个基本假定是(3空)可加性正态性同质性 4.要使试验方案具有严密的可比性,必须(2空)遵循“单一差异”原则设置对照 5.减小难控误差的原则是(3空)设置重复随机排列局部控制 6.在顺序排列法中,为了避免同一处理排列在同一列的可能,不同重复内各处理的排列方式常采用(2空)逆向式阶梯式 7.正确的取样技术主要包括:()确定合适的样本容量采用正确的取样方法 8.在直线相关分析中,用(相关系数)表示相关的性质,用(决定系数)表示相关的程度。 三、选择:(20分) 1试验因素对试验指标所引起的增加或者减少的作用,称作(C) A、主要效应 B、交互效应 C、试验效应 D、简单效应 2.统计推断的目的是用(A) A、样本推总体 B、总体推样本 C、样本推样本 D、总体推总体 3.变异系数的计算方法是(B) 4.样本平均数分布的的方差分布等于(A) 5.t检验法最多可检验(C)个平均数间的差异显著性。 6.对成数或者百分数资料进行方差分析之前,须先对数据进行(B) A、对数 B、反正弦 C、平方根 D、立方根 7.进行回归分析时,一组变量同时可用多个数学模型进行模拟,型的数据统计学标准是(B) A、相关系数 B、决定性系数 C、回归系数 D、变异系数 8.进行两尾测验时,u0.10=1.64,u0.05=1.96,u0.01=2.58,那么进行单尾检验,u0.05=(A) 9.进行多重比较时,几种方法的严格程度(LSD\SSR\Q)B 10.自变量X与因变量Y之间的相关系数为0.9054,则Y的总变异中可由X与Y的回归关系解释的比例为(C) A、0.9054 B、0.0946 C、0.8197 D、0.0089 四、简答题:(15分) 1.回归分析和相关分析的基本内容是什么?(6分)配置回归方程,对回归方程进行检验,分析多个自变量的主次效益,利用回归方程进行预测预报: 计算相关系数,对相关系数进行检验 2.一个品种比较试验,4个新品种外加1个对照品种,拟安排在一块具有纵向肥力差异的地块中,3次重复(区组),各重复内均随机排列。请画出田间排列示意图。(2分) 3.田间试验中,难控误差有哪些?(4分)土壤肥力,小气候,相邻群体间的竞争差异,同一群体内个体间的竞争差异。 4随即取样法包括哪几种方式?(3分)简单随机取样法分层随机取样法整群简单随机取样法 五、计算题(25分) 1.研究变数x与y之间的关系,测得30组数据,经计算得出:x均值=10,y均值=20,l xy=60, l yy=300,r=0.6。根据所得数据建立直线回归方程。(5分)a=2 b=1.8 y=2+1.8 x 2.完成下列方差分析表,计算出用LSR法进行多重比较时各类数据填下表:

2014―2015年度桥区小麦“3414”肥料效应田间试验4页word文档

2014―2015年度桥区小麦“3414”肥料效应田间试验 按照农业部“测土配方施肥项目的技术规范”和“安徽省3414肥效田间试验总体方案”要求,笔者于2014年在宿州市桥区测土配方施肥项目区进行了小麦“3414”肥效试验。通过田间试验,进一步研究当地小麦的最佳施肥量,以及如何提高肥料利用率、增加经济效益,为科学指导施肥提供依据。 1 材料与方法 1.1 试验地概况试验于2014年10月至2015年6月安排在桥区灰古镇付湖村李清武承包地进行。土壤为砂姜黑土,前茬作物为夏玉米,常年产量在7 500kg/hm2以上,一年两熟,耕层厚度20cm,通常地下水位2~8m,田块平整,肥力均匀,pH值8.1。有机质含量2 2.4g/kg,全氮1.37g/kg,碱解氮123mg/kg,有效磷25.5mg/kg,速效钾198mg/kg。 1.2 供试材料供试肥料为氮肥为大颗粒尿素,含量46%,产地山西晋丰;磷肥为过磷酸钙,含量16%,产地为安徽铜陵;钾肥为氯化钾,含量60%,产地俄罗斯。供试水稻品种为烟农5158。 1.3 试验方法试验采用“3414”最优回归设计(表1),该试验方案是指氮磷钾3个因素、4个水平、14个处理。4个水平是指:0水平不施肥,2水平为当地最佳施肥量,1水平=2水平×0.5,3水平=2水平×1.5。试验因素及水平编码见表1,小区面积30m2(5m×6m),行距20cm,播量187.5kg/hm2,小区间距60cm,区组间距1m,3次重复,试验区外围走道1m,周边种3行保护行。试验肥料磷、钾肥采用一次基施,氮肥采取基础肥75%,小麦拔节期(3月15日)追肥25%,即基施为掺混肥料24-12-12

