11-7 磁场对载流线圈的作用
大学物理习题答案第十一章

[习题解答]11-7 在磁感应强度大小为B = 0.50 T 的匀强磁场中,有一长度为l = 1.5 m 的导体棒垂直于磁场方向放置,如图11-11所示。
如果让此导体棒以既垂直于自身的长度又垂直于磁场的速度v 向右运动,则在导体棒中将产生动生电动势。
若棒的运动速率v = 4.0 m ⋅s -1 ,试求:(1)导体棒内的非静电性电场K ;(2)导体棒内的静电场E ;(3)导体棒内的动生电动势ε的大小和方向;(4)导体棒两端的电势差。
解(1)根据动生电动势的表达式,由于()的方向沿棒向上,所以上式的积分可取沿棒向上的方向,也就是d l 的方向取沿棒向上的方向。
于是可得.另外,动生电动势可以用非静电性电场表示为.以上两式联立可解得导体棒内的非静电性电场,为,方向沿棒由下向上。
图11-11(2)在不形成电流的情况下,导体棒内的静电场与非静电性电场相平衡,即,所以,E 的方向沿棒由上向下,大小为.(3)上面已经得到,方向沿棒由下向上。
(4)上述导体棒就相当一个外电路不通的电源,所以导体棒两端的电势差就等于棒的动生电动势,即,棒的上端为正,下端为负。
11-8 如图11-12所表示,处于匀强磁场中的导体回路ABCD ,其边AB 可以滑动。
若磁感应强度的大小为B = 0.5 T ,电阻为R = 0.2 Ω,AB 边长为 l = 0.5 m ,AB 边向右平移的速率为v = 4 m ⋅s -1 ,求:(1)作用于AB 边上的外力;(2)外力所消耗的功率;(3)感应电流消耗在电阻R 上的功率。
解(1)当将AB 向右拉动时,AB 中会有电流通过,流向为从B 到A 。
AB 中一旦出现电流,就将受到安培力F 的作用,安培力的方向为由右向左。
所以,要使AB 向右移动,必须对AB施加由左向右图11-12的力的作用,这就是外力F外。
在被拉动时,AB中产生的动生电动势为,电流为.AB所受安培力的大小为,安培力的方向为由右向左。
外力的大小为,外力的方向为由左向右。
大学物理 稳恒磁场

第十一章稳恒磁场磁场由运动电荷产生。
磁场与电场性质有对称性,学习中应注意对比.§11-1 基本磁现象磁性,磁力,磁现象;磁极,磁极指向性,N极,S极,同极相斥,异极相吸。
磁极不可分与磁单极。
一、电流的磁效应1819年,丹麦科学家奥斯特发现电流的磁效应;1820年,法国科学家安培发现磁场对电流的作用。
二、物质磁性的电本质磁性来自于运动电荷,磁场是电流的场。
注:1932年,英国物理学家狄拉克预言存在“磁单极”,至今科学家一直在努力寻找其存在的证据。
§11-2 磁场磁感强度一、磁场磁力通过磁场传递,磁场是又一个以场的形式存在的物质。
二、磁感强度磁感强度B 的定义:(1)规定小磁针在磁场中N 极的指向为该点磁感强度B 的方向。
若正电荷沿此方向运动,其所受磁力为零。
(2)正运动电荷沿与磁感强度B 垂直的方向运动时,其所受最大磁力F max 与电荷电量q 和运动速度大小v 的乘积的比值,规定为磁场中某点磁感强度的大小。
即:qvF B max=磁感强度B 是描写磁场性质的基本物理量。
若空间各点B 的大小和方向均相等,则该磁场为均匀磁场....;若空间各点B 的大小和方向均不随时间改变,称该磁场为稳恒磁场....。
磁感强度B 的单位:特斯拉(T)。
§11-3 毕奥-萨伐尔定律 一、毕-萨定律电流元: l Id电流在空间的磁场可看成是组成电流的所有电流元l Id 在空间产生元磁感强度的矢量和。
式中μ0:真空磁导率, μ0=4π×10-7NA 2 dB 的大小: 20sin 4rIdl dB θπμ=d B 的方向: d B 总是垂直于Id l 与r 组成的平面,并服从右手定则.一段有限长电流的磁场: ⎰⎰⨯==l l r r l Id B d B 304πμ二、应用1。
