GB151-2014-热交换器
GB151固定式换热器管板应力计算与校核方法的改进

第 28 卷第 8 期
压力容器
总第 225 期
管板计算方法的改进( 另有专文发表) ; ( 2) 管板 中最大应力计算方法的改进; ( 3) 增加了管程压 力 pt 与壳程压力 ps 同管 壳 式 换 热 器》中 上 述 ( 2) ,( 3) 部分的建议修订方法。文中未予说明的 符号见文献[1]。
ξb 中的各项系数是汤姆逊函数及其各阶导 的以下公式:
{c1 =
时,这种近似所带来的误差在工程设计允许的范
45
CPVT
GB 151 固定式换热器管板应力计算与校核方法的改进
Vol28. No8 2011
围内。式中:
k = K( 1 - ρt) = K( R - Rt) /R
( 6)
应用现有 GB 151[1]时需要根据计算结果确
定这 3 个校核点中最大者为管板设计厚度的取值
~ ( 11) 及汤姆逊函数的性质,得到与式( 8) 相应
的半径 r = Rt 处( x = xb 处) fr ( m,K,xb ) 的幂函数 近似表达式如下:
frb = ( fr ) x = K ρt = xb = ξb m 式中:
( 12a)
ξb
=1
+
c1 k
+
c2 k2
+
c3 k3
+
1 m
(
c4 k
纲坐标为:
x = Kr / R
( 1)
式中 r———圆板中心至所研究处的距离
图 1 固定管板力学模型
为便于设计者应用,在计算管板中最大应力 时建议做以下改进。 1. 1 进一步给出了不同参数范围下管板中最大 应力发生的位置
现行国家标准 GB 151[1]中管板厚度设计基 于校核管 板 中 的 最 大 径 向 弯 曲 应 力,需 分 别 计 算 3 个校核点处正比于无量纲弯曲应力的系数 G1( 其 中 两 点 分 别 对 应 x = xi,K 处 的 G1i 与
换热器制造工艺规程

管壳式换热器制造工艺规程1、主题内容与适用范围:本规程规定了本公司管壳式换热器组装制造中的具体工艺要求2、引用标准《固定式压力容器安全技术监察规程》、GB151-2014《管壳式换热器》和GB150-2011《固定式压力容器》。
3、基本要求管壳式换热器主要受压部分的焊接接头分为A、B、C、D、E五类,按下图所示。
a) 壳体圆筒部分的纵向接头、球形接头与圆筒连接的环向接头、各类凸形封头中的所有拼焊接头以及嵌入式接管与壳体对接连接的接头,均属A类焊接接头。
b) 壳体部分的环向接头、锥形封头小端与接管连接的接头、长颈法兰与接管连接的接头,均属B类焊接接头,但已规定为A类的焊接接头除外。
c) 平盖、管板与圆筒非对接连接的接头,法兰与壳体、接管连接的接头,内封头与圆筒的搭接接头,均属C类焊接接头。
d) 接管、人孔、凸缘、补强圈等与壳体连接的接头,均属D类焊接接头,但已规定为A、B类的焊接接头除外。
e)非受压元件吊耳、支座垫板与压力容器连接的焊缝,均属E类焊接接头。
对不同板厚对接的规定:a) 下列不同板厚必须削薄厚板:当?2≤10mm,且?1-?2>3mm及?2>10mm且?1-?2≥?n或>5mm时,必须削薄厚板:削薄形式分单面削薄和双向削薄。
见图2。
b) 下列不同板厚对接无须削薄:当?≤10mm且?1-?2≤3mm及?2>10mm且?1-?2≤?2或≤5mm时,无须削薄板厚,且对口错边量b 以较薄板厚度为基准确定。
在测量对口错边量时,不应计入两板厚度的差值。
筒节长度应不小于300mm。
组装时,不应采用十字焊缝,相邻圆筒的A类焊缝的距离,或封头A 类焊缝,焊缝的端点与相邻圆筒A类焊缝的距离应大于名义厚度?n 的三倍,且不小于100mm,(当板厚不同时,?n按较厚板计算)。
4. 壳体园筒园筒厚度园筒厚度应按GB150的规定进行计算,但碳素钢和低合金钢及高合金钢园筒的最小厚度不应小于下表的规定。
mm壳体园筒内直径允许偏差可通过外园周长加以控制,其外园周长允许上偏差为10mm,下偏差为零。
换热器讲义

11.2.4 折流板和支持板最小厚度:根据换热器直径和换热管无支撑跨距查GB151 表34。
工程设计中应注意如下:(1)表34 值为卧式换热器折流板的最小厚度(2)立式换热器无腐蚀时,可适当减薄(3)需抽管束且重量较重时,应适当加厚(4)有振动时,应适当加厚11.3 支持板(1)当换热器不需要设置折流板,但换热管无支撑跨距大于GB151 表42 规定时,应设置支持板。
