2009中考数学辅导之—一次函数的图象和性质

合集下载

第12课时 一次函数的图象与性质

第12课时 一次函数的图象与性质

图12-2
数学
全程夺冠
中考突破
课件目录




(1)写出点P2的坐标; (2)求直线l所表示的一次函数的表达式; (3)若将点P2先向右平移3个单位,再向上平移6个单位得到像 点P3.请判断点P3是否在直线l上,并说明理由. 解:(1)P2(3,3). (2)设直线l所表示的一次函数的表达式为y=kx+b(k≠0),




图象 经过 一、二、 象限 三 一、 三、四
一、三
一、 二、四
二、 三、四
二、四
性质
y随x的增大而__________ 增大
减小 y随x的增大而________
平移 一次函数y=kx+b的图象可由正比例函数y=kx的图象平 规律 移得到.b>0,上移b个单位;b<0,下移|b|个单位. 【易错提示】一次函数的图象不经过第二象限是指图象经过
数学
全程夺冠
中考突破
课件目录




考点3 一次函数与方程(组)、不等式的关系
一次函数与方 一次函数y=kx+b的图象与x轴交点的横坐 标就是方程kx+b=0(k≠0)的解. 程的关系
一次函数 y= k1x+ b1 与 y= k2x+b2 的图象 一次函数与方 的 交 点 的 横 、 纵 坐 标 值 是 方 程 组 程组的关系 y= k1x+ b1, 的解 . y = k x + b 2 2 一元一次不等式kx+b>0(或kx+b<0)的解 一次函数与不 集,就是一次函数y=kx+b中y>0(或y<0) 等式的关系 时自变量x的取值范围.
图象经过P1(x1,y1),P2(x2,y2)两点,若x1<x2,则y1______ < y2.(填

中考数学精学巧练备考秘籍 第3章 函数 第13课时 一次函数图象和性质-人教版初中九年级全册数学试题

中考数学精学巧练备考秘籍 第3章 函数 第13课时 一次函数图象和性质-人教版初中九年级全册数学试题

第3章 函数【精学】考点一、正比例函数和一次函数 1、正比例函数和一次函数的概念一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。

特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)。

这时,y 叫做x 的正比例函数。

2、一次函数的图像所有一次函数的图像都是一条直线 3、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。

k 的符号 b 的符号 函数图像图像特征k>0b>0图像经过一、二、三象限,y 随x 的增大而增大。

b<0图像经过一、三、四象限,y 随x 的增大而增大。

K<0 b>0图像经过一、二、四象限,y随x的增大而减小b<0图像经过二、三、四象限,y随x的增大而减小。

注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。

4、正比例函数的性质一般地,正比例函数kxy=有下列性质:(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。

5、一次函数的性质一般地,一次函数bkxy+=有下列性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式kxy=(k≠0)中的常数k。

确定一个一次函数,需要确定一次函数定义式bkxy+=(k≠0)中的常数k和b。

解这类问题的一般方法是待定系数法。

【巧练】题型一、一次函数图象与系数的关系例1(2016某某)若k≠0,b<0,则y=kx+b的图象可能是()【答案】B.【解析】试题分析:一次函数,不可能与x轴平行,排除D选项,b<0,说明过3、4象限,排除A、C选项。

