2020年春人教版九年级数学下册学案28.2.1 解直角三角形
人教版九年级下册28.2.1解直角三角形教学设计

5.培养学生勇于面对困难,敢于挑战自我,养成良好的学习习惯,为未来的学习打下坚实基础。
二、学情分析
九年级下册的学生在经过前两年的数学学习后,已经具备了一定的数学基础和逻辑思维能力。在学习解直角三角形这一章节时,他们已经掌握了勾股定理的基本应用,能够解决一些简单的直角三角形问题。然而,对于锐角三角函数的理解和运用,以及在实际问题中求解直角三角形的综合能力仍有待提高。
2.教师引导学生总结解直角三角形的技巧和方法,以及在实际问题中的应用。
3.教师强调本节课的重点和难点,提醒学生加强课后练习,巩固所学知识。
4.学生分享学习收获,提出在学习过程中遇到的问题和困惑,教师给予解答和指导。
五、作业布置
为了巩固本节课所学知识,培养学生的解题能力和数学素养,特布置以下作业:
1.请同学们完成课本第28.2.1节后的练习题,重点关注锐角三角函数的定义和应用,以及解直角三角形的步骤和方法。
(5)总结:对本节课的知识点进行梳理,强调解题方法和技巧,帮助学生巩固所学内容。
3.教学评价:
(1)关注学生在课堂上的参与度,观察他们是否能够主动探究、积极思考。
(2)通过课后作业和阶段测试,了解学生对知识点的掌握程度,及时发现问题并给予指导。
(3)鼓励学生在解题过程中,提出不同的解题方法和思路,培养学生的创新精神。
2.教学过程:
(1)导入:通过一个与学生生活密切相关的实际问题,引出解直角三角形的学习内容,激发学生的兴趣。
(2)新课:讲解锐角三角函数的定义,通过直观的图形演示和实际案例,让学生理解其在直角三角形中的应用。
(3)巩固:设计不同类型的练习题,让学生在解答过程中,逐步掌握解直角三角形的步骤和方法。
2020-2021学年九年级数学人教版下册:28.2.1解直角三角形学案

解直角三角形姓名: 小组: 评价: .【学习目标】:1、理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。
2、逐步培养分析问题、解决问题的能力,渗透数形结合的数学思想。
3、培养良好的学习习惯。
【重点】直角三角形的解法。
【难点】三角函数在解直角三角形中的灵活运用。
【预习】一、学法指导:1.15分钟时间自主探究课本的基础知识,在课本上做好勾画,完成课本上的练习题习题。
2、完成教材助读设置的问题。
二、教材助读:1、直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(三边之间关系、锐角之间关系、边角之间关系)2、什么叫做解直角三角形?3、解直角三角形所给两个元素中至少一个元素是 ,才能求出其余元素。
三、预习自测(见课件)【探究】基础知识探究:在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形。
1、基本类型:(1)已知斜边c 和一直角边a :由sin A= ,求;A ∠22;90a c b A B -=∠-︒=∠(2)已知两直角边a 、b : (3)一直角边a 和一锐角A ∠: (4)一直角边a 和邻锐角B ∠: (5)斜边c 和一锐角A ∠:2、解直角三角形的依据:(1)两锐角之间的关系: (2)三边之间的关系: (3)边角之间的关系:探究点一:已知两边解直角三角形例1、如图所示,在Rt △ABC 中,∠C =90°BC=2,AC =A 、∠B 及AB 的长.学法指导:当已知两边解直角三角形时,已知的两边可以是两直角边或一条直角边和斜边,通常用已知的两边及三角函数求出一个角,利用勾股定理求第三边。
探究点二 已知一边一角解直角三角形例2、在Rt △ABC 中, ∠B =30o,b=20,解这个三角形.学法指导:当已知一边一角计算边时,可按“有斜用弦,无斜用切”的原则,即如果与斜边有关的,就用正弦或余弦;如果与斜边无关的,就用正切或余切。
28.2.1解直角三角形 教案-2020-2021学年人教版九年级数学下册

铁热木镇中学第二学期教案活动一:复习引入设计说明:通过复习直角三角形的边角关系、三边关系、角角关系,启发学生积极思考并解决问题1、在三角形中共有几个元素?2、直角三角形ABC中,︒C,那么他们的边角关∴90=∠系、三边关系、角角之间有哪些等量关系呢?活动二探究新知1.定义:一般地,在直角三角形中,除直角外,共有5个元素,分别是三条边和两个锐角,由直角三角形中,除直角外的已知元素求出其余未知元素的过程叫解直角三角形.注:已知的两元素中必有一边探究:为什么两个已知元素中至少有一条边(1)在直角三角形中的五个元素中知道一个元素能求出其余元素吗?(2)在直角三角形中的五个元素中知道一个元素能求出其余元素吗?追问①:在直角三角形中已知两个锐角能求出其余元素吗?追问②:在直角三角形中已知一个锐角一条边能求出其余元素吗?追问③:在直角三角形中已知两条边能求出其余元素吗?(教学说明:老师提出思考问题,积极思考,踊跃回答。
通过复习直角三角形的边角关系、三边关系、角角关系,启发学生积极思考并解决问题。
以上三点正是解直角三角形的依据。