(2)浮头换热器浮头端宜设置加厚的圆环形支持板11.4 U 形换热器的尾部支持U 形换热器中,靠近弯管段起支撑作用的折流板,结构尺寸A+B+C 大于GB151 表42规定时,应在弯管部分加支撑。
11.5 折流杆:用与换热管垂直的四组圆钢所形成的“井”字将换热管固定住。
折流杆换热器使壳程流体沿着管束轴线纵向流动,从而彻底消除流体横向流动而产生的诱发振动。
并且折流杆会使流体不断地产生卡门漩涡以提高传热的效率。
同时由于没有横向流动,故壳程流体压降较底。
折流杆换热器的关键技术在于正确的传热工艺计算及制造组装技术。
折流杆的直径等于换热管的间隙;可视一组折流圈相当于一块折流板(或支板承)11.6 螺旋折流板由数块扇形板排列在有一定升角的螺旋线上,使流体在壳体内形成螺旋流,其特点为:(1)可以使流体达到近似于柱塞流的效果;(2)返混程度很低,几乎没有流动的死区;(3)传热效率提高的同时,又获得了较佳的压降;(4)传热系数与螺旋角关系密切,最佳的螺旋角为25°~40°;(5)为减少无支撑跨长避免振动可用二头或多头螺旋。
11.7 拉杆,定距管:(1)换热管外径≥19mm 时,采用拉杆定距管结构;(2)换热管外径≤14mm 时,采用拉杆与折流板点焊结构;(3)拉杆应尽量均匀布置在管束外边缘。
对于大直径的换热器,在布管区内或靠近折流板缺口处应布置适当数量的拉杆,任何折流板应不少于3 个支承点。
(4)拉杆直径和数量根据GB151 表43,表4411.8 防冲与导流(1)管程设置防冲板条件:当管程采用轴向入口接管或换热管内流体流速超过3m/s 时,应设置防冲板,以减少流体的不均匀分布和对换热管端的冲蚀。
管壳式换热器 GB151讲义

管壳式换热器 GB151-1999一.适用范围 1.型式固定——P t 、P S 大,△t 小浮头、U 形——P t 大,△t 大*一般不用于MPa P D 5.2>,易燃爆,有毒,易挥发和贵重介质。
结构型式:外填料函式、滑动管板填料函、双填料函式(径向双道) 2.参数41075.1,35,2600X PN DN MPa P mm D N N ≤⨯≤≤。
参数超出时参照执行。
D N :板卷按内径,管制按外径。
3.管束精度等级——仅对CS ,LAS 冷拔换热管Ⅰ级——采用较高级,高级精度(通常用于无相变和易产生振动的场合) Ⅱ级——采用普通级精度 (通常用于再沸,冷凝和无振动场合) 不同精度等级管束在换热器设计中涉及管板管孔,折流板管孔的加工公差。
GB13296不锈钢换热管,一种精度,相当Ⅰ级;有色金属按相应标准。
4.不适用范围受直接火焰加热、受核辐射、要求疲劳分析、已有其它行业标准(制冷、造纸等)P D <0.1MPa 或真空度<0.02MPa+二.引用标准1.压力容器安全技术监察规程——监察范围,类别划分*等*按管、壳程的各自条件划类,以其中类别高的为准,制造技术可分别要求。
*壳程容积不扣除换热管占据容积计,管程容积=管箱容积+换热管内部容积。
壳程容积=内径截面积X管板内侧间长度。
2. GB150-1998《钢制压力容器》——设计界限、载荷、材料及许用应力、各受压元件的结构和强度计算。
3.有关材料标准。
管材、板材、锻件等4.有关零部件标准。
封头、法兰(容器法兰、管法兰)紧固件、垫片、膨胀节、支座等三.设计参数1.有关定义同GB1502.设计压力Mpa分别按管、壳程设计压力,并取最苛刻的压力组合(一侧为零或真空)。
管板压差设计仅适用确能保证管、壳程同时升降压,如1)自换热 2)Pt P s均较高,操作又能绝对保证同时升降压。
3.设计温度℃0℃以上,设计温度≥最高金属温度。
0℃以下,设计温度≤最低金属温度。
绕管式热交换器制造检验与验收

《绕管式热交换器制造、检验与验收》河南省地方标准编制说明一、编制的目的和意义绕管式热交换器是一款高效紧凑的换热器,相对于普通的列管式换热器具有不可比拟的优势,它适用温度范围广、适应热冲击、热应力自身消除、紧凑度高,由于自身的特殊构造,使得流场充分发展,不存在流动死区,尤其特别的,通过设置多股管程(壳程单股),能够在一台设备内满足多股流体的同时换热。
1898年,林德公司开发出世界上第一台绕管式热交换器。
20世纪70年代,我国开始绕管式热交换器的国产化研究;20世纪80年代开封空分集团有限公司开发出国内第 1 台绕管式热交换器,实现了绕管式热交换器的国产化研究。