考点08 一次函数的图象与性质【无答案】

考点08 一次函数的图象与性质【无答案】

考点08 一次函数的图象和性质一次函数的图象与性质是中考数学中比较重要的一个考点,也是知识点牵涉比较多的考点。

各地对一次函数的图象与性质的考察也主要集中在一次函数表达式与平移、图象的性质、图象与方程不等式的关系以及一次函数图象与几何图形面积等五个方面。

也因为一次函数是一个结合型比较强的知识点,所以其图象和性质也是后续函数问题学习的一个基础。

故考生在复习这块知识点时,需要特别熟记对应考点的方法规律。

一、一次函数的图象与平移二、一次函数的性质三、待定系数法求解一次函数的表达式四、一次函数与方程、不等式的关系五、一次函数与三角形面积考向一:一次函数的图象与平移一.一次函数的图象1.下列函数:①y=4x;②y=﹣;③y=;④y=﹣4x+1,其中一次函数的个数是()A.1B.2C.3D.42.如图,在平面直角坐标系中,函数y=k(x﹣1)(k>0)的图象大致是()A.B.C.D.3.如图,同一直角坐标系中,能表示一次函数y=x+kb和y=kx+b(k、b为常数,且k≠0)的图象是()A.B.C.D.4.在平面直角坐标系中,直线是函数y=6x﹣2的图象,将直线l平移后得到直线y=6x+2,则下列平移方式正确的是()A.将1向右平移4个单位长度B.将1向左平移4个单位长度C.将1向上平移4个单位长度D.将1向下平移4个单位长度5.直线y=2x﹣4向上平移2个单位后所得的直线与x轴交点的坐标是.6.如图,在同一平面直角坐标系中,一次函数y1=k1x+b1与y2=k2x+b2的图象分别为直线l1和直线l2,下列结论正确的是()A.k1k2<0B.k1+k2<0C.b1﹣b2>0D.b1b2>0考向二:一次函数的性质对于任意一次函数y=kx+b(k≠0),点A (x1,y1)B(x2,y2)在其图象上1.一次函数y=﹣3x+1的图象经过()A.第一、二、四象限B.第一、三、四象限C.第一、二、三象限D.第二、三、四象限2.已知点A(﹣3,y1),B(﹣1,y2)都在直线y=(m2+1)x+m上,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.大小不确定3.已知A(x1,y1),B(x2,y2)是关于x的函数y=(m﹣1)x图象上的两点,当x1<x2时,y1<y2,则m 的取值范围是()A.m>0B.m<0C.m>1D.m<14.对于一次函数y=﹣2x+1的相关性质,下列描述错误的是()A.函数图象经过第一、二、四象限B.图象与y轴的交点坐标为(1,0)C.y随x的增大而减小D.图象与坐标轴调成三角形的面积为5.已知点(﹣2,y1),(2,y2)都在直线y=2x﹣3上,则y1y2.(填“<”或“>”或“=”)考向三:待定系数法求一次函数的解析式1.一个正比例函数的图象过点(﹣2,3),它的表达式为()A.B.C.D.2.已知一次函数y=mx﹣4m,当1≤x≤3时,2≤y≤6,则m的值为()A.2B.﹣2 C.2或﹣2D.m的值不存在3.已知y与x成正比例,且当x=2时,y=﹣3.则当x=﹣时,y=.4.已知一次函数的图象经过A(2,0),B(0,4)两点.(1)求此一次函数表达式;(2)试判断点(﹣1,6)是否在此一次函数的图象上.5.如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C(0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).求n的值及直线AD的解析式.考向四:一次函数与方程不等式间的关系1.已知方程2x﹣1=﹣3x+4的解是x=1,则直线y=2x﹣1和y=﹣3x+4的交点坐标为()A.(1,0)B.(1,1)C.(﹣1,﹣3)D.(﹣1,1)2.如图,直线y=ax+b(a≠0)过点A(0,1),B(2,0),则关于x的方程ax+b=0的解为.3.如图,一次函数y=2x+1的图象与y=kx+b的图象相交于点A,则方程组的解是()A.B.C.D.4.如图,已知直线y=ax+b和直线y=kx交于点P,若二元一次方程组的解为x、y,则x+y=.5.若定义一种新运算:,例如:2@4=2+4﹣3=3,2@1=2﹣1+3=4,下列说法:①(﹣1)@(﹣2)=4;②若x@(x+2)=5,则x=3;③x@2x=3的解为x=2;④函数y=(x2+1)@1与x轴交于(﹣1,0)和(1,0).其中正确的个数是()A.4B.3C.2D.16.如图,已知一次函数y1=kx﹣b与y2=nx函数图象相交于点M,当kx﹣b=nx时,x的值是,当y1>y2时,x的取值范围是,当y1<y2时,x的取值范围是.7.小时在学习了一次函数知识后,结合探究一次函数图象与性质的方法,对新函数y=2﹣|x﹣1|及其图象进行如下探究.(1)自变量x的取值范围是全体实数,x与y的几组对应值如表:x…﹣3﹣2﹣1012345…y…﹣2﹣1m1210n﹣2…其中m=,n=.(2)请在给出的平面直角坐标系中画出该函数的图象,并结合图象写出该函数的一条性质:.(3)当时,x的取值范围为.考向五:一次函数与三角形面积一.一次函数与坐标轴围成三角形面积的规律方法归纳3.求三角形面积时,三角形有边在水平或者竖直边上,常以这条边为底,再由底所对顶点的坐标确定高;二.一次函数图象与几何图形动点面积1.此类问题需要将动点所在几何图形与一次函数图象同时分析,对照一次函数图象得出动点所在几何图形的边长信息2.对函数图象的分析重点抓住以下两点:①分清坐标系的x轴、y轴的具体意义②特别分析图象的拐点——拐点一般表示动点运动到几何图形的一个顶点3.动点所在几何图形如果是特殊图形,如等腰三角形、等腰直角三角形、含30°的直角三角形,注意对应图形性质与辅助线的应用。