引出下面的问题)2.解直角三角形的依据(1)三边之间的关系:222c b a =+(2)两锐角之间的关系:︒=∠+∠90B A(3)边角之间的关系:SinA=c a cosA =c b tanA =b a3、解直角三角形有两种情况:(1)已知两条边,求其他边和角。
(2)已知一条边和一个锐角,求其他边角活动三:例题讲解解:()()632342222=-=-=AC AB BC30609090=-=∠-=∠A B 3221==AB AC设计意图:本题知道一边以锐角,算其他知识点,学生很容易得出知道一角算另一角较简单,解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用。
因此在处理时,首先,应让学生独立完成,培养其分析问题、解决问题的能力,同时渗透数形结合的思想。
其次,组织学生比较各种方法中那些较好,选一种板演解:方法1、方法2:在Rt △ABC 中,()()22622222=+=+=BC AC ABAB AC 21= ︒=∠∴30B︒=︒-︒=∠-︒=∠60309090B A设计意图: 这道题是知道两边的情况,学生独立完成然后师生点评,此题一题多解,培养学生多角度的解决知识,活动三、课堂互动练习326tan ===AC BC A 60=∠∴A30609090=-=∠-=∠A B 222==AC AB设计意图:学生在掌握了解直角三角形的方法之后学生讨论完成下面两道练习题,题目较简单,旨在让学生会会解直角三角形。
28.2.1解直角三角形教案

28.2.1 解直角三角形教学目标:1、使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.2、通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.3、渗透数形结合的数学思想,培养学生良好的学习习惯.过程与方法:通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.情感态度与价值观:渗透数形结合的数学思想,培养学生良好的学习习惯.重难点、关键:1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.教学过程:一、情境创设在Rt △ABC 中,(1)根据∠A= 75°,斜边AB=6,你能求出这个三角形的其他元素吗?(能)(2)根据AC=2.4m,斜边AB=6,你能求出这个三角形的其他元素吗?(能)推出:①、三角形有六个元素,分别是三条边和三个角.②、在直角三角形的六个元素中,除直角外,如果知道两个元素,就可以求出其余三个元素.(3)根据∠A=60°,∠B=30°,你能求出这个三角形的其他元素吗?(不能)(其中至少有一个是边),总结:一般地,直角三角形中,除直角外,共有5个元素,即3条边和2个锐角,由直角三角形中除直角外的已知元素,求出其余未知元素的过程,叫做解直角三角形。
2、解直角三角形的依据直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)三边之间关系 a 2 +b 2 =c 2 (勾股定理) (2)锐角之间关系∠A+∠B=90°.(3)边角之间关系 a b A b a A c b A c a A ====cot ;tan ;cos ;sin 的对边的邻边;的邻边的对边;斜边的邻边;斜边的对边αααααααααα∠∠=∠∠=∠=∠=cot tan cos sin如果用α∠表示直角三角形的一个锐角,那上述式子就可以写成.以上三点正是解直角三角形的依据,通过学习,使学生便于应用.二、解直角三角形 例1:在Rt △ABC 中, ∠B =35°,b=20,解这个三角形(sin35°=0.5736,cos35°=0.8192.精确到0.1) A CB ab c解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.三、小试牛刀1、在Rt△ABC中,∠C=90°,根据下列条件解直角三角形∠B=72°, c=14 (sin72°=0.9511,cos72°=0.3090,精确到0.1)2、【引入】我们一起来解决关于比萨斜塔问题见课本在Rt△ABC中,∠C=90°,BC=5.2m,AB=54.5m.解析:因为sin=5.254.5BCAB≈0.0954.所以∠A≈5°28′.3. 如图所示,一棵大树在一次强烈的地震中于离地面10米处折断倒下,树顶落在离树根24米处.大树在折断之前高多少?解利用勾股定理可以求出折断倒下部分的长度为:2210242626+10=36(米).答:大树在折断之前高为36米.(引导学生思考分析完成后,让学生独立完成。
人教版九年级数学下册第二十八章28.2.1解直角三角形(教案)

今天我们在课堂上学习了《解直角三角形》这一章节,整体来看,学生们对于直角三角形的性质和三角函数的概念有了基本的理解。但在教学过程中,我也发现了一些问题。