一段载流直导线的磁场 )cos (cos 42100θθπμ-=r IB 说明:(1)导线“无限长":002r I B πμ=(2)半“无限长”: 00004221r I r IB πμπμ==2.圆电流轴线上的磁场 磁偶极矩232220)(2x R R IB +=μ讨论:(1)圆心处的磁场:x = 0 RIB 20μ=;(2)半圆圆心处的磁场: RIR I B 422100μμ==(3)远场:x >>R ,引进新概念 磁偶极矩0n IS m =则: m xB 3012πμ=3.载流螺线管轴线上的磁场)cos (cos 2120ββμ-=nIB讨论:(1)“无限长”螺线管:nI B 0μ=(2)半“无限长”螺线管:nI B 021μ=例:求圆心处的B .§11-4 磁通量 磁场的高斯定理 一、磁感线作法类似电场线。
大学物理第十一章

r
+ q>0
•
v
q q 00
r v
矢量式:
0 qv r B 3 4 r
E
q r 3 4 0 r 1
运动电荷除激发磁场外,同时还在其周围空间激发 电场。
q
v B
r
P
E
0 qv r B 3 4 r
E
对整个曲面,磁通量:
S
B dS
单位:韦伯(Wb)
3 静磁场的高斯定理
由磁感应线的闭合性可知,对任意闭合曲面, 进入的磁感应线条数与穿出的磁感应线条数相同, 因此,通过任何闭合曲面的磁通量为零。
B dS 0
S
Q E dS 0 S
0 qnvS d l sin dB 4 r2
设电流元内共有dN个以速度v运动的带电粒子:
d N nS d l
每个带电量为q的粒子以速度v通过电流元所在位置时, 在P点产生的磁感应强度大小为:
0 qv sin dB B dN 4 r2
其方向根据右手螺旋 、 组成的 法则,B 垂直v r 平面。q为正, 为 v r 的 B 方向;q为负, 与v r 的 B 方向相反。
q r 3 4 0 r 1
B 0 0v E
运动电荷所激发的电场和磁场是紧密联系的。
0 Idl r B dB 3 4 r
3 说明
•该定律是在实验的基础上总结出来的,不能由实验直接证明,
但是由该定律出发得出的一些结果,却能很好地与实验符合。
0 I dl r B L r 3 4
磁场的介绍

解:在管上取一小段dl,
电流为dI=nIdl ,
该电流在P点的磁场为:
......d..l.... ........... ...
1
. r
2
lP
dB
oR
2 l2
2nIdl R2 3
2
r2 l2 R2
r
R
sin
l Rctg dl
则:dB onI sin d
R d sin 2
2
B
do2BnIco12so2n1Iscionsd2
对 LB dl 无贡献
安培环路定理揭示磁场是非保守场(涡旋场)
§11-5 安培环路定理的应用
一、无限长均匀载流圆柱体 I , R 内外磁场。
IR
o r P
L
dB'
L
o
dI•r dI•'
dB
P
对称性分析:
在 I 平面内,作以 o为中心、半径 r 的圆环 L, L上各点等价: B大小相等,方向沿切向 。 以 L为安培环路,逆时针绕向为正: +
L2
L2
管外空间B0
三、 载流长直螺线管内部的磁场 单位长度上的匝数 n,
I
B
线密绕 B外 0
对称性分析: B 只有平行于轴线的分量 平行于轴的任一直线上各点 B 大小相等,
方向沿轴
B 0nI
长直螺线管内 为均匀磁场
在长直螺线管的两 端点处的磁场为中 间的一半:
BS
1 2
0nI
I
B
0nI
1 2
基本概念: 电流元 Idl
dl
I
dl
rB
一、毕奥 — 萨伐尔定律
dB
大学物理——11-1磁感应强度B

电源电动势的方向:电源内部电势升高的方向; 或在电源内部从负极指向正极。
§11.1磁场 磁感应强度
一、基本磁现象
永磁体的性质:
(1)具有磁性,能吸引铁、 钴、镍等物质。 (2)具有磁极,分磁北极N和磁南极S。 (3)磁极之间存在相互作用,同性相斥,异性相吸。 (4)磁极不能单独存在。
司南勺
在磁极区域,磁性最强。
S
S
载流子:导体中宏观定向运动的带电粒子。
电流强度(I):单位时间内通过导体任一 横截面的电荷 。
dq I dt
3
单位:安培 1A 1 C s 1
6
1A 10 mA 10 μ A