2024年中考数学一轮复习考点精讲课件—一次函数的图象与性质

2024年中考数学一轮复习考点精讲课件—一次函数的图象与性质

的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.
4)一次函数与正比例函数有着共同的性质:
①当k>0时,y的值随x值的增大而增大;②当k<0时,y的值随x值的增大而减小.
考点二 一次函数的图象与性质
1. 正比例函数y= kx中,|k|越大,直线y= kx越靠近y轴;反之,|y|越小,直线y= kx越靠近x轴.
C.3
D.−3或3
∴9 = 2 ,∴ = ±3,又∵正比例函数 = 的图象经过第二、
∴ < 0,∴ = −3,故选:B.
【对点训练1】(2023·浙江杭州·统考一模)已知 − 与 − 1成正比例,且当 = −2时, = 3.若关
于的函数图象经过二、三、四象限,则m的取值范围为(
用待定系数法求一次函数表达式的一般步骤:
1)设出函数的一般形式y=kx(k≠0)或y=kx+b(k≠0);
2)根据已知条件(自变量与函数的对应值)代入表达式得到关于待定系数的方程或方程组;
3)解方程或方程组求出k,b的值;
4)将所求得的k,b的值代入到函数的一般形式中,从而得到一次函数解析式.
考点二 一次函数的图象与性质
两点即可,
图象确定
b
k
1)画一次函数的图象,只需过图象上两点作直线即可,一般取(0,b),(− ,0)两点;
2)画正比例函数的图象,只要取一个不同于原点的点即可.
考点二 一次函数的图象与性质
三、k,b的符号与直线y=kx+b(k≠0)的关系


在直线y=kx+b(k≠0)中,令y=0,则x=− ,即直线y=kx+b与x轴交于(− ,0)
综上所述,0 > 1 > 2

中考数学复习讲义课件 第3单元 第11讲 一次函数

中考数学复习讲义课件 第3单元 第11讲 一次函数
第三单元 函数
第11讲 一次函数
1 知识梳理素养形成 2 考法聚焦素养提升
知识梳理素养 形成
考法聚焦素养 提升
一次函数的图象与性质(10 年 6 考) 例 1 已知关于 x 的一次函数 y=(2m+1)x+m-1. (1)若该函数的值 y 随自变量 x 的增大而增大,则 m 的取值范围为
(3)每月制作 A 类微课多少个时,该团队月利润 w 最大,最大利润是多少元?
解:由(2)知,w=50a+16500. ∵50>0,∴w 随 a 的增大而增大. ∴当 a=9 时,w 有最大值,w 最大=50×9+16500=16950(元).
答:每月制作 A 类微课 9 个时,该团队月利润 w 最大,最大利润是 16950 元.
7.(2021·衡阳)如图是一种单肩包,其背带由双层部分、单层部分和调节扣 构成.小文购买时,售货员演示通过调节扣加长或缩短单层部分的长度, 可以使背带的长度(单层部分与双层部分长度的和,其中调节扣所占长度忽 略不计)加长或缩短,设双层部分的长度为 xcm,单层部分的长度为 ycm. 经测量,得到表中数据. 双层部分长度 x/cm 2 8 14 20 单层部分长度 y/cm 148 136 124 112
品种 A B 原来的运费 45 25 现在的运费 30 20
(1)求每次运输的农产品中 A,B 产品各有多少件; [解答] 解:设每次运输的农产品中 A 产品有 x 件,B 产品有 y 件.根据题 意,得 4350xx++2250yy==11220000,-300.解得yx==3100., 答:每次运输的农产品中 A 产品有 10 件,B 产品有 30 件.
10.(2021·乐山)如图,已知直线 l1:y=-2x+4 与坐标轴分别交于 A,B 两 点,那么过原点 O 且将△AOB 的面积平分的直线 l2 的解析式为( D )

中考数学知识点汇总--一次函数

中考数学知识点汇总--一次函数

中考数学知识点汇总一次函数的知识点总结一、函数的有关概念1.常量与变量在一个变化的过程中, 数值发生变化的量为变量, 数值始终不变的量为常量.2.函数与函数值一般地, 在一个变化过程中,如果有两个变量x与y, 并且对于每一个确定的值都有唯一确定的值与其对应, 那么就说X是自变量, Y是X的函数. 如果当x=a时,y=b,那么b叫做当自变量的值为a 时的函数值。

重难点:1、函数首先指在一个变化过程中;2、只能有两个变量;3、第一个x对应唯一的一个y值,而一个y不必对应唯一的x值,如函数y=x2中,y是x 的函数,第一个x对应唯一的y值,而一个y 可以对应不同的x的值。

二、函数的自变量的取值范围函数的自变量的取值范围是指使函数有意义的自变量取值的全体。

确定自变量的取值范围时,不仅要考虑使函数关系式有意义,而且还要注意问题的实际意义。

三、函数的解析式像y=50-0.1x这样,用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法,这种式子叫做函数的解析式。

1、函数的图象的定义一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象2、描点法画函数图象的一般步骤第一步:列表—表中给出一些自变量的值及其对应的函数值;第二步:描点—在直角坐标系中,以自变量的值为横从标,相应的函数值为纵坐标,描出表格中数值对应的各点;第三步:连线—按照横坐标由小到大的顺序,把所描出的各蹼用平滑曲线连接起来。

3、函数图象上的点与其解析式之间的关系1、函数图象上的任一点的横坐标与纵坐标一定是这个函数的自变量x和函数y的一对对应值;反之,以这一对对应值为横、纵坐标的点必在函数的图象上。

4、判断点P(x,y )是否在函数图象上的方法:将点P的坐标(x,y)代入函数解析式,若满足函数解析式,则这个点就在函数图象上,否则不在函数图象上。

五、函数的表示方法方法定义优点缺点列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系的方法叫做列表法能明显地呈现出自变量与对应的函数只能列出部分自变量与函数的对应值,难以看出自变量与函数之间的对应规律解析式法用含有自变量的代数式表示函数的方法叫做解析式法简明扼要、规范准确,便于分析推导函数性质有些函数关系,不能用解析式表示图象法用图象表示函数关系的方法叫做图象法形象直观,能清晰地呈现函数的一些性质所画的图象是近似的、局部的,从图象上观察的结果也是近似的重难点:表示函数时,要根据具体情况选择适当的方法,有时为全面认识问题,需要几种方法同时使用。

一次函数的图象和性质

一次函数的图象与性质教学设计白山镇中心学校富淼一、教材分析函数是中学数学中非常重要的内容,是刻画和研究现实世界变化规律的重要模型。

它贯穿于整个中学阶段的始末,同时也是历年中考、高考必考的内容之一。

八年数学中的函数又是中学函数知识的开端,是学生正式从常量世界进入变量世界,因此,努力上好八年函数部分的内容显得尤为重要。

一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。

为此,在教学中,通过设置问题,引导学生观察探索,让学生在学习过程中体验、感悟函数思想等思想方法,从而激发学生学习函数的信心和兴趣,这也是教学目标。

本节课安排在正比例函数与一次函数的概念和函数图象画法之后。

目的是通过这一节课的学习使学生掌握正比例函数和一次函数图象和性质,并能简单应用性质。

它既是探究其他函数性质的基础,又是后续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用。

本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。

作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。

二、学情分析我所执教的班级数学基础,实验探究能力一般。

学生已经学习了一次函数和正比例函数的定义、正比例函数的图象形状及会用两点法画正比例函数图象。

三、教学目标的确定基于以上对教材、学情分析和新课标的要求,特制定本节课的教学目标:知识与技能目标:1、掌握一次函数的图象的简单画法;2、经历探索由一次函数图象观察归纳一次函数性质的过程;3、掌握并应用一次函数性质解决问题。

过程与方法目标:1、通过对应描点来研究一次函数的图象,经历知识的归纳,探究过程。

2、通过一次函数的图象归纳函数的性质,体验数形结合的应用。

3、体会和学会探索问题的一般方法,渗透从特殊到一般的数学思想。

情感态度价值观目标:通过自主探究和合作交流,增强函数小组合作意识和大胆猜想、乐于探究的良好品质,体验成功的喜悦。

一次函数图像和性质复习课


2014.3
会利用待定系数法确定一 次函数表达式.
2018.25
2017.22 2019.22
2014.25
一次函数的图象 一次函数与二次函数的综合
一次函数与反比例函数的综合 6年 4考
一次函数与二次函数的综合
一次函数与方 能结合图像分析一次函数 程、不等式的 与方程、不等式的关系 2016.15 关系
式,以及三角形面积,熟练掌握待定系数法是 解本题的关键.
方法点析
分类讨论思想——求点的坐标 本题第二问给定了△AOP 的面积为 1,且点 P 运动的 范围为一条直线.通过对试题的分析,这是一个比较简单 的分类讨论的题目,利用△AOP 的面积求出 AO 边上的高 为 1,即点 P 的横坐标分别为 1 或-1 两种情况.在分类中 做到细心缜密,考虑周全,才能够不遗漏.
考点五 一次函数应用
利用一次函数解决实 际问题,首先建立函数模 型,然后求出解析式,最 后根据解析式、函数性质 作答。
典例讲解
例1. 已知一次函数y=(3a+2)x-(4-b), 求字母a、b为何值时:(1)y随x的增大而增大; (2)图象不经过第一象限;(3)图象经过原点; (4)图象平行于直线y=-4x+3; (5)图象与y轴交点在x轴下方.
设y关于x的函数解析式为y=kx+b(k≠0)
把关于x,y的数对代入解析式,得到k,b的方程组

解关于k,b的方程组

把k,b的值代入y=kx+b(k≠0),写出函数解析式
三、在具体的实际情景中,用一次函数解决问题
实际问题
求函数解析式
计算问题
四、用分类讨论、数形结合思想解决 数学问题
考点二

初二数学下册:【一次函数】性质,6大考点+例题解析,抓紧记!

初二数学下册:【一次函数】性质,6大考点+例题解析,抓紧记!考纲要求:1.理解一次函数的概念,会利用待定系数法确定一次函数的表达式.2.会画一次函数的图象,掌握一次函数的基本性质,平移的方法.3.体会一次函数与一元一次方程不等式的关系。