首先,对于三角函数的定义和应用,部分学生仍然存在理解上的困难。在讲解时,我应该更加注重从直观的图形和生活实例出发,让学生能够更形象地理解三角函数的含义。今后,我打算多运用一些动态软件或实物模型来展示,帮助学生们形成直观的认识。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“解直角三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了直角三角形的基本概念、三角函数的定义及其在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对解直角三角形知识的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.培养学生的数学应用意识,将解直角三角形的知识应用于生活实际,提高解决实际问题的能力;
4.培养学生的团队协作能力,通过小组讨论、合作探究,共同解决复杂问题,培养集体荣誉感;
5.培养学生的创新意识,鼓励学生在解决实际问题时,勇于提出新思路、新方法,激发学生的创新潜能。
三、教学难点与重点
1.教学重点
(1)直角三角形的定义及其性质:直角三角形的定义、勾股定理及其逆定理,这是解直角三角形的基础知识,需要学生熟练掌握。
人教版九年级数学下册: 28.2.1 《解直角三角形》教学设计1

人教版九年级数学下册: 28.2.1 《解直角三角形》教学设计1一. 教材分析《解直角三角形》是九年义务教育课程标准人教版九年级数学下册第28章第2节的一部分。
本节内容是在学生已经掌握了锐角三角函数和直角三角形的性质的基础上进行的。
本节主要让学生了解解直角三角形的意义和方法,学会使用锐角三角函数来解直角三角形,为以后学习三角函数和解其他三角形打下基础。
二. 学情分析九年级的学生已经具备了一定的几何知识,对直角三角形有一定的了解。
但是,对于如何运用锐角三角函数来解直角三角形,他们可能还比较陌生。
因此,在教学过程中,我需要引导学生理解和掌握锐角三角函数在解直角三角形中的应用。
三. 教学目标1.了解解直角三角形的意义和方法。
2.学会使用锐角三角函数来解直角三角形。
3.能够运用解直角三角形的方法解决实际问题。
四. 教学重难点1.重点:解直角三角形的方法和锐角三角函数在解直角三角形中的应用。
2.难点:如何引导学生理解和掌握锐角三角函数在解直角三角形中的应用。
五. 教学方法采用讲授法、引导法、实践法、讨论法等教学方法,引导学生通过自主学习、合作学习、探究学习,从而掌握解直角三角形的方法和锐角三角函数在解直角三角形中的应用。
六. 教学准备1.准备直角三角形的相关图片和实例。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备相关的练习题和测试题。
七. 教学过程1.导入(5分钟)通过展示一些与直角三角形相关的图片和实例,引导学生回顾直角三角形的性质,为新课的学习做好铺垫。
2.呈现(10分钟)讲解解直角三角形的意义和方法,引导学生理解解直角三角形的重要性。
通过示例,讲解如何使用锐角三角函数来解直角三角形。
3.操练(10分钟)让学生分组进行实践,运用锐角三角函数来解直角三角形。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成,检验他们是否掌握了解直角三角形的方法和锐角三角函数在解直角三角形中的应用。
初中数学九年级下册《解直角三角形》导学案
28.2.1 解直角三角形【学习目标】⑴ 使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形⑵ 通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.⑶ 渗透数形结合的数学思想,培养学生良好的学习习惯.【学习重点】直角三角形的解法.【学习难点】三角函数在解直角三角形中的灵活运用【导学过程】一、自学提纲:1.在三角形中共有几个元素?2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系a b A b a A c b A c a A ====cot ;tan ;cos ;sin b a B a b B c a B c b B ====cot ;tan ;cos ;sin如果用α∠表示直角三角形的一个锐角,那上述式子就可以写成. 的对边的邻边;的邻边的对边;斜边的邻边;斜边的对边αααααααααα∠∠=∠∠=∠=∠=cot tan cos sin(2)三边之间关系 (3)锐角之间关系∠A+∠B=90°.a 2 +b 2 =c 2 (勾股定理) 以上三点正是解直角三角形的依据.二、合作交流:要想使人安全地攀上斜靠在墙面上的梯子的顶端.梯子与地面所成的角一般要满足, (如图).现有一个长6m 的梯子,问:(1)使用这个梯子最高可以安全攀上多高的墙(精确到0. 1 m)(2)当梯子底端距离墙面2.4 m 时,梯子与地面所成的角等于多少(精确到1o ) 这时人是否能够安全使用这个梯子三、教师点拨: 例1在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b=2, a=6,解这个三角形.例2在Rt △ABC 中, ∠B =35o ,b=20,解这个三角形.四、学生展示:完成课本74页练习补充题1.根据直角三角形的__________元素(至少有一个边),求出________•其它所有元素的过程,即解直角三角形.2、在Rt△ABC中,a=104.0,b=20.49,解这个三角形.3、在△ABC中,∠C为直角,AC=6,BAC的平分线AD=43,解此直角三角形。