肥料施用效果测算方法

肥料施用效果测算方法(试行) 肥料是重要的农业生产资料。科学评价肥料施用效果,对于改进施肥技术,提高肥料资源利用效率,实现农业增产增效,保障农业可持续发展具有十分重要的意义。评价肥料施用效果的主要方法和指标有肥料利用率、肥料农学效率、肥料偏生产力等。具体测算方法如下: 1、肥料利用率 1.1 定义 肥料利用率(RE )是指施用的肥料养分被作物吸收的百分数,随作物种类、肥料品种、土壤类型、气候条件、栽培管理以及施肥技术等因素发生变化而不同,是最常用的一个综合评价指标。肥料利用率包括当季利用率和累计利用率,这里是指当季利用率。 1.2 测算方法 1.2.1 示踪法 示踪法是指将已知养分数量的放射性或稳定性示踪肥料施入土壤,作物成熟后测定作物所吸收的放射性或稳定性同位素养分的数量,计算肥料利用率。 1.2.2 差值法 差值法是施肥区作物吸收的养分量与不施肥区作物吸收的养分量之差与肥料投入量的比值。从农学意义上看,应采用差值法测算氮、磷、钾肥的利用率。计算式如下: %10001?-=F U U RE 式中:RE 为肥料利用率;U 1、U 0分别为施肥区与缺素区作物吸收的养分量,单位为公斤/亩;F 为肥料养分(指N 、P 2O 5、K 2O )投入量,单位为公斤/亩。 一般通过田间试验测算氮、磷、钾肥利用率。包括以下几个步骤: 1.2.2.1 布置田间试验 根据本区域土壤类型、种植制度、主要作物等安排田间试验,一般每个县、每种作物安排10-15个试验,具体试验设计如下: 试验设5个处理: 处理1,空白对照; 处理2,无氮区(PK ); 处理3,无磷区(NK ); 处理4,无钾区(NP ); 处理5,氮磷钾区(NPK )。 1.2.2.2 测定作物吸收的养分 作物吸收的养分量,一般是指作物收获期收获取走部分(含果实和茎叶)的养分吸收量。对于根茎类作物,除地上部分外,还应包括地下的块根块茎部分;对于整枝打叉作物,应收集、称量每次整枝打叉的生物量,并计算到总量中。 分别测定田间试验各处理植株样品的茎叶和果实中的氮、磷、钾养分含量,计算不同试验处理作物养分的吸收量,用“U ”表示。如果没有测定植株样品养分含量,可根据收获的经济产量和形成每公斤经济产量所吸收的养分量计算获得。 1.2.2.3 测算氮、磷、钾肥利用率 氮肥利用率:

数据处理与实验设计小论文

上海大学2014~2015学年秋季学期研究生课程考试课程名称:数据处理与实验设计课程编号:11S009003论文题目:正交实验在锂离子电极材料制备中的应用 研究生姓名:李艳峰学号:14722191 论文评语: 成绩:任课教师: 评阅日期:

正交实验在锂离子电极材料制备中的应用 李艳峰 (上海大学环境与化学工程学院,上海200444) 摘要:锂源、反应温度、反应时间和锂钛摩尔比是影响锂离子电极负极材料Li4Ti5O12制备的重要因素,本文利用正交实验L9 (34)的方法对液相法制备Li4Ti5O12的各种影响因素进行进一步优化,从而得到最优水平组合,并对各种影响因素进行权重分析。最后,利用正交实验确定了液相法制备Li4Ti5O12的最佳工艺:烧结温度为750℃,烧结时间为8h,LiOH·H2O 为锂源,原料中锂钛摩尔比为0.85。 关键词:正交实验设计;液相法;影响因素; 中图分类号:O242.1文献标识码:A The application of orthogonal experimental design on liquid method in the production of Lithium-ion electrode materials Yanfeng Li (School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China) Abstract:lithium source, reaction temperature, reaction time and lithium titanium molar ratio are important factors for the preparation of Li4Ti5O12 conditions of liquid method. Based on the single factor experiment, this study use L9 (34) orthogonal experiments to optimized the removal of the preparation of Li4Ti5O12 of liquid method. The optimal technological parameters of solution method determined by the orthogonal experiment were as follows: sintering temperature was 750℃, sintering time was 8 h, the lithium resource was LiOH·H2O and the mole ration of Li to Ti was 0.85. Key words: Orthogonal experimental design;Liquid method; Factors;

试验设计与数据处理课程论文

课 程 论 文 课程名称试验设计与数据处理 专业2012级网络工程 学生姓名孙贵凡 学号201210420136 指导教师潘声旺职称副教授

成绩 科学研究与数据处理 学院信息科学与技术学院专业网络工程姓名孙贵凡学号:201210420136 摘要:《实验设计与数据处理》这门课程列举典型实例介绍了一些常用的实验设计及实验数据处理方法在科学研究和工业生产中的实际应用,重点介绍了多因素优化实验设计——正交设计、回归分析方法以对目标函数进行模型化处理。其适于工艺、工程类本科生使用,尤其适用于化学化工、矿物加工、医学和环境学等学科的本科生使用。其对行实验设计可提供很大的帮助,也可供广大分析化学工作者应用。关键字:优化实验设计; 标函数进行模型化处理; 正交设计; 回归分析方法 1 引言 实验是一切自然科学的基础,科学界中大多数公式定理是由试验反复验证而推导出来的。只有经得起试验验证的定理规律才具有普遍实用性。而科学的试验设计是利用自己已有的专业学科知识,以大量的实践经验为基础而得出的既能减少试验次数,又能缩短试验周期,从而迅速找到优化方案的一种科学计算方法,就必然涉及到数据处理,也只有对试验得出的数据做出科学合理的选择,才能使实验结果更具说服力。实验设计与数据处理在水处理中发挥着不可估量的作用,通过科学合理的实验设计过程加上严谨规范的数据处理方法,可以使水处理原理,内在规律性被很好的发现,从而更好的应用于生产实践。 2 材料与方法 2.1 供试材料 1. 论文所围绕的目标和假设 研究的目标就是实验的目的,我们设计了这个实验是想来做什么以及想得到什么样的结论。要正确的识别问题和陈述问题,这些需要专业知识和大量的阅读文献综述等方法来获得我们所要提出的问题。需要对某一个具体的问题,并且对这个具体的问题提出假设。如水处理中混凝剂的最佳投加量,混凝剂的最佳投加量有一个适宜的PH值范围。

1992年A题农作物施肥效果分析

1992年A题农作物施肥效果分析 某研究所为了研究N、P、K三种肥料对于土豆和生菜的作用,分别对每种作物进行了三组实验,实验中将每种肥料的施用量分为10个水平,在考察其中一种肥料的施用量与产量关系时,总是将另二种肥料固定在第7个水平上,实验数据如下列表格所示,其中ha表示公顷,t表示吨,kg表示千克,试建立反映施肥量与产量关系的模型,并从应用价值和如何改进等方面作出评价. 施肥量与产量关系的实验数据 土豆: 一、合理假设 1.研究所的实验是在相同的正常实验条件(如充足的水分供应,正确的耕作程序)下进行