4.一次函数的与三角形面积的问题.命题趋势:一次函数是中考的重点,主要考查一次函数的定义、图像、性质及其实际应用,有时与方程、不等式相结合.题型有选择题、填空题、解答题.中考数学一次函数知识梳理:一、一次函数和正比例函数的定义一般地,如果y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.特别地,当b=0时,一次函数y=kx+b就成为y=kx(k是常数,k≠0),这时y叫做x的正比例函数.二、一次函数的图像与性质1.一次函数的图像(1)一次函数y=kx+b(k≠0)的图象是经过点(0,b)和(-b/k,0)的一条直线.(2)正比例函数y=kx(k≠0)的图像是经过点(0,0)和(1,k)的一条直线.(3)因为一次函数的图象是一条直线,由两点确定一条直线可知画一次函数图象时,只要取两个点即可.2.一次函数图象的性质一次函数y=kx+b的图象可由正比例函数y=kx的图象平移得到,b>0,上移b个单位;b<0,下移|b|个单位.三、利用待定系数法求一次函数的解析式四、一次函数与方程、方程组及不等式的关系1.y=kx+b与kx +b=0直线y=kx+b与x轴交点的横坐标是方程kx+b=0的解,方程kx+b=0的解是直线y=kx+b与x轴交点的横坐标.2.一次函数与方程组两个一次函数图象的交点坐标就是它们的解析式所组成的二元一次方程组的解;以二元一次方程组的解为坐标的点是两个二元一次方程所对应的一次函数图象的交点.3.一次函数的平移y=kx+b遵循左加右减原则如果向左平移a个单位,可得y=k(x+a)+b如果向上平移a个单位,可得y=kx+b+a 通过以上对一次函数的整体了解和综合的学习,快速掌握一次函数,就从下面的六大考点出发,每个考点的精髓和解题的技巧唐老师都在例题的下方给大家进行了总结,记得一定要牢记。

专题05一次函数的图象和性质(讲)-2019年中考数学二轮复习(原卷版)