人教版数学九年级下册-28.2.1 解直角三角形-教案
28.2.1解直角三角形(第1课时)教学设计一、教材分析本节课内容是新人教版教材九年级下册,第二十八章《锐角三角函数》的第二节《解直角三角形》第一课时,是在学习了勾股定理、锐角三角函数的基础上进行的。
本节课既是前面所学知识的运用,也是高中继续学习三角函数和解斜三角形的重要预备知识。
教材首先从实际生活比萨斜塔入手,创设问题情境,抽象出数学问题,从而引出解直角三角形的概念,归纳解直角三角形的一般方法。
本节课的学习还蕴涵着深刻的数学思想方法:数学建模和转化化归,在本节教学中有针对性的对学生进行这方面的能力培养。
通过本节课的学习,不仅可以巩固勾股定理和锐角三角函数等相关知识,初步获得解直角三角形的方法和经验,而且还让学生进一步体会数学与实际生活的密切联系。
二、教学目标(一)知识与技能1.理解直角三角形中五个元素的关系,什么是解直角三角形;2.运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)过程与方法目标通过探索讨论发现解直角三角形所需的最简条件,了解体会用化归的思想方法将未知问题转化为已知问题去解决,在解决问题的过程中渗透“数学建模”和“转化”思想。
(三)情感、态度和价值观通过学习解直角三角形的应用,认识到数与形相结合的意义和作用,体验到学好知识能应用于社会实践。
并让学生体验到学习是需要付出努力和劳动的。
三、学情分析九年级学生已经牢固掌握了勾股定理,也刚刚学习过锐角三角函数,但锐角三角函数的运用不一定熟练,综合运用所学知识解决问题,将实际问题抽象为数学问题的能力都有待提高,因此要在本节课进行有意识的培养。
四、教学重难点教学重点:正确运用直角三角形中的边角关系解直角三角形教学难点:选择适当的关系式解直角三角形五、教法与学法1、教学方法:利用多媒体辅助教学,通过观察,引导学生思考、讨论,通过归纳、概括等方法启发、诱导,帮助学生理解内容的本质,从而突破教学难点。
2、学习方法:观察、归纳、概括和讨论的学习方法,使他们不仅理解和掌握本节课的内容,而且进一步培养和提高他们各方面的能力,从而逐步由“学会”向“会学”迈进。
人教初中数学九下 《解直角三角形》教案 (公开课获奖)
解直角三角形教学目标:理解解直角三角形的概念和条件重点:解直角三角形难点:解直角三角形的基本类型及解法28.2.1 解直角三角形理解解直角三角形的概念和条件(1)解直角三角形在直角三角形中,由元素求出元素的过程,就是解直角三角形.(2)解直角三角形的条件在直角三角形中除直角外的五个元素中,已知其中个元素(至少有一个是),就能求出其余的个未知元素,即“知二求三”.重点一:解直角三角形解直角三角形的基本类型及解法Rt△ABC中,∠C=90°已知条件解法(选择的边角关系)斜边和一直角边c,a 由sin A=,求∠A;∠B=90°-∠A; b=两直角边a,b 由tan A=,求∠A;∠B=90°-∠A; c=斜边和一锐角c,∠A ∠B=90°-∠A;a=c·sin A;b=c·cos A一直角边和一锐角a,∠A ∠B=90°-∠A;b=; c=1.(2013兰州)△ABC中,a、b、c分别是∠A、∠B∠C的对边,如果a2+b2=c2,那么下列结论正确的是( )(A)csin A=a (B)bcos B=c (C)atan A=b (D)ctan B=b2.(2013安顺)在Rt△ABC中,∠C=90°,tan A=,BC=8,则△ABC的面积为.3.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,请分别根据下列条件解直角三角形.(1)a=6,b=2;(2)c=4,∠A=60°.重点二:利用特殊角解非直角三角形非直角三角形可通过作三角形的高,构造直角三角形求解.在选择关系式时要尽量利用原始数据,直接求解,防止累积误差.4.如图所示,在△ABC中,∠A=30°,tan B=,AC=2,则AB的长是( )(A)3+(B)2+2(C)5 (D)5. (2013曲靖)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,则CD= .6.等腰三角形的三边长分别为1、1、,那么它的底角为.7.如图所示,在△ABC中,∠A=60°,∠B=45°,AB=8,求△ABC的面积(结果可保留根号).A层(基础)1.在下面的条件中,不能解直角三角形的是( )(A)已知两锐角(B)已知两条边(C)已知一边和一锐角(D)已知三条边2. 如图所示,在△ABC中,cos B=,sin C=,AC=5,则△ABC的面积是( )(A)(B)12 (C)14 (D)213. 