的,产量的变化是由施肥量的改变引起的,产量与施肥量之间满足一定的规律. 2.土壤本身已含有一定数量的氮、磷、钾肥,即具有一定的天然肥力. 3.每次实验是独立进行的,互不影响. 符号说明: W :农作物产量. x :施肥量. N 、P 、K :氮、磷、钾肥的施用量. Tw :农产品价格. Tx :肥料价格. Tn,Tp,Tk :氮、磷、钾肥的价格. a,b,b 0,b 1,b 2,c,c 0,c 1,c ’0,c ’1:常数(对特定肥料,特定农作物而言). 二、问题分析 农学规律[2] 表明,施肥量与产量满足下图所示关系,它分成三个不同的区段,在第一区段,当施肥量比较小时,作物产量随施肥量的增加而迅速增加,第二区段,随着施肥量的增加,作物产量平缓上升,第三区段,施肥量超过一定限度后,产量反而随施肥量的增加而下降. 图14-1 施肥量与产量的一般关系 为考察氮、磷、钾三种肥料对作物的施肥效果,我们以氮、磷、钾的施用量为自变量;土豆和生菜的产量为因变量描点作图.从中看出,氮肥对于作物产量的贡献大致呈指数关系,磷肥对于作物产量的关系大致为分段直线形式,至于钾肥,对土豆而言,大致呈指数关系,对生菜而言,随着施用量的增加,产量的上升幅度很小.这样,我们得到了对施肥效果的定性认识. 在长期的实践中,农学家们已经总结出关于作物施肥效果的经验规律,并建立了相应的理论 [3] . 1.Nicklas 和Miller 理论:设h 为达到最高产量时的施肥量,边际产量(即产量W 对施肥 量x 的导数) dx dW 与(h-x)成正比例关系. dW/dx=a(h-x),(1) 从而 W=b 0+b 1x+b 2x 2 .(2) 2.米采利希学说:只增加某种养分时,引起产量的增加与该种养分供应充足时达到的最高产量A 与现在产量W 之差成正比. dW/dx=c(A-W),(3) 从而 W=A (1-exp(-cx)).(4) 考虑到土壤本身的天然肥力,上式可修正为 W=A (1-exp(-cx+b)).(5) 3.英国科学家博伊德发现,在某些情况下,将施肥对象按施肥水平分成几组,则各组的效应曲线就呈直线形式.若按水平分成二组,可以用下式表示: ,)x x x (x c c ) x x 0(x c c n i 10i 10? ? ?<≤'+'<≤+(6) 我们假设该研究所的实验是在正常条件下进行的,因而表14-1所示的施肥量与产量的数据应该满足上述规律(对不同肥料,不同作物而言可以满足不同的规律).以这些理论为依据,

实验设计与数据处理

试验设计与数据处理 学院 班级 学号 学生姓名 指导老师

第一章 4、 相对误差18.20.1%0.0182x mg mg ?=?= 故100g 中维生素C 的质量范围为:±。 5、1)、压力表的精度为级,量程为, 则 max 0.2 1.5%0.00333 0.375 8 R x MPa KPa x E x ?=?==?=== 2)、1mm 的汞柱代表的大气压为, 所以 max 2 0.1330.133 1.662510 8 R x KPa x E x -?=?===? 3)、1mm 水柱代表的大气压为gh ρ,其中2 9.8/g m s = 则: 3max 33 9.8109.810 1.22510 8 R x KPa x E x ---?=???===? 6. 样本测定值 算数平均值 几何平均值 调和平均值 标准差s 标准差σ 样本方差S 2 总体方差σ2 算术平均误差△ 极差R 7、S ?2=,S ?2= F =S ?2/ S ?2== 而F ()=,= 所以F ()< F < 两个人测量值没有显著性差异,即两个人的测量方法的精密度没有显著性差异。 |||69.947|7.747 6.06 p p d x =-=>

分析人员A分析人员B 8样本方差1 8样本方差2 10Fa值 104F值 6 68 4705 6 6 88 8.旧工艺新工艺 %% %% %% %% %% %% %% %% %% % % % % t-检验: 双样本异方差假设 变量 1变量 2 平均 方差 观测值139假设平均差0 df8 t Stat-38. P(T<=t) 单尾0 t 单尾临界 P(T<=t) 双尾0 t 双尾临界 F-检验双样本方差分析