恒定电流(直流电): 导体中通过任一截面的电流不随时间变化(I = 恒量)。 电流的方向:导体中正电荷的流向。
B
dF
dF
B
θ
Idl
三、安培力
电流元 Idl 置于磁感应强度为 B 的外磁场中时,
电流元所受的力为: 安培定律:
dF Idl B
安培定律:
一段电流元Idl在磁场中所受的力dF,其大小与电 流元Idl成正比,与电流元所在处的磁感应强度B成正 比,与电流元Idl和B的夹角的正弦成正比,即
dS
n
dI 大小: j j 速度方向上的单位矢量 d S d 对任意小面元 d S , I j d S j d S dS 对任意 dI I j d S j S 曲面S:
d S
P 处正电荷定向移动 j
三、电源和电动势
+
第11章 恒定电流的磁场
11.1 磁感应强度 B
第11章磁场作业解答磁场

11-1 求图中各种情况下O 点处的磁感应强度B 。
解:图a 的电流可以看成是由1、2两个电流合成的。
故合场强为 直线电流,和矩形电流产生的磁感应强度的矢量和。
直线电流1在O 点产生的磁感应强度)2/(20a I πμ,方向垂直纸面向外。
矩形电流2由两条长度为a 、两条长度为b 的直线电流组成在O 点产生的磁感应强度为:)]2/sin()2/[sin()2/(42)]2/sin()2/[sin()2/(4200ααπμϕϕπμ--+--b Ia I2202200022)2/sin(2)2/sin(2ba a bI ba b a Ib I a I +++=+=πμπμαπμϕπμ)(2220b aa b b a I++=πμ方向垂直纸面向内。
O 点的磁感应强度为:220022002)(2b a abI a I b aa b b a I a I B +-=++-=πμπμπμπμ 这里利用了载流直导线外的磁感应强度公式:]sin )[sin 4120ββπμ-=rIB电流b 由两条直线电流,和一个圆弧组成:)0sin 90(sin 42360135200-︒+=RIR I B πμμ RIR I R I 00035.02163μπμμ=+=电流c 中两条直线电流的延长线都过圆心,由毕-萨定律知道在圆心处产生的磁感应强度为0,圆弧产生的磁感应强度为RlR I R l R I B πμπμ2222220110-=由于两端的电压相同有2211I SlI S l V ρρ==带入上式得到B=0 11-2.如图所示,一扇形薄片,半径为R ,张角为θ,其上均匀分布正电荷,电荷密度为σ,薄片绕过角顶O 点且垂直于薄片的轴转动,角速度为ω,求O 点处的磁感应强度。
解答1:将扇形薄片分割成半径为r 的圆弧形面积元,电荷量为:dr r dq θσ=转动时相当于园电流,对应的电流强度为: rdr dr r T dq dI σωπθωπθσ2/2===产生的磁场为 dr rdIdB σωμπθμ0042==圆心处的磁场为R dr B Rσωμπθσωμπθ00044==⎰ 解答2:以o 为圆心,采用极坐标系将扇形薄片分割成小的面积元 dr rd ds dq θσσ==利用运动电荷产生磁场的公式 dr d rdrr rd r dqv dB θσωπμωθσπμπμ44402020===对上式积分得:πσωθμθσωπμθσωπμθ4440000Rdr d dr d B R===⎰⎰⎰⎰ 11-3 在半径cm 0.1=R 的无限长半圆柱形金属薄片中,自下而上地通有电流A I 0.5=,求圆柱轴线上任一点P 处的磁感应强度。
第十一章第一节 磁场的描述 磁场对电流的作用
第十一章
磁场
3.表盘刻度特点 由于导线在安培力作用下带动线圈转动, 螺旋弹簧变形,反抗线圈的转动,电流越 大,安培力越大,形变就 越大 _________,所以指针偏角与通过线圈的 正比 均匀. 电流I成________,表盘刻度________
第十一章
磁场
要点透析直击高考
一、对磁感应强度的理解 1.磁感应强度是用比值法定义的,其 大小由磁场本身的性质决定,与放入 的直导线的电流I的大小、导线的长短 L的大小无关.
