泡沫金属的介绍及制备

合集下载

泡沫金属的介绍及制备

泡沫金属的介绍及制备

后处理
热处理是连续化带状泡沫镍生产中最后一道工序,其目的是去除有机物, 提高电镀镍层的柔韧性,分为先空气烧除而后还原烧结两步完成,还原气 氛为氨分解气氛,即氮、氢混合气氛。还原温度800度。炉温不当会出现 “起拱”的现象。
泡沫镍制备过程中各阶段样品基本上均保持了原泡沫模板的结构形貌,呈3维网络 状均匀结构,组成泡沫镍的丝纵横交错。
Gasar原理
Gasar原理
气孔的大小、形貌、空间排列取决于熔体的气体含量、气压、化 学成分、凝固速率和凝固方向。
通过不同的凝固条件制备的多孔结构
GASAR凝固中气泡形核机制
区域1
气泡在凝固的金属中 形成,但形核阻力大
区域2
气泡在凝固界面处同固相同时 形成,气泡定向排列于固相中
区域3
气泡在液相中形成, 在熔体表面逸出
固气共晶凝固法 (GASAR)
介绍
GASAR
金属气体发生共晶反应, 定向凝固,生成的圆柱型 气孔定向排列于基体中。
气孔壁光滑; 无气孔分支现象; 气孔分布短程有序; 孔径10nm-10mm; 孔隙率10%-70%。
与传统的方法制备的材料相 比,具有小的应力集中,高 的力学性能,良好的渗透能 力。
结果分析
不同电流密度下沉积层的XRD图谱
结果分析
不同电流密度下镍沉积层的磁滞回线
每条回线所围面积均很小,损耗低 ,其剩磁、矫顽力几乎为零,表现出 超顺磁性。磁滞回线显示的磁导率 与饱和磁化强度随着晶粒尺寸的增 加而变大。这是因为晶粒平均粒径 越小,存在于晶粒之间的晶界相对越 多,对磁畴壁移动产生阻碍作用越大 ,磁导率越低。
泡沫金属的介绍及制备
1 引言