如图所示,正三角形的内切圆半径为1,那么三角形的边长为( )(A)2 (B)2 (C)(D)34.若等腰三角形ABC的底边BC上的高为4,sin B=,则△ABC的周长为( )(A)24(B)16+4 (C)8+8 (D)16+85.在△ABC中,AB=4,AC=,∠B=60°,则BC的长为( )(A)1 (B)2 (C)3 (D)1或36.如图,已知Rt△ABC中,斜边BC上的高AD=4,cos B=,则AC= .7. 如图所示,在高为2米,∠ABC为30°的楼梯上铺地毯,地毯的长度至少应有米.8. (2013陕西)如图,四边形ABCD的对角线AC,BD相交于点O,且BD平分AC.若BD=8,AC=6,∠BOC=120°,则四边形ABCD的面积为.(结果保留根号)9. 如图所示,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形,若AB=2,求△ABC的周长.(结果保留根号).教学反思:15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习1.计算: (1))1)(1(yx x y x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. (三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高. [师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”). 2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”). [师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程). (投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD ,求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.D CA BD CABDC A B在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?DC AB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD . 3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .DC ABEDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=CE .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长. 解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标E DC A B P明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111( 2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.。
九年级数学28.2.1 解直角三角形教案
28.2 解直角三角形及其应用28. 解直角三角形01 教学目标1.掌握解直角三角形的根据.2.能由条件解直角三角形.02 预习反应阅读教材P72~73,自学“探究〞、“例1〞与“例2〞,完成以下内容.(1)在直角三角形中,由直角三角形中的元素,求出其余未知元素的过程叫做解直角三角形.(2)如图,在Rt △ABC 中,∠C 为直角,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,那么除直角外的五个元素之间有如下关系:三边之间的关系a 2+b 2=c 2;两锐角之间的关系∠A +∠B =90°; 边与角之间的关系:sinA =a c ,cosA =b c ,tanA =a b.(3)在Rt △ABC 中,∠C =90°,∠A 与斜边c ,用关系式 ∠A +∠B =90° 求出∠B ,用关系式sinA =ac 求出a.03 名讲坛类型1 两边,解直角三角形例1 (教材例1变式)根据以下条件解直角三角形:(1)在Rt △ABC 中,∠C =90°,BC =3,AB =32; (2)在Rt △ABC 中,∠C =90°,BC =6,AC =2 3. 【解答】 (1)在Rt △ABC 中,∵∠C =90°,BC =3,AB =32, ∴sinA =BC AB =22.∴∠A =45°.∴∠B =90°-∠A =45°. ∴AC =BC =3.(2)在Rt △ABC 中,∵∠C =90°,BC =6,AC =23, ∴tanA =BCAC =3,AB =BC 2+AC 2=4 3.∴∠A =60°. ∴∠B =90°-∠A =30°.【点拨】【跟踪训练1】 如图,在△ABC 中,AB =AC ,AH ⊥BC ,垂足为点H ,如果AH =BC ,那么sin ∠BAC 的值是45.