1996年完成了宁夏化肥厂低温甲醇洗工段配套的高压绕管式热交换器的研制,成功实现了单股流缠绕管式换热器的工业化应用。
20世纪90年代,开封空分集团有限公司开发出国内第1台多股流高压绕管式热交换器,完成了国家“九五” 重点科技攻关计划项目,实现了多股流高压缠绕管式换热器的国产化研究。
目前国外具备设计、制造能力的主要有:APCI、Linde ;国内具备设计能力的主要有开封空分集团有限公司、合肥通用机械研究院,国内具备制造能力的主要有开封空分集团有限公司、镇海石化建安工程有限公司、大连的林德工艺装置有限公司。
由于其结构的特殊性,目前的热交换器标准尚不能完全涵盖。
其设计、制造、检验与验收均依据各自的企业标准。
绕管换热器凭借其优良的综合性能,在化工、炼油、核能、空气分离、低温甲醇洗及液化天然气等工业中获得了广泛应用。
随着强化传热理论和制造技术的发展,更多结构复杂的绕管式热交换器被制造出来,以适应特殊的工艺,满足不同场合的需求。
按照当前的发展趋势,未来绕管式热交换器朝着高温、高压且具有复杂结构的方向发展。
绕管式热交换器的结构形式复杂,造价成本高,并且位于装置的关键部位。
因此一旦这些换热器发生泄漏,整套装置就必须要停车,企业的损失将非常大。
为了确保绕管式热交换器长周期运行, 对绕管式热交换器的制造、检验与验收的质量控制就显得十分必要。
压力容器制造质量责任人员测试复习题[1]
![压力容器制造质量责任人员测试复习题[1]](https://img.taocdn.com/s3/m/ec30dd2f83c4bb4cf7ecd1bf.png)
压力容器制造质量责任人员测试复习题一、判断题(正确的划“√”,错误的划“×”)1.《特种设备安全监察条例》中规定,压力容器,是指盛装气体或者液体,承载一定压力的密闭设备,其范围规定为最高工作压力大于或者等于0.1MPa(表压),且压力与容积的乘积大于或者等于2.5MPa·L的气体、液化气体和最高工作温度高于或者等于标准沸点的液体的固定式容器和移动式容器;盛装公称工作压力大于或者等于0.2MPa(表压),且压力与容积的乘积大于或者等于10MPa·L的气体、液化气体和标准沸点等于或者低于60℃液体的气瓶、氧舱等。
(×)《特种设备安全监察条例》第4条(二)1.0MPa·L2.TSGR 0004-2009《固定式压力容器安全技术监察规程》中规定,制造单位对原设计文件的修改,应当取得原设计单位同意修改的书面证明文件,,并且对改动部位作详细记载。
(√)《固容规》第19页4.1.6:3.GB150-2011《压力容器》中规定,承受外压的压力容器,其最高工作压力是指压力容器在正常使用过程中可能出现的最高压力差值;对夹套容器指夹套顶部可能出现的最高压力差值。
(√)《固容规释义原话》4.TSGR 0004-2009《固定式压力容器安全技术监察规程》中规定,对多腔压力容器的某个压力腔进行类别划定时,设计压力取该压力腔的设计压力,容积取该压力腔的几何容积。
(√)《固容规》第43页A1.3.25.GB150-2011《压力容器》中规定中规定,承受内压的压力容器,其工作压力是指在正常使用过程中,可能出现的最高压力。
(×)GB150.1第6页3.1.26.TSGR 0004-2009《固定式压力容器安全技术监察规程》中规定,一台压力容器如果同时具备两种以下的工艺作用原理,应按工艺过程中的主要作用来划分品种。
(×)《固容规》第44页A37.GBl50.1-2011《压力容器》中规定,壳体加工成形后,包括腐蚀裕量的最小厚度:对碳素钢、低合金钢制容器,不小于3毫米;对高合金钢制容器,不小于2毫米。
换热器标准精选
换热器标准精选(最新)G151《GB/T151-2014热交换器》G3625《GB/T3625-2007换热器及冷凝器用钛及钛合金管》G8000《GB/T8000-2001热交换器用黄铜管残余应力检验方法:氨熏试验法》G8890《GB/T8890-2007热交换器用铜合金无缝管》G9082.1《GB/T9082.1-2011无管芯热管》G9082.2《GB/T9082.2-2011有管芯热管》G13754《GB/T13754-2008采暖散热器散热量测定方法》G14811《GB/T14811-2008热管术语》G14812《GB/T14812-2008热管传热性能试验方法》G14813《GB/T14813-2008热管寿命试验方法》G14845《GB/T14845-2007板式换热器用钛板》G16409《GB16409-1996板式换热器》G19447《GB/T19447-2013热交换器用铜及铜合金无缝翅片管》G19700《GB/T19700-2005船用热交换器热工性能试验方法》G19913《GB19913-2005铸铁采暖散热器》G24590《GB/T24590-2009高效换热器用特型管》G27670《GB/T27670-2011车辆热交换器用复合铝合金焊管》G27698.1《GB/T27698.1-2011热交换器及传热元件性能测试方法第1部分:通用要求》G27698.2《GB/T27698.2-2011热交换器及传热元件性能测试方法第2部分:管壳式热交换器》G27698.3《GB/T27698.3-2011热交换器及传热元件性能测试方法第3部分:板式热交换器》G27698.4《GB/T27698.4-2011热交换器及传热元件性能测试方法第4部分:螺旋板式热交换器》G27698.5《GB/T27698.5-2011热交换器及传热元件性能测试方法第5部分:管壳式热交换器用换热管》G27698.6《GB/T27698.6-2011热交换器及传热元件性能测试方法第6部分:空冷器用翅片管》G27698.7《GB/T27698.7-2011热交换器及传热元件性能测试方法第7部分:空冷器噪声测定》G27698.8《GB/T27698.8-2011热交换器及传热元件性能测试方法第8部分:热交换器工业标定》G28185《GB/T28185-2011城镇供热用换热机组》G28712.1《GB/T28712.1-2012热交换器型式与基本参数第1部分:浮头式热交换器》G28712.2《GB/T28712.2-2012热交换器型式与基本参数第2部分:固定管板式热交换器》G28712.3《GB/T28712.3-2012热交换器型式与基本参数第3部分:U形管式热交换器》G28712.4《GB/T28712.4-2012热交换器型式与基本参数第4部分:立式热虹吸式重沸器》G28712.5《GB/T28712.5-2012热交换器型式与基本参数第5部分:螺旋板式热交换器》G28712.6《GB/T28712.6-2012热交换器型式与基本参数第6部分:空冷式热交换器》3G28713.1《GB/T28713.1-2012管壳式热交换器用强化传热元件第1部分:螺纹管》G28713.2《GB/T28713.2-2012管壳式热交换器用强化传热元件第2部分:不锈钢波纹管》G28713.3《GB/T28713.3-2012管壳式热交换器用强化传热元件第3部分:波节管》G29039《GB29039-2012钢制采暖散热器》G29463.1《GB/T29463.1-2012管壳式热交换器用垫片第1部分:金属包垫片》G29463.2《GB/T29463.2-2012管壳式热交换器用垫片第2部分:缠绕式垫片》G29463.3《GB/T29463.3-2012管壳式热交换器用垫片第3部分:非金属软垫片》G29464《GB/T29464-2012两相流喷射式热交换器》G29465《GB/T29465-2012浮头式热交换器用外头盖侧法兰》G29466《GB/T29466-2012板式热交换器机组》G30059《GB/T30059-2013热交换器用耐蚀合金无缝管》G30261《GB/T30261-2013制冷空调用板式热交换器火用效率评价方法》G30262《GB/T30262-2013空冷式热交换器火用效率评价方法》G31565《GB/T31565-2015热交换器用钢板搪瓷边缘覆盖率的测定》CB1036《CB/T1036-1997船用板式热交换器》CB3961《CB/T3961-2004船用热交换器设计计算方法》NB47004(合)《NB/T47004~47006-2009板式热交换器/板式蒸发装置/铝制板翅式热交换器》NB/T47004-2009板式热交换器NB/T47005-2009板式蒸发装置NB/T47006-2009铝制板翅式热交换器NB47007《NB/T47007-2010(JB/T4758)空冷式热交换器》J4714《JB/T4714~4723-1992压力容器换热器》(共10项)J4740《JB/T