磁场
三、磁感应强度 1.物理意义:描述磁场________和 强弱 方向 _______的物理量.
F 2.大小:B=IL.
第十一章
磁场
3.单位:特斯拉,简称________ 特(T). 矢量 4.矢量性:磁感应强度是 ______, 既有大小,又有方向. 5.匀强磁场:在磁场某区域内,若各 方向 大小 处磁感应强度________、_______处 处相同,则该区域内的磁场为匀强磁 场.
磁场
第十一章
磁场
3.匀强磁场:在磁场的某些区域内, 等间距 磁感线为__________的平行线,如所 示.
图11-1-3
第十一章
磁场
4.地磁场 南极 (1)地磁场的N极在地球______附近, 北极 S极在地球_______附近,磁感线分布 如图11-1-4所示.
图11-1-4
第十一章
磁场
(2)地磁场B的水平分量(Bx)总是从地 南极 北极 球_________指向__________,而竖 直分量(By)则南北相反,在南半球垂 直地面向上,在北半球垂直地面向 下.
例3
(满分样板
10分)(2012· 北京东
城区检测)如图11-1-13所示,在倾 角为θ=30°的斜面上,固定一宽L= 0.25 m的平行金属导轨,在导轨上端 接入电源和滑动变阻器R.
川师大学物理第十一章 恒定电流的磁场习题解
第十一章 恒定电流的磁场11–1 如图11-1所示,几种载流导线在平面内分布,电流均为I ,求它们在O 点处的磁感应强度B 。
(1)高为h 的等边三角形载流回路在三角形的中心O 处的磁感应强度大小为 ,方向 。
(2)一根无限长的直导线中间弯成圆心角为120°,半径为R 的圆弧形,圆心O 点的磁感应强度大小为 ,方向 。
…解:(1)如图11-2所示,中心O 点到每一边的距离为13OP h =,BC 边上的电流产生的磁场在O 处的磁感应强度的大小为012(cos cos )4πBC IB dμββ=-^00(cos30cos150)4π/34πI I h hμ︒︒=-=方向垂直于纸面向外。
另外两条边上的电流的磁场在O 处的磁感应强度的大小和方向都与BC B 相同。
因此O 处的磁感应强度是三边电流产生的同向磁场的叠加,即3BC B B ===方向垂直于纸面向外。
(2)图11-1(b )中点O 的磁感强度是由ab ,bcd ,de 三段载流导线在O 点产生的磁感强度B 1,B 2和B 3的矢量叠加。
由载流直导线的磁感强度一般公式012(cos cos )4πIB dμββ=-可得载流直线段ab ,de 在圆心O 处产生的磁感强度B 1,B 3的大小分别为01(cos0cos30)4cos60)IB R μ︒=︒-︒π(0(12πI R μ=031(cos150cos180)4πcos60IB B R μ︒==︒-︒0(12πI R μ= 】IB 2图11–2图11–1…B(a )AE(b )方向垂直纸面向里。
半径为R ,圆心角α的载流圆弧在圆心处产生的磁感强度的大小为04πI B Rμα=圆弧bcd 占圆的13,所以它在圆心O 处产生的磁感强度B 2的大小为00022π34π4π6II I B R R Rμμαμ=== 方向垂直纸面向里。
因此整个导线在O 处产生的总磁感强度大小为000012333(1)(1)0.212π2π6I I II B B B B R R R Rμμμμ=++=-+-+=方向垂直纸面向里。
高中人教物理选择性必修二第1章第1节磁场对通电导线的作用力