备战2019年中考二轮讲练测(精选重点典型题)专题5 一次函数的图象和性质(讲案)一讲考点——考点梳理(一)概念1、一次函数:一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数.正比例函数:特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0).这时,y 叫做x 的正比例函数.(二)函数的图象1.一次函数的图象:所有一次函数的图象都是一条直线(三)函数图象的主要特征一次函数b kx y +=的图象是经过点(0,b )的直线;正比例函数kx y =的图象是经过原点(0,0)的直线;|k|越大,直线越陡,|k|越小直线越缓.(四)函数的性质1.正比例函数的性质一般地,正比例函数kx y =有下列性质:(1)当k >0时,图象经过第一、三象限,y 随x 的增大而增大;(2)当k <0时,图象经过第二、四象限,y 随x 的增大而减小.2.一次函数的性质一般地,一次函数b kx y +=有下列性质:(1)当k >0时,y 随x 的增大而增大(2)当k <0时,y 随x 的增大而减小(五)函数解析式的确定待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫做待定系数法.二讲题型——题型解析(一)对一次函数图象与系数的关系的考查.例1、如图,直线m ⊥n ,在某平面直角坐标系中,x 轴∥m ,y 轴∥n ,点A 的坐标为(-4,2),点B 的坐标为(2,-4),则坐标原点为( )A .O 1B .O 2C .O 3D .O 4 (二)对一次函数图象与几何变换的考查.例2、如图示直线33y x =+与x 轴、y 轴分别交于点A 、B ,当直线绕着点A 按顺时针方向旋转到与x 轴首次重合时,点B 运动的路径的长度为 .(三)对两条直线相交或平行的考查例3、如图,已知直线l 1:y =﹣2x +4与直线l 2:y =kx +b (k ≠0)在第一象限交于点M .若直线l 2与x 轴的交点为A (﹣2,0),则k 的取值范围是( )A .﹣2<k <2B .﹣2<k <0C .0<k <4D .0<k <2(四) 对点的坐标规律的考查例4、如图,AB ⊥y 轴,垂足为B ,将△ABO 绕点A 逆时针旋转到△AB 1O 1的位置,使点B 的对应点B 1落在直线33y x=-上,再将△AB1O1绕点B1逆时针旋转到△A1B1O1的位置,使点O1的对应点O2落在直线33y x=-上,依次进行下去…若点B的坐标是(0,1),则点O12的纵坐标为.例5如图,点A1(1,1)在直线y=x上,过点A1分别作y轴、x轴的平行线交直线32y x=于点B1,B2,过点B2作y轴的平行线交直线y=x于点A2,过点A2作x轴的平行线交直线32y x=于点B3,…,按照此规律进行下去,则点A n的横坐标为.(五)对函数图象上线段、距离最短的考查例6如图,直线243y x=+与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A .(﹣3,0)B .(﹣6,0)C .(32-,0)D .(52-,0) (六)对线段、面积计算的考查例7、如图,过点A (2,0)作直线l :33y x =的垂线,垂足为点A 1,过点A 1作A 1A 2⊥x 轴,垂足为点A 2,过点A 2作A 2A 3⊥l ,垂足为点A 3,…,这样依次下去,得到一组线段:AA 1,A 1A 2,A 2A 3,…,则线段A 2016A 2107的长为( )A .20153()2B .20163()2C .20173()2D .20183()2 (七)一次函数与几何的综合问题例8如图,已知一次函数443y x =-+的图象是直线l ,设直线l 分别与y 轴、x 轴交于点A 、B . (1)求线段AB 的长度;(2)设点M 在射线AB 上,将点M 绕点A 按逆时针方向旋转90°到点N ,以点N 为圆心,NA 的长为半径作⊙N .①当⊙N 与x 轴相切时,求点M 的坐标;②在①的条件下,设直线AN 与x 轴交于点C ,与⊙N 的另一个交点为D ,连接MD 交x 轴于点E ,直线m 过点N 分别与y 轴、直线l 交于点P 、Q ,当△APQ 与△CDE 相似时,求点P 的坐标.三讲方法——方法点睛(一)解决有关函数的问题主要要结合图象进行(1)正比例函数图象上点的纵坐标y与横坐标x之比,是固定不变的,等于常量k.图象在横轴上方的部分都有y>0;在横轴下方的部分都有y<0;与横轴的交点都有y=0.(2)直线y=kx+b(k≠0)与直线y=kx平行,是由直线y=kx平移不|b|个单位得到的,平移的方向,当b>0时,向上;当b<0时,向下.(3)对于一次函数的一次项系数k,当k>0时,y随x的增大而增大,从左向右看,直线呈上升趋势,当k<0时,y随x的增大而减小,从左向右看,直线呈下降趋势.(二)运用待定系数法时,常用的方法是:按所求的函数类型,设也解析式;把题目中提供的坐标代入所设解析式中;解这个方程或者方程组;解这个方程或方程组,得到待定系数的值;将求出的结果代入所设的解析式中,得到函数解析式.通常,有几个待定系数,就要列几个方程,也就需要几个点的坐标.(三)解决两个函数图象在同一坐标系中表示的时候,要注意相同字母的取值是一样的,解选择题时,通常用排除法.四练实题——随堂小练1.已知点A在函数11yx=-(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对B.只有1对C.只有2对D.有2对或3对2.当12≤X≤2时,函数y=2x+b的图象上到少有一个点在函数1yx=的图象下方,则b的取值范围为()A.b≥22B.b<92C.b<3D.22<b<923.若关于x的一元二次方程有两个不相等的实数根,则一次函数的大致图象可能是A. B.C. D.4.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是.(写出所有正确说法的序号)①当x=1.7时,[x]+(x)+[x)=6;②当x=﹣2.1时,[x]+(x)+[x)=﹣7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.5.如图,一次函数的图象与x轴、y轴分别相交于点A,B,将沿直线AB翻折,得,则点C的坐标为________.6.正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A n的坐标是.7.如图,在平面直角坐标系中,直线l:33y x=与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.8.如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是;(2)设点P为线段OB的中点,连结P A,PC,若∠CP A=∠ABO,则m的值是.9.如图,一次函数364y x=+的图象交x轴于点A、交y轴于点B,∠ABO的平分线交x轴于点C,过点C作直线CD⊥AB,垂足为点D,交y轴于点E.(1)求直线CE的解析式;(2)在线段AB上有一动点P(不与点A,B重合),过点P分别作PM⊥x轴,PN⊥y轴,垂足为点M、N,是否存在点P,使线段MN的长最小?若存在,请直接写出点P的坐标;若不存在,请说明理由.五练原创——预测提升1.已知函数y=ax+b 经过(2,4),(1,﹣1),则a ﹣b=( )A .1B .﹣5C .5D .112.如图,函数y=x 和y=ax+3的图象相交于点A (m ,4),则不等式x≥ax+3的解集为( )A .x≥4B .x≤4C .x≤2D .x≥23. 已知直线l 1:y =﹣3x +b 与直线l 2:y =﹣kx +1在同一坐标系中的图象交于点(1,﹣2),那么方程组31x y b kx y +=⎧⎨+=⎩的解是( ) A .12x y =⎧⎨=-⎩ B .12x y =⎧⎨=⎩C .12x y =-⎧⎨=-⎩D .12x y =-⎧⎨=⎩ 4.如图,已知直线l :y =2x ,分别过x 轴上的点A 1(1,0)、A 2(2,0)、…、A n (n ,0),作垂直于x 轴的直线交l 于点B 1、B 2、…、B n ,将△OA 1B 1,四边形A 1A 2B 2B 1、…、四边形A n ﹣1A n B n B n ﹣1的面积依次记为S 1、S 2、…、S n ,则S n =( )A .n 2B .2n +1C .2nD .2n ﹣15. 如图所示,已知点C (1,0),直线y =﹣x +7与两坐标轴分别交于A ,B 两点,D ,E 分别是AB ,OA 上的动点,则△CDE 周长的最小值是 .6. 如图,点A 的坐标为(﹣4,0),直线3y x n =+与坐标轴交于点B 、C ,连接AC ,如果∠ACD =90°,则n 的值为 .7. 直线y =kx +b 与抛物线214y x =交于A (1x ,1y )、B (2x ,2y )两点,当 OA ⊥OB 时,直线AB 恒过一个定点,该定点坐标为 .8.在平面直角坐标系xOy 中,直线()y kx 4k 0=+≠与y 轴交于点A.(1)如图,直线y 2x 1=-+与直线()y kx 4k 0=+≠交于点B ,与y 轴交于点C ,点B 横坐标为1-.①求点B 的坐标及k 的值;②直线y 2x 1=-+与直线y kx 4=+与y 轴所围成的△ABC 的面积等于 ;(2)直线()y kx 4k 0=+≠与x 轴交于点E (0x ,0),若02<x <1--,求k 的取值范围.9. 已知点P (0x ,0y )和直线y =k x +b ,则点P 到直线y =kx +b 的距离证明可用公式d 0021kx y b k -++计算.例如:求点P (﹣1,2)到直线y =3x +7的距离.解:因为直线y =3x +7,其中k =3,b =7.所以点P (﹣1,2)到直线y =3x +7的距离为:d =0021kx y b k -++=23(1)271k ⨯--++=210=105. 根据以上材料,解答下列问题:(1)求点P (1,﹣1)到直线y =x ﹣1的距离; (2)已知⊙Q 的圆心Q 坐标为(0,5),半径r 为2,判断⊙Q 与直线39y x =+的位置关系并说明理由; (3)已知直线y =﹣2x +4与y =﹣2x ﹣6平行,求这两条直线之间的距离.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009中考数学辅导之—一次函数的图象和性质