4740-1997空冷式换热器型式与基本参数》J4751《JB/T4751-2003螺旋板式换热器》J7261《JB/T7261-1994铝制板翅式换热器技术条件》J7262《JB/T7262-1994铝制板翅式换热器型号编制方法》J7356《JB/T7356-2005列管式油冷却器》J8701《JB/T8701-1998制冷用板式换热器》J10379《JB/T10379-2002换热器热工性能和流体阻力特性通用测定方法》J10523《JB/T10523-2005管壳式换热器用横槽换热管》J11248《JB/T11248-2012金属复合翅片管对流散热器技术规范》J11249《JB/T11249-2012翅片管式换热设备技术规范》J50017《JB/T50017-1999铝制板翅式换热器产品质量分等》HG3181《HG/T3181-2009高频电阻焊螺旋翅片管》HG3187《HG/T3187-2012矩形块孔式石墨换热器》HG4172《HG/T4172-2011管壳式聚四氟乙烯换热器》HG4174《HG/T4174-2011超纯PFA列管加强式换热器》HG20537《HG/T20537.1~4-1992奥氏体不锈钢焊接钢管》HG21503《HG21503-1992钢制固定式薄板列管式换热器》SH3119《SH/T3119-2000石油化工钢制套管换热器设计规范》SH3418《SH/T3418-2007石油化工换热器钢制鞍式支座技术条件》SH3420《SH/T3420-2007石油化工管式炉用空气预热器通用技术条件》SH3532《SH/T3532-2005石油化工换热设备施工及验收规范》SH3540《SH/T3540-2007钢制换热设备管束复合涂层施工及验收规范》JG2《JG2-2007钢制板型散热器》JG3《JG3-2002采暖散热器灰铸铁柱型散热器》JG4《JG4-2002采暖散热器灰铸铁翼型散热器》JG143《JG/T143-2002采暖散热器:铝制柱翼形散热器》JG148《JG/T148-2002钢管换热器》JG220《JG220-2007铜铝复合柱翼型散热器》JG221《JG/T221-2007铜管对流散热器》JG293《JG293-2010压铸铝合金散热器》JG409《JG/T409-2013供冷供暖用辐射板换热器》JG3047《JG/T3047-1998灰铸铁柱翼型散热器》CJ163《CJ/T163-2002导流型容积(或半容积)式水加热器》CJ191《CJ/T191-2004板式换热机组》CJ467《CJ/T467-2014半即热式换热器》YB4103《YB/T4103-2000换热器用焊接钢管》YS446《YS/T446-2011钎焊式热交换器用铝合金复合箔、带材》YS749《YS/T749-2011电站冷凝器和热交换器用钛-钢复合管板》DL742《DL/T742-2001冷却塔塑料部件技术导则》API Std661《API Std661-2002炼油通用操作空冷式热交换器》(中文版) API Std662《API Std662-2002炼油厂通用板式换热器》(中文版)。
GB151中U形管式换热器管板设计方法的改进
让. 当 , 为 定值 时方程 的系数 只与 K,
有关 。联立 解线性 方程 组 ( 8 )~ ( 1 1 )式 ,可
穗
图4 e 、f 型管板 的法兰预紧力矩作用
一
求 得 、 、与 、K, 的关 系式 。
由压 力 引起 的 管 板 应 力 在管 板 中心 r =0 处, 与环形 板交 界的 当量 圆板 r =R 处, 以及环 形 板边缘 r =R三 处可能得 到最大 值 。
wwwcqvipcom篓壁十hm一m一鲁m图8f型管板受?分析管程压?与法兰?矩作用l一图9当密封面处有介质作用时即图1e型结构在管程压?a作用时或图1f型结构作用时18在壳程压?a作用下法兰预紧?矩叠加上由于介质压?引起的法兰?矩变化值之后应满足保证密封所需?矩肘的要求
维普资讯
号 c ( p s - ( …)
J , 。 = 一 ( 一 ) ( 鲁 ) 。
管板 壳 程侧 表 面 的 应 力 则取 ( 1 2 ) ~ ( 1 4 )式的相 反数 。
由轴 向力平 衡条 件可 知 : Vt =音 ( -p , )兄 , ^ 一÷ ( A— )R
3 法 兰预紧 力矩引起 的 管板 应 力
.
等+ 村 .
’
¨
.