2. 电沉积法制泡沫镍

泡沫金属的介绍及制备

泡沫金属的介绍及制备

泡沫金属的介绍及制备泡沫金属是一种具有网状结构的金属材料,具有多孔、轻质、吸能等特点,广泛应用于航天航空、汽车、石油化工、建筑和生物医学等领域。

泡沫金属的制备方法有物理发泡法、化学发泡法和合金熔浇法等。

物理发泡法是利用金属粉末与发泡剂混合,通过高温炉将混合物熔化,发泡剂在熔融过程中释放出气体,使金属熔液形成气泡。

通过调整熔融温度、发泡剂添加量和冷却速率等参数,可以控制泡沫金属的孔隙率、孔径大小和形状。

化学发泡法是在金属粉末中添加化学反应剂,如水和一些添加剂,通过反应产生氢气或其他气体。

在高温下,氢气被金属熔融体吸收,形成气泡,使金属熔液膨胀。

利用化学发泡法可以制备具有更高孔隙率和更大孔径的泡沫金属。

合金熔浇法是将金属合金熔化后注入预先制备好的多孔陶瓷模具中,通过真空抽吸或压力注入等手段,将金属熔液填充到模具中的孔隙中,然后经过冷却固化,形成泡沫金属。

合金熔浇法可以制备泡沫金属的孔隙形状和密度更加均匀,同时具有较高的抗压强度和较低的气孔率。

泡沫金属具有以下几个显著的特点:1.轻质高强:泡沫金属的孔隙率通常可以达到80%以上,因此具有很小的密度。

同时,由于金属的连续结构,泡沫金属具有优异的强度和刚度。

2.吸能减震:泡沫金属可以吸收和分散冲击能量,具有较好的减震和吸能性能。

在航天航空领域的燃料箱、汽车碰撞缓冲装置和防弹材料等方面具有广泛的应用。

3.导热性能好:由于泡沫金属的连续结构,其导热性能较好。

可以用作散热器材料,有效降低电子设备和发动机等高温部件的温度。

4.吸声性能好:泡沫金属的多孔结构可以有效吸收和分散声音能量,具有良好的吸音性能。

在建筑和汽车领域被广泛应用于隔音材料。

5.生物相容性好:由于泡沫金属具有金属的特性,如抗腐蚀性和生物相容性,因此可以在生物医学领域应用于植入材料。

总之,泡沫金属具有轻质高强、吸能减震、导热性能好、吸声性能好和生物相容性好等优良特性。

随着科学技术的发展,泡沫金属在各个领域的应用将会进一步扩大。

泡沫金属材料的制备与性能研究

泡沫金属材料的制备与性能研究

泡沫金属材料的制备与性能研究近年来,泡沫材料作为一种新型材料,被广泛应用于隔热、吸声、过滤、减震等领域。

而在这篇文章中,我们将集中讨论其中的一种——泡沫金属材料,探究其制备和性能方面的研究。

一、泡沫金属材料的制备泡沫金属材料的制备主要有三种方法:粉末冶金法、自发性膨胀法和前驱体法。

1.粉末冶金法粉末冶金法是通过在高温状态下将粉末压实,然后在惰性气氛或真空条件下进行高温退火,使金属粉末热膨胀形成泡孔的方法制备泡沫金属材料。

因为这种方法所得到的泡沫材料的孔径比其它两种方法得到的材料要细小,所以在一些领域中,其应用范围相对较窄。

2.自发性膨胀法自发性膨胀法是将金属粉末放进钢管中,在加热到一定温度后,金属粉末在其自身内部发生氧化还原反应,放出气体,使得热膨胀的金属粉末形成空心结构的泡沫材料。