类型2 一边和一锐角,解直角三角形例2 (教材例2变式)在△ABC 中,∠C =90°,AB =10,∠A =45°,解这个直角三角形. 【解答】 在Rt △ABC 中,∠C =90°,∠A =45°, ∴∠B =90°-∠A =45°. 又∵sinA =BCAB,∠A =45°,AB =10,∴BC =5 2.∴AC =BC =5 2.例3 (教材例2变式)在△ABC 中,∠C =90°,AC =10,∠A =30°,解这个直角三角形. 【解答】 ∵∠C =90°,∠A =30°, ∴∠B =90°-30°=60°. ∵cosA =AC AB ,∴AB =AC cosA =1032=2033. 又∵tanA =BCAC,∴BC =AC·tanA =10×tan30°=10×33=1033.【跟踪训练2】 如图,在△ABC 中,∠B =45°,cosC =35,AC =5a ,则△ABC 的面积用含a 的式子表示是14a 2.04 稳固训练1.如图,Rt △ABC 中,∠C =90°,AC =4,tanA =12,则BC 的长是(A)A.2B.8C.2 5D.4 52.如图,小明为了测量其所在位置A 点到河对岸B 点之间的距离,沿着与AB 垂直的方向走了m 米,到达点C ,测得∠ACB =α,那么AB 等于(B)A.m·sin α米B.m·tan α米C.m·cos α米D.mtan α米3.如图,在Rt △ABC 中,斜边BC 上的高AD =3,cos B =45,则AC =154.4.如图,在菱形ABCD 中,DE ⊥AB 于点E ,cosA =35,BE =4,则DE 的值是8.5.如图,在△ABC 中,AC =8,∠CAB =30°,∠CBA =45°,求AB 的长.解:过点C 作CD ⊥AB ,在Rt △ACD 中,CD =AC·sin ∠CAD =8×12=4,AD =AC·cos ∠CAD =8×cos 30°=8×32=4 3. 在Rt △BDC 中,DB =CD·tan ∠BCD =4×1=4, ∴AB =BD +DA =43+4.05 课堂小结本节学习的数学知识:解直角三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
王老师网络编辑整理
王老师网络编辑整理
28.2.1 解直角三角形
【学习目标】
⑴ 使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互
余及锐角三角函数解直角三角形
⑵ 通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐
步培养学生分析问题、解决问题的能力.
⑶ 渗透数形结合的数学思想,培养学生良好的学习习惯.
【学习重点】
直角三角形的解法.
【学习难点】
三角函数在解直角三角形中的灵活运用
【导学过程】
一、自学提纲:
1.在三角形中共有几个元素?
2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?
(1)边角之间关系
abAbaAcbAc
a
Acot;tan;cos;sin
baBabBcaBc
b
Bcot;tan;cos;sin
如果用表示直角三角形的一个锐角,那上述式子就可以写成.
的对边的邻边;的邻边的对边;斜边的邻边;斜边的对边
cottancossin
(2)三边之间关系 (3)锐角之间关系∠A+∠B=90°.
a2 +b2 =c2 (勾股定理) 以上三点正是解直角三角形的依据.
二、合作交流:
要想使人安全地攀上斜靠在墙面上的梯子的顶端.梯子与地面所成
的角一般要满足, (如图).现有一个长6m的梯子,问:
(1)使用这个梯子最高可以安全攀上多高的墙(精确到0. 1 m)
(2)当梯子底端距离墙面2.4 m时,梯子与地面所成的角等于多少(精
确到1o) 这时人是否能够安全使用这个梯子
三、教师点拨:
例1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b=2,
a=6,解这个三角形.
例2在Rt△ABC中, ∠B =35o,b=20,解这个三角形.
王老师网络编辑整理
王老师网络编辑整理
四、学生展示:
完成课本74页练习
补充题
1.根据直角三角形的__________元素(至少有一个边),求出________•其它所有元素的过
程,即解直角三角形.
2、在Rt△ABC中,a=104.0,b=20.49,解这个三角形.
3、 在△ABC中,∠C为直角,AC=6,BAC的平分线AD=43,解此直角三角形。
4、Rt△ABC中,若sinA=45,AB=10,那么BC=_____,tanB=______.
5、在△ABC中,∠C=90°,AC=6,BC=8,那么sinA=________.
6、在△ABC中,∠C=90°,sinA=35,则cosA的值是( )
A.35 B.45 C.916.2525D
五、课堂小结:
小结“已知一边一角,如何解直角三角形?”
六、作业设置:
课本 第77页 习题28.2复习巩固第1题、第2题.
七、自我反思:
本节课我的收获: