紫外分光光度法发展历史
仪器分析课件 第3章 紫外分光光度法

检流计、数字显示、微机进行仪器自动控制
和结果处理
记录装置
二、分光光度计的类型
(一)单光束分光光度计
光源 单色器
参比 样品
检测器
显示器
• 只有一条光路,通过变换参比池和样品池的位 置,使它们分别置于光路来进行测定
国产751型、752型、721型、722型、UV-1100 型、英国SP-500型
E2a ca E2b
(3) 图计算法----两组分吸收光谱完全重叠--混合样品测定 (3)图中,a,b 吸收光谱双向重迭,互相干扰,在最大波长处互相
吸收。处理方法如下:
解线性方程组 过程:
(三)示差分光光度法(示差法)
普通分光光度法一般只适于测定微量组分,当待测组分含量 较高时,将产生较大的误差。需采用示差法。
第三节 紫外-可见分光光度计
依据朗伯-比尔定律,测定待测液吸光度A的仪器。(选择不同波
长单色光λ、浓度) 分光光度计外观 分光光度原理图:
0.575
光源
单色器
吸收池
检测器 信号处理及显示
信号处理 显示器
单色器
分光光度计外观
吸收池 检测器
光源
721型可见分光光度计
一、主要部件
1. 光源 在整个紫外光区或可见光谱区可以发射连续光
浓度C及液层厚度L的乘积成正比。
注意! 适用范围
①入射光为单色光,适用于可见、红外、紫外光。 ②均匀、无散射溶液、固体、气体。 ③吸光度A具有加和性。Aa+b+c= Aa &光系数
A=k c L
k = A /c L
1、摩尔吸光系数或Em: 在一定λ下,c=1mol/L,L=1cm时的吸光度。单位:L/(mol.cm)
紫外分光光度计PPT课件

紫外分光光度计的定义
描述紫外分光光度计的基本原理和结 构组成。
简要介绍紫外分光光度计的发展历程 和应用领域。
解释紫外分光光度计在光谱分析中的 重要地位和作用。
02
紫外分光光度计的原理
吸收光谱的基本概念
01
02
03
吸收光谱
物质与辐射能相互作用时, 物质对不同波长的光吸收 程度的特性曲线。
吸收光谱的产生
土壤和固体废弃物分析
通过测量土壤和固体废弃物中有机污染物的紫外 光谱,可以评估其对环境和生态的影响。
05
结论
紫外分光光度计的重要性和应用前景
重要性
紫外分光光度计是一种用于测量物质对紫外线的吸收或发射的仪器,广泛应用于化学、生物学、医学等领域。它 能够提供定性和定量的分析结果,对于物质成分的鉴定、含量测定以及化学反应的动力学研究等方面具有重要作 用。
物质中的电子在不同能级 间跃迁时,会吸收特定波 长的光,形成吸收光谱。
吸收光谱的形状
由电子跃迁的类型、能级 差以及物质的组成和结构 决定。
紫外吸收光谱的产生
紫外吸收光谱
物质在紫外波段产生的 吸收光谱。
电子跃迁
分子中的电子在不同能 级间跃迁,产生紫外吸
收光谱。
跃迁类型
伸缩振动跃迁、弯曲振 动跃迁、电子跃迁等。
THANKS
紫外分光光度计ppt 课件
目 录
• 引言 • 紫外分光光度计的原理 • 紫外分光光度计的种类和用途 • 紫外分光光度计的应用实例 • 结论
01
引言
目的和背景
介绍紫外分光光度计 在科学研究中的应用 和重要性。
强调本课件对于了解 和使用紫外分光光度 计的重要意义。
分析当前紫外分光光 度计市场和技术发展 趋势。
紫外-可见分光光度法的基本原理(一)