经销商必备技巧:最简单肥料用量计算方法

经销商在提供农化服务时,被农民问得最多的是施多少肥的问题。农民主要凭借经验施肥或者把每亩肥料的投入量控制在自己能接受的成本极限以内,而经销商往往会根据想推销的肥料来确定施肥量。从减少肥料投入,提高肥料利用率来说,科学计算施肥量,不但能让农民节约种植成本,还能提高经销商的农化服务能力,锁定农户的购买忠诚度。 施肥量的确定可以分为养分平衡法、田间试验法,鉴于农资经销商的工作需要,我们只介绍养分平衡法的基本计算原理。养分平衡法的基本概念是作物的养分吸收量等于土壤与肥料二者养分供应量之和。肥料为作物提供的部分养分要通过施肥来进行。但作物施肥量与肥料养分供应量并不完全相同。因为投人农田的养分仅有一部分被当季作物吸收利用,考虑到肥料利用率因素,施肥量可通过下式推算: 计划作物施肥量(kg)=(计划产量所需养分总量-土壤养分供应量)÷(肥料养分含量×肥料利用率(%) 作物施肥量是指施用某一养分元素的量。具体到化肥品种,实物化肥用量则要通过下式推算: 计划作物施肥量(kg)=实物化肥用量(kg)×有效成分含量(%) 其中: 1.计划产量所需养分总量kg)=(计划产量/100)×每形成100kg产量所需养分数量(参照不同作物形成100kg经济产量所需养分大致数量表)。计划产量则是当地作物3年平均产品产量再增加10%-15%。 2.土壤养分供应量(kg)=(无肥区产量/100)×每形成100kg产量所需养分数量 土壤供肥量一般通过土壤取样化验来估算。在没有化验条件的情况下,也可通过不施肥时的产量(空白产量)来进行估算。这里建议农资经销商或者农户尽量通过土壤取样化验来计算,郑州朋检农业科技有限公司研发生产的土壤检测系列仪器,操作简便,快速准确,成品药剂,携带方便。现分为PJ-TSY实用型测土仪,PJ-TBZ标准型测土仪,PJ-TGN功能型测土仪,可以检测土壤中氮磷钾,有机质及微量元素;可满足不同种植作物需肥特性。 3.一般情况下,化肥的当季利用率为:氮肥30%-35%,磷肥20%-25%,钾肥25%-35%。

实验设计与数据处理课后答案

《试验设计与数据处理》 专业:机械工程班级:机械11级专硕学号:S110805035 姓名:赵龙 第三章:统计推断 3-13 解:取假设H0:u1-u2≤0和假设H1:u1-u2>0用sas分析结果如下:Sample Statistics Group N Mean Std. Dev. Std. Error ---------------------------------------------------- x 8 0.231875 0.0146 0.0051 y 10 0.2097 0.0097 0.0031 Hypothesis Test Null hypothesis: Mean 1 - Mean 2 = 0 Alternative: Mean 1 - Mean 2 ^= 0 If Variances Are t statistic Df Pr > t ---------------------------------------------------- Equal 3.878 16 0.0013 Not Equal 3.704 11.67 0.0032 由此可见p值远小于0.05,可认为拒绝原假设,即认为2个作家所写的小品文中由3个字母组成的词的比例均值差异显著。 3-14 解:用sas分析如下: Hypothesis Test Null hypothesis: Variance 1 / Variance 2 = 1 Alternative: Variance 1 / Variance 2 ^= 1 - Degrees of Freedom - F Numer. Denom. Pr > F ---------------------------------------------- 2.27 7 9 0.2501 由p值为0.2501>0.05(显著性水平),所以接受原假设,两方差无显著差异 第四章:方差分析和协方差分析 4-1 解: Sas分析结果如下: Dependent Variable: y Sum of Source DF Squares Mean Square F Value Pr > F

相关文档
最新文档