这种方法得到的泡沫材料具有较大的孔径和比表面积和气膜厚度,所以在催化剂、吸附材料等领域中有着广泛的应用。

3.前驱体法前驱体法是在高分子聚合物溶液中先形成金属络合物,然后将其加热至一定温度,分解出气体形成泡孔的方法制备泡沫金属材料。

这种方法制备的泡沫材料具有均匀的孔径、较高的开孔率、高比表面积和良好的机械性能,所以在热阻隔、吸声等领域中有着广泛的应用。

二、泡沫金属材料的性能泡沫金属材料由于具有空心结构,所以其密度非常之小。

与普通金属相比,泡沫金属材料的抗压性能和比强度非常之高,同时其导热性和导电性能也比较强。

1.抗压性能泡沫金属在制备过程中,其空心孔隙的大小和分布会对其抗压性能产生一定影响。

一般来说,孔径越小,分布越均匀的泡沫材料其抗压性能就越好。

而当孔径较大时,由于其容易发生屈曲、断裂等现象,所以其抗压性能相对较弱。

2.导热性能泡沫金属材料的导热性能与其密度有关,密度越低,导热性能越强。

当空气孔隙率达到95%以上时,泡沫金属材料的热传导系数将会小于1W/mk,而这也是其他材料所不能比拟的。

因此,泡沫金属材料的导热性能表现出了卓越的隔热性能。

泡沫金属的介绍及制备3.1

泡沫金属的介绍及制备3.1
气泡间膜厚最薄处: 15 μm ~ 20 μm
密度 :150 kg /m3 ~ 300 kg /m3。
常见的泡沫金属?
1.泡沫铝及其合金质轻,具有吸音、隔热、减振、 吸收冲击能和电磁波等特性,适用于导弹、飞行器和 其回收部件的冲击保护层,汽车缓冲器,电子机械减 振装置,电磁波屏蔽罩等。
2.泡沫铜的导电性和延展性好,可将其用于制备电 池(载体)负极材料、催化剂载体和电磁屏蔽材料。
泡 沫 铝 电 极 电 池
6.泡沫铝有很强的电磁屏蔽性能。 与其它电磁屏蔽材料相比有以下优点:
( 1 ) 、超轻质量,低密度 ( 300 kg /m3 ~ 1 000 kg /m3) ; ( 2) 耐高温、低热导率、良好的阻尼性等; ( 3) 、可以成形为复杂的形状,是实体金属所不能比拟的。
泡沫铝板材属于优等级的电磁屏蔽材料,对频率200MHz以下电磁 波,屏蔽效能达到90dB。厚度20mm的铁板,附带泡沫塑料,其屏蔽 电磁波为50dB。单独20mm泡沫铝,屏蔽电磁波为90dB,重量是铁板 的1/50。
可以应用在一些需要屏蔽电磁波信号的设备上。如移动的坦克指战车 、歼20隐身飞机
7、隔声降噪 高速公路和高铁安装泡沫铝声屏障,经测量,泡沫铝声屏障 可以降噪10~20dB。是铝板声屏障降噪的两倍。
8、军事装备 笨重且防护性能低的钢筋混凝土导弹发射井盖用轻质防护性能高的泡沫铝 井盖所代替,每个井盖由120吨降低到20吨。 运20大飞机空军列装,用以空降20吨左右的重型装备,用泡沫铝板材缓冲 垫保障空降安全,舰船甲板、大桥防撞及制造应急支援大桥都可以应用泡沫铝 板材。
七、市场
人类发现金属有9000年历史,制造铝合金有200年历 史,研发泡沫材料不到100年历史,相比之下,泡沫铝 从50年代后期问世,到现在不到60年,是一个充满活力 的新型材料,产业为朝阳产业。他的发展势必促进军民 融合产业发展,有利于一带一路战略的快速发展。目前 行业的年发展速度超过50%,正处于爆发式发展的前夕 , 具有1000亿以上市场的巨大发展空间。随着新材料 战略的正确引领,通过科技研发领域的不断扩大,泡沫 铝行业正在进入一个健康的的高速发展期。

泡沫金属_精品文档

泡沫金属_精品文档

泡沫金属泡沫金属是一种与众不同的材料,它具有独特的结构和性能。

这种材料由金属薄片组成,形成一个类似于海绵的结构。

泡沫金属通常用于吸声、隔热、过滤和结构支撑等领域。

本文将介绍泡沫金属的制备方法、结构特点以及应用领域等内容。

一、制备方法泡沫金属的制备方法主要有两种:物理泡沫法和化学泡沫法。

物理泡沫法是将金属薄片堆叠在一起,然后在高温环境下进行烧结。

这个过程中,金属薄片之间的空隙被保留下来,形成了泡沫状结构。

物理泡沫法制备的泡沫金属具有均匀的孔隙结构和良好的机械性能。

化学泡沫法是通过在金属薄片上涂覆一层特殊的泡沫剂,然后在高温环境下进行热解或燃烧。

泡沫剂在高温下分解产生气体,形成气泡,使金属薄片膨胀并形成泡沫状结构。

化学泡沫法制备的泡沫金属具有较大的孔隙度和较低的密度。

二、结构特点泡沫金属的结构特点是其最大的优点之一。

泡沫金属的结构类似于海绵,具有大量的孔隙。

这些孔隙可以提供较大的表面积,从而增加与外界环境的接触面积。

此外,泡沫金属的孔隙大小和分布可以根据需求进行调节。

这种可调节的结构使得泡沫金属在吸声、隔热和过滤等领域具有广泛的应用。

泡沫金属的结构还具有良好的机械性能。

由于金属薄片之间的交叉连接,泡沫金属具有较高的强度和刚度。

这种结构可以使泡沫金属承受较大的载荷,从而在结构支撑方面具有潜力。

三、应用领域泡沫金属由于其独特的结构和性能,被广泛应用于各个领域。

在声学方面,泡沫金属因其良好的吸声性能被用于吸音材料的制备。

泡沫金属可以通过调节孔隙结构和密度来实现不同频率范围内的吸声效果。

因此,它在音响室、汽车制造和船舶建造等领域有着广泛的应用。

在隔热方面,泡沫金属可以作为保温隔热材料来减少能量的传导和散失。

由于泡沫金属的结构具有大量的孔隙,可以形成一个有效的隔热层。

这种材料在建筑、石油化工和航天航空等领域中被广泛应用。

在过滤方面,泡沫金属可用于空气和液体的过滤。

由于其高表面积和可调节的孔隙结构,泡沫金属可以有效地去除悬浮颗粒和杂质。

泡沫金属的制备力学性能及其应用

泡沫金属的制备力学性能及其应用

泡沫金属的制备力学性能及其应用泡沫金属是指金属材料在冶金过程中通过特殊方法制得的具有开放孔隙结构的材料。

泡沫金属具有低密度、高比强度、优异的吸能性能、良好的导热性能等特点,因此被广泛应用于汽车、航空航天、建筑、能源储存等领域。

泡沫金属的制备方法多种多样,常见的有聚合物模板法、发泡剂法、自发性发泡法等。

其中,聚合物模板法是最常见的制备方法之一、首先,将金属粉末与粘结剂混合,然后将混合物填充到聚合物模板中,通过高温处理使粘结剂烧结,最后将聚合物模板去除,得到具有孔隙结构的泡沫金属。

泡沫金属具有优异的力学性能。

它具有高比强度和高吸能性能,可以有效地吸收能量和缓解冲击。

由于其孔隙结构的存在,泡沫金属具有优异的吸震性能,减小了任何外部力对机械结构的影响,因此泡沫金属常被用作冲击吸收材料、振动控制材料等。

此外,泡沫金属还具有良好的导热性能,可以作为热传导材料在热管理领域得到应用。

泡沫金属在汽车领域有广泛的应用。

它可以用来制作汽车碰撞保护材料,能够有效地吸收碰撞能量,保护车辆内部的人员安全。

此外,泡沫金属还可以应用于汽车排放系统中,用于减轻噪音和振动。

同样,在航空航天领域,泡沫金属也有重要的应用。

它可以用于制作航空航天器的结构材料、燃料储存材料等。

另外,泡沫金属还可以用于建筑领域。

其低密度和高比强度使其成为一种理想的建筑材料,可以用于制作轻质墙板、隔音材料、隔热材料等。

此外,由于泡沫金属具有优异的导热性能,它还可以用于太阳能热能储存系统以及建筑物的能源效率改善。

总之,泡沫金属作为一种具有开放孔隙结构的材料,具有低密度、高比强度、良好的吸能性能和导热性能等特点,因而在各个领域都有广泛的应用。

随着科技的进步,泡沫金属的制备方法将会更加多样化,其应用领域也将进一步扩展。

泡沫金属的制备及其在航空航天领域的应用研究

泡沫金属的制备及其在航空航天领域的应用研究

泡沫金属的制备及其在航空航天领域的应用研究泡沫金属是由金属膜片之间的空隙组成的一种多孔材料,具有低密度、高强度和优异的吸能性能。

因此,泡沫金属已经成为航空航天领域中的重要材料之一。

本文将介绍泡沫金属的制备方法和在航空航天领域的应用研究进展。

一、泡沫金属的制备方法泡沫金属制备的基本原理是用脱模剂将预制的金属膜片分隔开来,并在其表面形成底部保护层。

然后,通过各种方法加入金属的孔道,形成连通的泡沫状结构。

常用的泡沫金属制备方法有以下几种:1. 模板法:模板法是通过将金属液浸渍在导电或非导电模板中,通过氧化、还原或电解反应,将纳米、微米或毫米级金属颗粒均匀沉积到模板孔洞中,然后再通过退火、烧结或溶解模板的方式获得泡沫金属。

2. 溶液法:溶液法是将金属盐溶解在有机或无机溶剂中,再加入还原剂或沉淀剂,使金属离子还原成原始金属,并在待反应的工艺条件下形成泡沫金属。

3. 反渗透法:反渗透法是将金属膜片置于内部受到压缩气体的反渗透区域内,然后将水分子透过膜片发生膨胀,其气泡成为抗剪切的靠拢和相互支撑的力,最终形成多孔泡沫金属。