一次函数是本章中最重要的一个单元,在课本中,讲叙本部分内容的篇幅虽然不长,但利用它的概念、性质解决的题目却不少,而且有些题目还较难,并且从这部分内容开始,我们将学习利用代数的方法去解决几何问题,这是同学们过去从未涉及到的方法,所以不管从解题思路、解题方法上还是从所学知识的综合应用上的要求都有较大幅度的提高,可能会使同学们感到有时无从下手,“很难学”是同学们普遍的反映。在本讲中,我们将要补充一些必要的知识,讲解几个例题,以便使同学们体会解题思路和解题方法,从而达到较好的掌握本部分知识的目的。 一、学习要求: 1.理解一次函数和正比例函数的概念。 2.会画正比例函数及一次函数的图象。 3.理解并掌握正比例函数和一次函数的性质。 4.会利用待定系数法确定正比例及一次函数的解析式。 5.会解关于一次函数的较难的题目。 二、知识要点: 1.正比例函数和一次函数是分别用)0(kkxy和)0(kbkxy来定义的,其中x是自变量,y是自变量的函数,k是自变量的系数,是常数,这两种函数解析式都是方程,而且它的图象上的点的坐标都是对应方程的解,因此,一次函数与一次方程有密不可分的关系。 2.课本中,用具体的函数利用描点法得出正比例函数)0(kkxy和一次函

数)0(kbkxy的图象都是一条直线,既然是一条直线,我们只要描出两点即可确定该直线。因为正比例函数是过原点的直线,当然坐标原点是所描的两点中的一个,另外一个是1x时y=k就是点),1(k,所以正比例函数的图像是过(0,0)、(1,k)两点的直线。而一次函数与两条坐标轴各有一个交点(注意:与x轴、y轴交点的坐标是极其重要的),那么“两点确定一条直线”中的两点就可以取这两个交点,由于一次函数与x轴的交点必在x轴上,而在x轴上的点的特点是纵坐标为0,即:在一次函数)0(kbkxy中,当y=0时可得kx+b=0,解

此方程得x=-kb,从而得出一次函数)0(kbkxy与x轴交于(-kb,0)点;同理,由一次函数)0(kbkxy与y轴交点的横坐标为0可以得出:它与y轴的交点为(0,b);因此一次函数)0(kbkxy的图象是过它与x轴的交点

(-kb,0)和它与y轴的交点(0,b)两点的直线。(实践证明,很多同学不会求直线与轴的交点坐标,这是不会解一些一次函数题目的直接原因)。例如描述52xy的图象:令50yx得,令25,0xy得,所以52xy的图像是过

y轴上的(0,-5)和x轴上的(25,0)两点的直线。 x )0,25(B A(0,5)

3.bkxy的图象的性质中xyk随,0的增大而增大,xyk随,0的增大而减少,此性质反映在图象上是0k时图象自左而右是“上升”的,如

反之,图象自左而右是上升的,则0k;0k图象自左而右是“下降”的,如 。由于bkxy与),0(,0),0(bbby轴交于在y轴的正半轴上,直线与 y轴交于正半轴,),0(,0bb在y轴的负半轴,bkxy与y轴交于负半轴。 y ①bkxybk0,0的图象在一、二、三象限 0 x

y ②bkxybk0,0的图象在一、三、四象限 0 x

y ③0,0by图象在一、二、四象限 0 x

y ④0,0by图象在二、三、四象限 0 x

4.如果在x轴上有两个点)0,()0,(21xBxA和,则A、B两点的距离是| x2—x1|,如(-1,0)和(3,0)两点的距离就是|3-(-1)|=4,在y轴上有两点A(0,y1)和B(0,y 2),则A、B两点的距离是|y2-y1|,如(0,2)和(0,-5)的距离是|-5-2|=7。