I I
图5 e型管板受力分 析壳程 、压力与法兰力矩作 用
囝6 e型管 扳受 力分析 .管程压 力与法 兰力矩作用
M
M
I
圉7 f 型管板受力分析 ,壳程 压力与法兰 力矩作用
3 . 1 四种工况下 ^ 的计算 方法
弓 卜
GB 1 5 1 中 U 形管 式换热器管板
设计方法的改进
填料函式热交换器填料函计算
填料函式热交换器填料函计算作者:李化锦刘莹来源:《中国化工贸易·中旬刊》2017年第12期摘要:随着密封技术的发展,越来越多的新型密封元件使用在化工设备上,然而标准上并没有相关密封元件的密封计算,本文主要阐述填料函式热交换器中填料函的结构设计及强度校核。
关键词:填料函式热交换器;填料函;结构设计;强度校核1 前言GB/T 151-2014《热交换器》中表6-35(填料函的连接尺寸)中有填料函、填料压盖及连接件的尺寸推荐,但标准中并没有填料函的强度校核计算。
本文主要阐述使用不同填料时填料函的强度校核思路及方法,并简述柔性盘根填料填料函强度校核思路,以及O形圈填料密封原理及填料函设计校核。
2 柔性盘根用填料函强度校核柔性盘根用填料函的结构见(图一),尺寸可参考GB/T 151-2014《热交换器》中表6-35(填料函的连接尺寸)。
柔性填料密封原理:当拧紧压盖螺栓或螺柱时,柔性填料受轴向压紧力作用,柔性填料产生弹性变形(沿径向扩张),贴紧管板裙表面及填料函壁,由于管板裙及填料函壁光洁度问题,柔性填料不能在整个密封区域全部接触,从而管板裙、填料函壁与柔性填料相对运动时凸起的接触部分与凹入的非接触部分便形成了微小的不规则的迷宫,造成壳程介质的节流减压,即所谓的柔性填料的“迷宫效应”,使介质沿轴向的流动受到阻碍,因此被密封,即柔性填料底部的径向应力不小于壳程介质的计算压力P。
保证柔性填料密封所需要的填料压盖压力按下面公式计算:β—系数,β=4(f1K1d+ f2K2D)/(D2-d2);f1 ,f2 ——柔性盘根填料与管板裙和填料函壁的摩擦系数,可认为f1=f2;K1,K2 ——柔性盘根填料与管板裙和填料函壁的侧压系数,对于填料函换热器而言,由于管板裙外径相对于柔性盘根填料尺寸较大,在使用柔性盘根填料时,认为侧压系数K1=K2=K;D—填料函壁内直径,m;d—管板裙外直径,mm;P—壳程侧计算压力,MPa;L—柔性盘根填料密封长度,mm;σg—填料压盖处的轴向压力,N。
GB151-戴季煌
GB151《管壳式换热器》1 范围参数DN≤2600mm;≤2540(100〞)PN≤35 MPa;≤20.684(3000psi)p×D≤1.75×104;≤1.75×104(105)A.TEMA控制壳体壁厚3〞(76mm)、双头螺柱最大直径为4〞(102mm).2 管壳式换热器类型2.1 固定管板换热器(图1)二端管板与壳体固定连接(整体或夹持式)。
图12.2 浮头式换热器(图2)一端管板与壳体固定连接(夹持式),另一端的浮头管板(包括浮头盖、勾圈等)在管箱内自由浮动。
图22.3 U形管式换热器(图3)只有一块管板,换热管二端固定在同一块管板上,管板与壳体固定连接(整体或夹持式)。
2.4 填料函式换热器一端管板与壳体固定连接(夹持式),另一端的管板在填料函内自由浮动。
图31)外填料函式换热器(图4)图4适用设备直径在DN700mm以下,且操作压力和操作温度也不宜过高,一般用于p≤2.0MPa场合。
2)单填料函式换热器(图5)在填料内侧密封处,管壳程介质间仍会产生串流现象,不适用管壳程介质不允许混合的场合。
3)双填料函式换热器(图6)该结构以内圈为主要密封,防止内、外漏,而以外圈以辅助密封,防止外漏,且内外密封圈之间设置泄漏引出管与低压放空总管相连。
该结构可用于有毒、易燃、易爆等介质。
2.5釜式重沸器(图7)釜式重沸器是一端管板与壳体固定连接(夹持式),另一端为U形管束或浮头管束,壳程为单(或双)斜锥具有蒸发空间的壳体,一般为管程介质加热壳程介质,故管程的温度和压力比壳体的高。
图5 图62.6双管板式换热器(图8)每一侧有二块管板,换热管的一端同时与二块管板连接。
图7 图8主要用于管程和壳程之间介质相混合后,将会产生严重后果。
但制造困难;设计要求高。
要考虑二块管板温度不同,产生不同热膨胀,从而管板的应力也不一样,易造成换热管与管板的连接失效。
1)防腐蚀:管程和壳程二介质相混合后会引起严重腐蚀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代替:GB151-1999《管壳式换热器》
发布:
2014年12月05日 实施: 2015年05月01日
GB/T151-2014《热交换器》是一个什 么样的标准,具有怎样的地位?
国家行政法规: 《特种设备安全监察条例》国务院2009 年549 号令
换器管
换器管
8.3.2 管端清理长度: 焊接时:不小于换热管外径,且不小于25mm 胀接时:不小于强度胀接长度,且不得影响胀接质量 (不小于两倍管板厚度) 双管板时:按设计文件规定 8.3.3.3 U形管的弯制: U形管弯制后应逐根进行耐压试验,试验压力不得小于热交换器的耐压试验压 力(管、壳程试验压力的高值)(新增) 8.3.4换热管的拼接(换热管直管或直管段长度大于6000mm时允许拼接) b)最短直管段长不应小于300mm,且应大于管板厚度50mm以上。 f)对接接头100%射线检测,合格级别不低于Ⅲ级,检测技术等级不低于AB级。 (抽检10%,不合格加倍,再100%) g)对接后应逐根进行耐压试验,试验压力不得小于热交换器的耐压试验压力(管、 壳程试验压力的高值)(设计压力2倍液压试验)
换热管与管板的连接
6.6.4内孔焊(新增) 适用于大口径换热管
其他
增加了热交换器传热计算的基本要求 修订了单管板设计计算,增加了双管板设 计计算 增加振动计算
管板
5.3.1锻件级别不得低于Ⅱ级 取消了 4.3.1.2管板本身具有凸肩并与圆筒对接连接时,应采用锻件 4.3.1.3厚度大于60mm的管板,宜采用锻件 5.3.2.1带凸肩的管板、内孔焊管板和管箱平盖采用轧制板材直接加工制 造时,碳素钢、低合金钢厚度方向性能级别不应低于GB/T5313中的 Z35级,并在设计文件上提出检验要求。 5.3.2.2复合板引入标准NB/T47002《压力容器用爆炸焊接复合板》 5.3.3衬层复合结构(新增)
热交换器管束级别精度提升(主要指钢制) ——Ⅰ、Ⅱ级管束精度均有不同程度的提高 ——与国际接轨,增强国际市场竞争力 ——管束精度主要影响:换热管与管板连接接头质 量;对壳程流体的无相变传热效率的影响(漏流量) ——NB/T47019.1~8《锅炉、热交换器用管订货技 术条件》 TEMA《列管式换热器制造商协会标准》用在除套管式 换热器以外的所有管壳式换热器中,是对ASME标准 的补充和说明
GB/T151-2014《热交换器》
新旧版本参数变化
标准版本 GB151-1989 GB151-1999 GB/T151-2014 公称直径mm 1500 2600 4000 设计压力与公称直径的乘积 104 1.75x104 2.7x104
GB/T151新标准的变化
一、名称的变化 二、范围、参数的变化 三、重点内容变更
管板
6.5.1管孔直径允许偏差随换热管进行调整。 6.5.1.8当奥氏体不锈钢、双相不锈钢、钛、铜、镍、锆及其合金换热管 与管板采用强度胀接时,管板的管孔公称直径宜减小0.05~0.1mm。 8.4.1DN≤2600的热交换器管板不宜拼接(新增) 8.4.2a)对接接头应采用全焊透结构 8.4.3b)基层材料的待堆焊面和覆层材料加工后(管板钻孔前)的表面, 应按JB/T4730进行表面检测,Ⅰ级合格(不得有裂纹、成排气孔,符 合Ⅱ级缺陷显示) 8.4.4管板管孔偏差要求 a)允许有4%的管孔上偏差超出表中相应值的50%(0.15mm) b)抽查不小于60°管板中心角区域内的管孔,未达到a)要求时100%检 查。(100%检测为新增)
GB/T151-2014《热交换器》是一个什 么样的标准,具有怎样的地位?
安全技术规范:如:
TSG R0001-2005 《非金属压力容器安全技术监察规程》 TSG R0002-2005 《超高压容器安全技术监察规程》 TSG R0003-2007 《简单压力容器安全技术监察规程》 TSG R0004-2009 《固定式压力容器安全技术监察规程》 TSG R0005-2011 《移动式压力容器安全技术监察规程》
换器管
新增NB/T47019.1~8《锅炉、热交换器用管订货技术 条件》 引入了强化传热管的相关标准: GB/T 24590《高效换热器用特型管》 GB/T28713.1《螺纹管》 GB/T28713.2《不锈钢波纹管》 GB/T28713.3《波节管》 增加镍、锆制管材标准
换器管
定义了什么是压力容器: 是指盛装气体或者液体,承载一定压力的密闭设备, 其范围规定为最高工作压力大于或者等于0.1MPa(表压), 且压力与容积的乘积大于或者等于2.5MPa· L的气体、液化 气体和最高工作温度高于或者等于标准沸点的液体的固定 式容器和移动式容器;盛装公称工作压力大于或者等于 0.2MPa(表压),且压力与容积的乘积大于或者等于 1.0MPa· L的气体、液化气体和标准沸点等于或者低于60℃ 液体的气瓶;氧舱等。
GB/T151-2014《热交换器》
适用范围(管壳式热交换器):
a)设计压力不大于35MPa b)公称直径不大于4000mm c)设计压力(MPa)与公称直径(mm)的乘积不大于 2.7x104
本标准不实用于下列热交换器:
a)直接火焰加热的热交换器; b)烟道式余(废)热锅炉; c)核能装置中存在中子辐射损伤失效风险的热交换器 d)非金属制热交换器; e)制冷空调行业中另有国家标准或行业标准的热交换器;
GB/T151-2014《热交换器》是一个什 么样的标准,具有怎样的地位?