以上方法各有其特点,对于不同金属材料,选择不同的制备方法具有一定的优劣之处。

例如,模板法相对简单,控制精确度高,但仅适用于制备薄壁泡沫金属;溶液法制备速度快,成品密度低,但安全性有待提高。

二、泡沫金属在航空航天领域的应用研究进展1. 引擎隔板泡沫金属具有低密度和高强度等特性,已广泛用于航空发动机的隔板。

其可阻隔来自不同部位的工作介质,拥有优异的隔音和隔热效果,还可热回收,降低燃料消耗量和减少工作环境污染。

2. 飞行器结构泡沫金属还可用于航空器结构的轻量化设计中,如飞机梁、机翼材料和飞行器隔板等部位。

采用泡沫金属制造的轻量化飞机构件,可以降低金属消耗,提高载荷能力,减轻飞机自重负担。

3. 航天器外壳泡沫金属还可用于航天器热控制外壳。

由于泡沫金属具有良好的吸热能力和隔热能力,因此可将热传递限制在特定区域,避免航天器表面温度过高或过低,提高航天器的使用寿命。

泡沫金属的现有制备方法总结

泡沫金属的现有制备方法总结

1.2.1浇注法(A)熔体发泡法这种方法的工艺过程是:向熔融的金属中加入增粘剂,使其粘度提高,然后加入发泡剂,发泡剂在高温下分解产生气体,通过气体的膨胀使金属发泡,然后使其冷却下来或者浇注可以得到泡沫金属。

常用的发泡剂为TIHZ、ZrH:等金属氢化物。

(B)颗粒浇注法这种方法通过把熔融金属浇注到充满散状颗粒的模中,而获得具有连通的蜂窝状结构或海绵状结构的泡沫金属。

这些颗粒可以是耐热和可溶的(如氯化钠)时,它们可以从铸件中被浸洗掉,形成具有连通孔隙的多孔金属;当使用松散的非可溶性填料(如多孔陶土球、泡沫玻璃、空心刚玉球、泡沫碳等无机填料)时,则可获得金属一颗粒复合体。

(C)球形颗粒加入法先将金属在塔竭中熔化,然后加入颗粒或中空球并同时进行搅拌,使这些颗粒均匀地分散到金属熔体中去,使金属的温度降低,当金属熔体的粘度足以使金属熔体不再发生偏析和分层时,即颗粒物质在金属熔体中被固定了,此时停止搅拌并让熔体凝固下来。

这种方法适用于制备高熔点的泡沫金属,如泡沫钨等。

(D)失蜡浇注法此法采用液态高熔点物质充填海绵状泡沫塑料的孔隙,使之硬化后,加热使塑料气化而获得海绵状孔隙的铸型。

将液态金属浇入此铸型,冷却凝固后除去高熔点物质后,便得到与原海绵状泡沫塑料模具有相同结构的泡沫金属。

1.2.2沉积法(A)电镀法该方法是将所需的金属镀到经过硬化和化学预镀的聚氨基甲酸乙脂表面上,并达到所需的厚度,再通过热分解法将聚氨基甲酸乙脂去掉,得到具有非常均匀孔隙分布及相当高孔隙率的泡沫金属。

(B)阴极溅镀沉积法通过在一定的惰性气体压力下对一基片进行溅射,从而得到被捕获惰性气体原子均匀分布的金属片,然后把它加热到高于其熔点的温度,并一直加热到足以加热使那些被捕获的气体膨胀,形成具有封闭孔的蜂窝状的泡沫金属。

(C)气相蒸发沉积法在较高的惰性气氛中缓慢蒸发金属材料,形成金属烟。

金属烟在自身重力和惰性气流携带下沉积,疏松地堆砌起来,形成亚微米尺度的多孔泡沫结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

步骤: 聚氨酯泡沫塑料为基体——预处理加导电层——电化学沉积——热处理,去聚 合物——多孔金属
移除聚合物
聚合物泡沫
加导电层
电沉积
导电层制备
由于泡沫塑料不导电,不能直接进行电沉积,必须在电沉积 前进行导电预处理,在泡沫表面附着一层均匀的金属层。 化学除 油
步骤:
粗化
敏化
活化
还原
化学除油
除去骨架内外表面残留的微量油污,增加其亲 水性
胚胎气泡体积越 小,越容易形核
胚胎体积与圆锥顶角的关系
三种形核机制对比
Gasar凝固的金属 - 气体共晶生长区
共生生长:两相协同生长,具有共同的生长界面,依靠溶质原 子在界面处沿两相的横向交互扩散,彼此为相邻对方提供生长 所需的组元使两相等速前行,耦合生长,形成共生共晶组织。
需要过冷 到一定温 度
将传统的相变材料填充在泡沫金属的胞中,导热率显 著的提高。
(3)泡沫金属高阻尼复合材料
将泡沫材料与弹性或无机非金属材料复合,形成复相 阻尼、结构阻尼、粘弹性阻尼等阻尼多种机制的叠加。
(4)纳米孔隙非晶态泡沫金属
结合非晶态和泡沫金属的性能
制备方法
电沉积法
原理
泡沫镍(发泡镍)是一种孔隙率高、比表面积大,质轻,具有三维网状结构 的金属材料,可做为镍-氢电池和镍-镉电池的电极基板,是二次电池的主要材料 之一。
参考文献
(1)Sarac.B;ketkaew.J.popnoe.DC;Schroers.J.Honeycomb Stucture of Bulk Metallic Glasses[J].advanced functional material,2012.22.15;
(2) Kranlin.Niklaus;Niederberger.Markus.Wet-chemical preparation of copper foam monoliths with tunable densities and complex macroscopic shapes[J].Advanced materials materials,2012; (3)张华伟,李言祥,刘源。藕状规则多孔Cu气孔率的理论预测[J].金属学报。2006.42(11); (4)Asararisithchai S,Kennddy A R .The role of oxidation during compaction on the expansion a stability of Al foams made via RM route[J].advanced Engneering Materials 2006.8(6) (5)王雪。金属-气体共晶定向凝固理论与实验研究[博士论文].北京.清华大学.2008 (6)Berchem K,Mohr U,Bleck W.Controlling the degree of the pore opening of metal sponges,prepared by the infilitration preparation method [J].Material Science and Engineering; (7)Banhart J .Manuture,characterization and application of cellular metals foams[J].Progress in Materials Science.2001.46:559-632; (8)王志远.BP算法在泡沫金属复合材料研制中的应用[J]
Gasar凝固的金属 - 气体共晶生长区
温度梯度越大,共生区越大;外界气压越大,共生区越大。
高的温度梯度降低金属的枝晶生长速度,从而使稳定的共生区扩 展。外界气压越大,饱和到熔体的氢气越多,溶解度增加,抑制 了枝晶生长。
冷却速度不是越快越好,凝固时外界气压不是越大越好。冷 却速度过高,会导致气体在凝固时来不及析出,气孔不能形 成;凝固时外界气压过高,熔体中的氢不易聚集形成气孔。
Gasar原理
Gasar原理
气孔的大小、形貌、空间排列取决于熔体的气体含量、气压、化 学成分、凝固速率和凝固方向。
通过不同的凝固条件制备的多孔结构
GASAR凝固中气泡形核机制
区域1
气泡在凝固的金属中 形成,但形核阻力大
气泡在凝固界面处同固相同时 形成,气泡定向排列于固相中
区域2
区域3
气泡在液相中形成, 在熔体表面逸出
泡沫镍制备过程中各阶段样品基本上均保持了原泡沫模板的结构形貌,呈3维网络 状均匀结构,组成泡沫镍的丝纵横交错。
结果分析
不同电流密度下沉积层的XRD图谱
结果分析
每条回线所围面积均很小,损耗低 ,其剩磁、矫顽力几乎为零,表现出 超顺磁性。磁滞回线显示的磁导率 与饱和磁化强度随着晶粒尺寸的增 加而变大。这是因为晶粒平均粒径 越小,存在于晶粒之间的晶界相对越 多,对磁畴壁移动产生阻碍作用越大 ,磁导率越低。
镍在阴极析出的电极反应(M 代表阴极非惰性杂质):
方程式1越易进行,方程式2、3进行的越少,则阴极析出的 镍越纯,发泡镍质量越好,电流效率及设备效率也越高。
某一离子在阴极上开始析出的难易,可以用平衡电位来判断:
后处理
热处理是连续化带状泡沫镍生产中最后一道工序,其目的是去除有机物, 提高电镀镍层的柔韧性,分为先空气烧除而后还原烧结两步完成,还原气 氛为氨分解气氛,即氮、氢混合气氛。还原温度800度。炉温不当会出现 “起拱”的现象。
气泡的可能位置
Gasar凝固的匀质临界形核状态
气泡半径与体积吉布斯自由能的的变化
匀质形核
Gasar凝固的匀质临界形核状态
Gasar凝固的非均质形核
平界面上异质形核
Gasar凝固的非均质形核
平界面上异质形核
Gasar凝固的非均质形核
圆锥形凹坑内异质形核 在氧化物夹杂的表面一般都存在很 多凹坑和裂纹。 当圆锥形凹坑非常狭小时, 会产生较大的附加压力,气泡很难形核; 当圆锥形凹坑非常平坦时,气泡与基 体的附着面小。 都 不能成为有效的异质形核位置
粗化
利用化学法提高泡沫表面的微观粗糙度和均匀性,使其表面由 疏水性变为亲水性,以提高镀层与基体的亲和力。
敏化
为了在非导体的塑料表面上,建立起以贵金属为核心的催化 中心准备条件,以便在活化处理时把催化金属还原出来
敏化液
氯化亚锡、盐酸
反应条件
室温,10min
反应后
水洗,二价锡水解
在塑料表面形成薄层的碱 式氯化亚锡的凝聚膜
不同电流密度下镍沉积层的磁滞回线
固气共晶凝固法 (GASAR)
介绍
GASAR
金属气体发生共晶反应, 定向凝固,生成的圆柱型 气孔定向排列于基体中。
气孔壁光滑; 无气孔分支现象; 气孔分布短程有序; 孔径10nm-10mm; 孔隙率10%-70%。
与传统的方法制备的材料相 比,具有小的应力集中,高 的力学性能,良好的渗透能 力。
镀镍液
硼酸40 g/L,十二烷基硫酸钠0.05 g/L
反应条件
发生反应Leabharlann 电流效率的影响电流效率
电流效率是电极上通过单位电量时,某一反应所形成之 产物的实际质量与电化当量之比,即输入电解池的电量 中实际用于沉积金属所占的百分数。
难题
方案
在配置镀液时所选用的添加剂或络合剂应尽量不参与阴极电极反应, 同时要创造条件,尽量使金属离子析出时不析出或少析出氢气。
泡沫金属的介绍及制备
目录
1 引言
目 录
2. 电沉积法制泡沫镍
3.固气共晶凝固法
引言
泡沫金属结构
胞状 结构
三维网状结构
泡沫金属的用途
渗透性 导热性 热交换 器 导电、 自支撑 能力多 孔电极 过滤与 分离 消音降 噪 阻抗消 音器 吸能减 震 汽车减 震器
泡沫 金属
比表面 积大
催化
泡沫金属
(1)泡沫金属相变复合材料
活化
使塑料的表面建立起化学镀时所需要的贵金 属催化活性中心。
还原
用 甲醛作为还原剂是使银离子能充分地还原成银。浸 过银活化液的塑料表面,在活化后可直接浸渍还原液。
脉冲电沉积沉积镍
化学镀镍是在钯催化作用下,溶液中硫酸镍与还原剂次亚磷酸 钠发生氧化还原反应。泡沫模板经过化学镀镍后进行电镀加 厚。
硫酸镍250 g/L,氯化镍40 g/L,
当系统处于稳定的共生区内,才能保障共生生长的稳定进行。 这是获得规则多孔结构和均匀的大小分布的前提。
共生体两组元熔点相 近,扩散能力相近。
共生体两组元熔点 相差很大,低熔点 组元生长速度较快 。
Gasar凝固的金属 - 气体共晶生长区
Gasar是固-气共生系统,共生两相差别很大,使得二元相图很不对称,同时 共晶点还受外界气压的影响,从而使共生区严重倾斜。所以,必须扩大共生区 ,提高共生区的对称性。
相关文档
最新文档