5.两条直线bxkybxky22111和的交点坐标是方程组 222111bxkybxky的

解.如y=x-2和y=-3x+1的交点坐标就是方程组 132xyxy的解 4543yx即交点坐标是(45,43)。 6.利用待定系数法确定正比例函数和一次函数的解析式,一般步骤是: ①先设出函数的一般形式,如求正比例函数解析式时,先设kxy,求一次函数的解析式时,先设bkxy。 ②将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组。 ③解方程或方程组,求出待定系数的值,进而写出函数解析式。 (注意:求正比例函数,只要一对yx,的值就可以,因为它只有一个待定系数;而求一次函数bkxy则需要两组yx,的值。) 三、例题: 例1:已知xy与3成正比例,且72yx时 (1)求xy与间的函数解析式. (2)求当的值时yx,3. (3)求当xy,3时的值. 解:(1)∵xy与3成正比例 ∴)0(3kkxy 把7,2yx代入上式得k=2 ∴3223xyxy即 注意: [1]因为xy与3成正比例,把3y看成一个变量 [2]xy与3成正比例,设kxy3. (2)当9332,3yx时. (3)当3,332,3xxy时. 例2:已知一次函数的图象经过(1,1)和(-1,-5) 求(1)此函数解析式. (2)求此函数与yx,轴轴的交点坐标及它的图象与两坐标轴围成的三角形面积. (3)设另一条相干直线与此一次函数图象交于(-1,m)点,且与y轴交点的纵坐标是4,求这条直线的解析式. 解:(1)设一次函数的解析式是bkxy

将1,1yx和5,1yx代入得 51bkbk

解得 23bk ∴此一次函数解析式为23xy (2)对23xy,令2,0yx则图象与轴交于yA(0,-2)令

320xy得,则此函数与x轴交于B(0,32). y

图象与两坐标轴围成的三角形面积 O B(0,32) x 是SΔAOB,其底长|32|个单位,高|-2|=2 A(0,-2) 个单位. ∴SΔAOB=3232221 (3)由于(-1,m)即在23xy图象上,又在所求的另一条直线上,所以(-1,m)满足y=3x-2,将x=-1,y=m,代入y=3x-2得m=-5,所以两直线交于(-1,-5),说明第二条直线也经过(-1,-5)且还经过(0,4).

设另一条直线为y1=k1x+b,将x=-1,y=-5.x=0,y=4代入得 45bbk ∴ 49bk ∴第二条直线的解析式是y=9x+4. 例3:一次函数y=2x+3的图象与y轴交于A,另一个次函数图象与y轴交于B,两条直线交于C,C点的纵坐标是1,且SΔABC=16,求另一条直线的解析式. 解:∵y=2x-3与y轴交于A(0,-3) 设另一条直线的解析式是y=kx+b,则它与y轴交于B(0,b) ∵两直线交于C,C的纵坐标是1,设C(x,1) y y=2x-3 ∴C在y=2x-3上 ∴将y=1代入y=2x-3中得x=2 B(0,b) ∴C的坐标是(2,1) 画草图分析 C(2,1) 则ΔABC的底AB=|b-(-3)|=|b+3| x 高是C点的横坐标|2|=2 A(0,-3)

由题意得162|3|21b y=kx+b |b+3|=16 b+3=16或b=-19则函数解析式是y=kx+13或y=kx-19再将x=2,y=1代入得k=-6或k=10. ∴所求函数解析式为y=-6x+13或y=10x -19 (注意:画草图分析是非常必要的.否则此题的解题思路不会清楚). 四、练习题: (1)填空题: 1.函数bxy2的图象经过点(1,-3),则b=____,它的图象经过第____象限,y随x的增大而____. 2.函数4mxy的图象经过点(-2,6),则它的图象经过第____象限,它的图象 象与x交于____,与y轴的交点坐标是____,它的图象与坐标轴围成的三角形面积是____. 3.若一次函数)3(2mmmxy图象过原点,则m____.若图象与y轴交于点(0,4),则m=____. 4.一次函数bxy2的图象与坐标轴围成的三角形的面积是9,则b=____. 5.已知一次函数bkxy的图象与x轴交点A(a,0)和B(0,b),且a,b是方程01892xx.则该函数的解析式是____. 6.已知:直线42xy与直线3xy,它们的交点C的坐标是____,设两直线与x轴分别交于A,B,则SΔABC=____,设两直线与y轴交于P,Q,则SΔPCQ=____ 7.一次函数411xky与正比例函数xky22的图象都经过(2,-1),则这两个函数的图象与x轴围成的三角形面积是____. (2)选择题: 1.若一次函数bkxy的图象经过一、二、三象限,则bk,应满足的条件是: A.0,0bk B.0,0bk C.0,0bk D.0,0bk

2.已知:)2()2(122mxmymm是正比例函数,则m的值是: A.m=1 B. m=-2 C. m=1或m=-2 D. m0 3.函数42xy,如果22y,则x的相应的取值范围:

相关文档
最新文档