相关标准 GB150-2011《压力容器》
——压力容器行业基础标准 ——给出了压力容器建造的通用要求,包括材料、设计、 制造检验与验收等内容
1、本标准适用的设计压力 1.1、钢制容器不大于35MPa。 1.2、 其他金属材料制容器按相应引用标准确定。 2、本标准适用的设计温度范围 2.1 设计温度范围:-269℃~900℃。 2.2 钢制容器不得超过按GB 150.2 中列入材料的允许使用温度范围。 2.3 其他金属材料制容器按本部分相应引用标准中列入的材料允许使用温度确定
换热管与管板的连接
胀度(新增概念)
公式:
k=(d2-di-b)/2δx100%
d2——换热管胀后内径mm di——换热管胀前内径mm b——换热管与管板管孔的 径向间隙mm
δ——换热管壁厚mm
换热管与管板的连接
胀度可按式6-2计算,机械胀接的胀度可按表6-18选用.当采用其他胀接 方法或材料超出表6-18时,应通过胀接工艺试验确定合适的胀度。
管板
8.4.5.1管板孔桥的最小孔桥宽度计算公式改变。 8.4.7管板管孔表面应清理干净,不应有影响胀接或焊接连 接质量的毛刺、铁屑、锈斑、油污等;胀接管孔表面不得 有影响胀接质量的纵向或螺旋状刻痕等缺陷。(更严格, 原为贯通的)
换热管与管板的连接
6.6.1强度胀接 a)设计压力小于等于4.0MPa b)设计温度小于等于300℃ c)操作中无振动,无过大的温度波动及无明显的应力腐蚀倾向(剧烈的 振动) 6.6.1.2设计压力大于4.0MPa时需要采用强度胀接,应进行胀接工艺试 验,换热管与管板连接的拉脱力满足7.4.7(许用拉脱力)的要求。 6.6.1.5强度胀接的结构尺寸要求 a)最小胀接尺寸应取管板名义厚度减去3mm的差值与50mm二者的小值; 出部分可采用贴胀,当有要求时也可全长采用强度胀接 b)连接尺寸:伸出长度上角标+2改为+1 c)采用柔性胀接工艺时,开槽宽度按式6-3计算,且不得大于13mm。 d)需要时可开多个槽
GB/T151-2014《热交换器》是一个什 么样的标准,具有怎样的地位?
相关标准 GB/T151-2014《热交换器》
——从属压力容器范畴,依托于GB150 ——其理论基础、安全系数、许用应力和材料选择、通用要求等方面均与 GB150相同 ——管壳式热交换器中通用受压元件的强度设计计算公式已纳入GB150的, 本标准不再重复,本标准中强度设计计算公式只针对管壳式热交换器特定 的受压元件,包括管板、浮头、钩圈等 ——以换热器为对象,提出共性通用要求,通过引用标准方式,将螺旋板式 换热器JB4751、板式换热器NB/T47004、铝制板翅式热交换器 NB/T47006、空冷式热交换器NB/T47007等其他结构型式的热交换器纳 入热交换器的框架内 ——对于采用铝、钛、铜、镍、锆等其他金属材料制热交换器、受压元件, 也采用引用标准方式,凡是涉及材料内容执行相应标准要求,凡是产品制 造内容执行相应产品标准,凡是共性内容应符合本标准的通用要求。
换热管与管板的连接
6.6.2强度焊接 适用于本标准规定的设计压力,但不适用于有振动、 有缝隙腐蚀倾向的场合 6.6.2.3强度焊焊角高l应满足7.4.7中换热管与管板 连接拉脱力的要求,且l不应小于δ1
换热管与管板的连接
换热管与管板的连接
6.6.3胀焊并用 适用范围: a)振动或循环载荷时 a)密封性能要求高的场合 b)存在缝隙腐蚀倾向时 b)承受振动或疲劳载荷的场合 c)采用复合管板时 c)有间隙腐蚀的场合 d) 采用复合管板的场合 6.6.3.3强度焊接加贴胀的管孔结构形式及尺寸见图6-21, 强度焊接还应遵守强度焊接的规定。贴胀的管板孔可不开 槽,胀度宜控制在2%—3% 6.6.3.4先胀后焊,要求全长胀接。
GB/T151-2014《热交换器》是一个什 么样的标准,具有怎样的地位?
相关标准 GB150-2011《压力容器》
下列容器不在本标准的适用范围内: a) 设计压力低于 0.1MPa 且真空度低于0.02MPa 的容器; b) 《移动式压力容器安全监察规程》管辖的容器; c) 旋转或往复运动机械设备中自成整体或作为部件的受压器室 (如泵壳、压缩机外壳、涡轮机外壳、液压缸等); d) 核能装置中存在中子辐射损伤失效风险的容器; e) 直接火焰加热的容器; f) 内直径(对非圆形截面,指截面内边界的最大几何尺寸,如: 矩形为对角线,椭圆为长轴)小于 150mm 的容器; g) 搪玻璃容器和制冷空调行业中另有国家标准或行业标准的容 器。