第一章安培力与洛伦兹力第1节磁场对通电导线的作用力安培力的方向判定(1)左手定则:如图所示,伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内.让磁感线从掌心进入并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向.(2)说明:①F⊥B,F⊥I,即F垂直于B、I决定的平面.②磁场方向和电流方向不一定垂直.用左手定则判断安培力方向时,磁感线只要从掌心进入即可,不一定垂直穿过掌心.二、安培力的大小1、同一通电导线,按不同方式放在同一磁场中,受力情况不同,如图所示.(1)如图甲,I⊥B,此时安培力最大,F=ILB.(2)如图乙,I∥B,此时安培力最小,F=0.(3)如图丙,当I与B成θ角时,把磁感应强度B分解,如图丁.此时F=ILB sin_θ.2、安培力的公式理解1.公式F=ILB sin θ中B对放入的通电导线来说是外加磁场的磁感应强度,不必考虑导线自身产生的磁场对外加磁场的影响.2.公式F=ILB sin θ中L指的是导线在磁场中的“有效长度”,弯曲导线的有效长度L,等于连接两端点直线的长度(如图7所示);相应的电流沿L由始端流向末端.3.公式F=ILB sin θ中θ是B和I方向的夹角,当θ=90°时sin θ=1,公式变为F=ILB.三、磁电式电流表(1)原理:通电线圈在磁场中受到安培力而偏转.线圈偏转的角度越大,被测电流就越大.根据线圈偏转的方向,可以知道被测电流的方向.(2)构造:磁铁、线圈、螺旋弹簧、指针、极靴.(3)特点:极靴与圆柱间的磁场沿半径方向,线圈转动时,安培力的大小不受磁场影响,电流所受安培力的方向总与线圈平面垂直.线圈平面与磁场方向平行,如图所示.(4)优点:灵敏度高,可以测出很弱的电流.缺点:线圈导线很细,允许通过的电流很弱.【例题1】画出下列各图中磁场对通电导线的安培力的方向。
答案:如图所示解析:无论B 、I 是否垂直,安培力总是垂直于B 与I 决定的平面,且满足左手定则。
毕奥-萨伐定律,高斯定理,运动电荷的磁场
B = dφm / ds⊥ dφm = Bds⊥ = Bds cosθ v v
v θds v
B
r r S :ϕm = ∫ dϕm = ∫ B⋅ dS S S
S闭合: 闭合: 说明
dϕm = B⋅ dS
ds⊥ ds
ds
θ
r B
r r ϕm = ∫ B⋅ dS
s
(1)标量: (1)标量: 标量
1特⋅ 米2 =1韦伯 wb) ( (2)单位 单位: (2)单位:
2
讨论
(1)当导线为无限长时: (1)当导线为无限长时: 当导线为无限长时
φ1 = 0,φ2 = π
µ0 I B= 2 r π
B r
磁力线形状: 磁力线形状:同心圆
(2)当导线为半无限长时: (2)当导线为半无限长时: 当导线为半无限长时
φ1 = 0,φ2 = π / 2
µ0 I B= 4 r π
--萨伐定律 §11-2 毕奥--萨伐定律 11- 毕奥-dq q
I
r r L E = ∫ dE
Idl
r r r B = ∫ dB
r r Idl : dB
一、毕奥--萨伐定律: 毕奥--萨伐定律: --萨伐定律
r 在空间任一点产生的磁场: Idl 在空间任一点产生的磁场:
(1)大小 dB ∝ (Idl sin φ) / r 大小
L 2 2 3/ 2
2 1
µ0ISndl
方向:沿轴, 方向:沿轴,和I符合右手螺旋法则。 符合右手螺旋法则。
讨论
(1)有限长直螺线管内的磁场不均匀。 (1)有限长直螺线管内的磁场不均匀。 有限长直螺线管内的磁场不均匀 (2)无限长:管内: (2)无限长:管内: 无限长