紫外-可见分光光度法是一种常用的分析化学方法,它利用物质对紫外光和可见光的吸收来确定物质的浓度。
本文将介绍紫外-可见分光光度法的基本原理,包括仪器的构成、光谱的特点以及测定原理等方面。
1. 仪器的构成紫外-可见分光光度法的仪器主要由光源、进样系统、分光器、检测器和数据处理系统五个部分组成。
其中光源通常采用汞灯、钨灯或氘灯,进样系统包括进样池和进样装置,分光器可分为单道光栅和双道光栅,检测器可采用光电倍增管或光电二极管,数据处理系统包括计算机和相关的数据处理软件。
2. 光谱的特点紫外-可见分光光度法所使用的光源通常在紫外至可见光范围内,因此能够观测到物质在这一范围内的吸收光谱。
吸收光谱通常表现为在特定波长范围内的吸收峰或吸收带,其位置和强度可反映物质的化学性质和浓度。
通过测定样品和对照液的吸光度差值,可以确定样品中所含物质的浓度。
3. 测定原理在紫外-可见分光光度法中,测定原理主要包括比较法和标准曲线法两种。
比较法是通过测定待测溶液与对照液的吸光度差值来确定物质的浓度,而标准曲线法则是通过构建标准曲线,利用标准溶液的吸光度与浓度的关系来确定待测溶液的浓度。
两种方法均需要在特定波长下进行测定,并且要对光谱仪进行基准校准和零点校准。
4. 应用范围紫外-可见分光光度法在分析化学领域有着广泛的应用,可以用于测定各种有机和无机物质的浓度,如药物、生物分子、环境污染物等。
其灵敏度高、操作简便、准确性好,因此被广泛应用于医药、环保、化工等领域。
5. 结语紫外-可见分光光度法作为一种常用的分析化学方法,具有许多优点,但也存在一些局限性,如对样品的要求较高、需要标准曲线等。
因此在实际应用中需要根据具体情况选择合适的方法,并结合其他分析方法进行综合分析,以获得更准确的结果。
通过以上介绍,相信读者对紫外-可见分光光度法的基本原理有了一定的了解,希望能对相关领域的研究和应用提供一定的参考和帮助。
6. 光源的选择与影响在紫外-可见分光光度法中,光源的选择对测定结果有着重要的影响。
紫外可见分光光度法简介

紫外-可见分光光度法简介紫外-可见分光光度法(ultraviolet-visible spectrophotometry, UV-VIS),它是利用物质的分子或离子对某一波长范围的光的吸收作用,对物质进行定性分析、定量分析及结构分析, 所依据的光谱是分子或离子吸收入射光中特定波长的光而产生的吸收光谱。
按所吸收光的波长区域不同,分为紫外分光光度法和可见分光光度法,合称为紫外-可见分光光度法。
紫外--可见分光光度法:是根据物质分子对波长为200-760nm这一范围的电磁波的吸收特性所建立起来的一种定性、定量和结构分析方法。
操作简单、准确度高、重现性好。
波长长(频率小)的光线能量小,波长短(频率大)的光线能量大。
分光光度测量是关于物质分子对不同波长和特定波长处的辐射吸收程度的测量。
吸收光谱描述物质分子对辐射吸收的程度随波长而变的函数关系曲线,称为吸收光谱或吸收曲线。
紫外-可见吸收光谱通常由一个或几个宽吸收谱带组成。
最大吸收波长(λmax)表示物质对辐射的特征吸收或选择吸收,它与分子中外层电子或价电子的结构(或成键、非键和反键电子)有关。
朗伯-比尔定律是分光光度法和比色法的基础。
这个定律表示:当一束具有I0强度的单色辐射照射到吸收层厚度为b,浓度为c的吸光物质时,辐射能的吸收依赖于该物质的浓度与吸收层的厚度。
其数学表达式为:式中的A 叫做吸光度;I0为入射辐射强度;I为透过吸收层的辐射强度;(I/I0)称紫藤为透射率T;ε是一个常数,叫做摩尔吸光系数,ε值愈大,分光光度法测定的灵敏度愈高。
紫外-可见分光光度计有稳定的、有足够输出功率的、能提供仪器使用波段的连续光谱,如钨灯、卤钨灯(波长范围350~2500纳米),氘灯或氢灯(180~460纳米),或可调谐染料激光光源等。
②单色器[1]。
它由入射、出射狭缝、透镜系统和色散元件(棱镜或光栅)组成,是用以产生高纯度单色光束的装置,其功能包括将光源产生的复合光分解为单色光和分出所需的单色光束。
第十章 紫外可见分光光度法

如果用△ E电子,△ E振动以及△E转动表示各能级 差,则:
E电 E振 E转
能级差 E h h c
由分子中的电子能级、振动能级和转动能级跃迁产 生的光谱称分子吸收光谱。
2.分子吸收光谱的分类: 分子内运动涉及电子能级、振动能级和转动
能级三种跃迁能级,
E电 E振 E转
对应的波谱区范围如下:
吸收曲线与最大吸收波长 max
①同一种物质对不同波长光的吸光度 不同。如KMnO4在400nm吸收少, 在525nm吸收最大,吸光度最大处 对应的波长称为最大吸收波长λmax ②不同浓度的同一种物质,其吸收曲 线形状相似,λmax不变。而对于不同 物质,它们的吸收曲线形状和λmax 则不同。 ③吸收曲线可以提供物质的结构信息,
电子的基团。 例: C=C;C=O;C=N;—N=N— 注:当出现几个生色团共轭,则几个生色团所产生的
吸收带将消失,代之出现新的共轭吸收带,其波 长将比单个生色团的吸收波长长,强度也增强。
下面为某些常见生色团的吸收光谱
生色团 烯 炔 羧基 酰胺基 羰基 偶氮基 硝基 亚硝基 硝酸酯
溶剂 正庚烷 正庚烷 乙醇 水 正己烷 乙醇 异辛酯 乙醚
称最小吸收波长(λmin) 。
3.肩峰:在一个吸收峰旁边 产生的一个曲折。 4.末端吸收:只在图谱短波 呈现强吸收而不成峰形的
部分。
5. 生色团
所谓生色团,是指有机化合物分子结构中含有p -
p*和n-p*中跃迁的基团,即能在紫外-可见光范围内产 生吸收的原子团。 对有机化合物:主要为具有不饱和键和未成对
概述
一、紫外-可见分光光度法:是研究物质在紫外可见光区(200 ~ 800 nm)分子吸收光谱的分析方 法。
可见光区 400~760nm;紫外光区200~400nm。 二.紫外—可见分光光度法的特点 (1)灵敏度较高:灵敏度可达10-5~10-7g/mL (2)选择性较好:多组分共存溶液中,无需化学
第二章 紫外-可见分光光度法

外,还有部分因散射而损失,使透光度减小,
A实。所以往往发生正偏离。 • 化学因素引起的偏离 吸光物质常因离解、缔合而形成新化合物或 互变异构等化学变化而改变其浓度,导致了偏 离。例如 K2Cr2O7在水溶液中存在下列平衡:
2 2CrO4 Cr2O H 2O + 2 H 2 2 7 稀释或增大pH值 浓缩或减小pH值
如图所示,假设有一束强度为I0的单色平行
光,垂直通过一横面积为s的均匀介质。 当光强度为Ix的单色光通过
吸收层(db)后,光强度减弱
了dIx,则厚度为db的吸收
层对光的吸收率为-dIx/Ix,
另一方面,由于db为无限小,所以截面积上所有 吸光质点所占的面积之和(ds)与横截面积(s)之 比(ds/s)可视为该截面积上光子被吸收的几率, 即:-dIx/Ix=ds/s
降低由于单色光不纯造成负偏的方法: • 选择吸收曲线的max作入射光波长。因为吸收 曲线峰值顶部曲线较平坦,入射光谱带内各波长 的值相近。选择max,偏离光吸收定律较小。 只有当干扰物质存在并对待测物质的max产生
吸收时,才选择没干扰的其它波长作入射光波
长。
• 选择高分辨率仪器,使入射光波长范围尽可
5.传播速度c
c=· 单位:cm/s 二.微粒性 光的微粒性特征为:光由光子组成,而光子 具有能量,其能量与波长之间的关系为: E=h· =hc/ h—普朗克常数 6.626×10-34J· s 由上式可知,不同波长的光具有不同的能量, 波长愈长,光的能量愈低;反之,则愈高。
§2-2 分子光谱概述
若干个振动能级;在同一 电子能级和同一振动能级 中,因转动能量不同而分 为若干个转动能级。 若用E电、E振、E转分别表示三个能级, 则三者的关系为:E电>E振>E转。
紫外可见分光光度法综述

光。
噪声
T =( I + I s ) / ( I 0 + I s )
光子噪声:在测量低浓度低吸光率样品时, 影响精确测量两束高强度的光之间的微小差 别。
电子噪声:是固有的,与测定的光强度无关。 在高吸光度样品的信号很小时影响大
液体样品 固体样品 弱吸收 强吸收 干扰 光化学问题
称为反向光路
按构型分
单光束设计:提供高的光通量,灵敏度高; 但光源漂移产生较大误差
双光束设计:矫正漂移。斩光器以一定速度 旋转,使空白和样品的交替测量每秒进行数 次。缺点,降低了光的能量和灵敏度
分光束设计:分裂器将光分成两束,同时穿 过参比和空白,到达两个分开但一样的检测 器,可同时测定样品和空白
蛋白质的熔点测定 酶活性
3. 定几量乎分所有析金:属元素的定量分析
朗伯—比尔定律:
A = εb c (ε为摩尔吸光系数)
多组分的分析
叠加>性0原.01理m:ol/一L时种,混粒合子物相在互任影何波响长下的吸光 率 等电与混荷合分物别中改各变组.分ε在也该改波变长.下的A之和。 浓溶液浓的电不解适质用中性有类似效应. 化学偏离与仪器偏离
曾永昌,向立人,周在德编,仪器分析,四川 大学出版社,1992
G.W.尤因著,华东化工学院分析化学教研组译, 化学分析的仪器方法,1986
罗国安,邱家学,王义明编,可见紫外定量分 析及微机应用,上海科学技术文献出版社,
1988
紫外—可见分光光度法
目录
紫外可见光谱学原理和应用 仪 器 样品处理及测定 方 法 二极管分光光度计的特性
1.基本原理
电磁波谱:无线电波、红外线、宇宙 射线、x射线、紫外线、可见光
第四章紫外-可见分光光度法

(三)有机化合物的紫外、可见光谱
1. 饱和烃及其取代衍生物 σ→σ*、n→σ* 2. 不饱和烃及共轭烯烃 σ→σ*、π→π* 3. 羰基化合物 n→σ*、π→π*和n→π* 4. 苯及其衍生物 E1带、 E2带、 B带 5. 稠环和杂环
当l以cm,c以mol/L为单位时,k称为摩尔吸 光系数,用ε表示,它比a更为常用,ε的单位 为L mol-1 cm-1,即: A = ε c l
当l以cm,c以百分浓度g/100mL为单位时,k 称为比吸光系数,用A1cm1%表示 ε = 0.1 M A1cm1%
用比吸光系数的表示方法特别适用于摩尔质 量未知的化合物。
(二)配位场跃迁
1. f-f跃迁
镧系和铜系元素的离子对紫外和可见光的吸收是 基于内层f电子跃迁而产生的,其吸收光谱是由一些狭 窄的特征吸收峰组成,且这些吸收峰不易受金属离子 所处的配位环境的影响。
2. d-d跃迁
过渡金属离子的d轨道在受到配位体场的作用时 产生分裂。d电子在能级不同的d轨道间跃迁,吸收紫 外或可见光产生吸收光谱。这种光谱的吸收带比较 宽,吸收峰强烈地受配位环境的影响。
光。
3. 吸收池
功能:盛放分析试样(一般是液体)
4. 检测器 功能:检测光信号,测量单色光透过溶
液后光强度变化的一种装置。 5. 信号显示系统
6. 紫外一可见分光光度计的类型
(1) 单波长单光束分光光度计
缺点:测量结果受电源波动的影响较大, 误差较大。
(2) 单波长双光束分光光度计
一个环外双键
5nm
同环二烯 39nm 一个β烷基 12nm 三个γ+烷基 54nm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
紫外分光光度法发展历史
紫外分光光度法(UV/Visspectrophotometry)是一种被广泛应
用于科学研究和工业制造的光谱技术,它可以检测和测定微量物质的含量。
从第一台实验室级光谱仪到当今高度发达的多功能仪器,紫外分光光度法经历了漫长的发展历史。
紫外分光光度法的发展源于十九世纪后半叶的科学技术革命和
七十年代的有机合成化学的发展,最初的紫外分光光度仪是由法国科学家凡尔登于1868年发明的实验室用光谱仪。
他发明的设备能够以
光谱方式研究太阳光、宇宙射线和其他自然光源,是紫外分光光度法的前身。
1930年,美国科学家A.A。
Noyes开发了实验室用UV/Vis光谱仪,用于测量多种有机物质的紫外吸收特性,为紫外分光光度法的发展奠定了基础。
1933年,英国科学家卡罗尔加登发明了一台实验室用UV/Vis光谱仪,它的特点是可以校准吸收特性,从而使实验测量更加准确和精确。
在这设备的基础上,加登进一步研制出了能够分析多种含氧有机物质的可见光谱仪。
他的发明为紫外分光光度法提供了可靠的用于分析多种有机物质的方法,成为紫外分光光度法发展的重要基石。
在二十世纪六十年代,英国科学家开发了有机合成实验室用
UV/Vis光谱仪,用于快速测量有机物质的吸收特性,从而使紫外分
光光度法的应用更为普及。
随着当今科学技术的发展,现代的紫外分光光度仪功能更加完善,
可以在多个波段测量,具有高精度、高灵敏度和智能化的功能,可用于各种科学研究和工业制造,如药物研究、分子生物技术、农药分析等。
综上所述,从一台实验室用光谱仪到当今多功能仪器,紫外分光光度法已经经历了漫长的发展历史,并取得了辉煌的成就。
今天,紫外分光光度法被广泛应用于多种领域,是工业生产和科学研究的重要手段。