一次函数基础练习题
一次函数练习题(必做30道)

1.已知一次函数y=ax+b的图象经过点A(2,0)与B(0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y的值在-4≤y ≤4范围内,求相应的y的值在什么范围内.2.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y与x之间的函数关系式;(2)如果x的取值范围是1≤x≤4,求y的取值范围.3.一次函数的图象经过点(2,1)和(-1,-3)(1)求此一次函数表达式;(2)求此一次函数与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形的面积。
4.知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y= x的图象相交于点(2,a),求(1)a的值(2)k,b的值(3)这两个函数图象与x轴所围成的三角形面积.5.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函数的解析式.6.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),求光线从A点到B点经过的路线的长.7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?x轴,y轴,分别交于A、B 8.在直角坐标系x0y中,一次函数y=3两点,•点C坐标为(1,0),点D在x轴上,且∠BCD=∠ABD,求图象经过B、D•两点的一次函数的解析式.9.已知:如图一次函数y=12x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.10.已知直线y=43x+4与x轴、y轴的交点分别为A、B.又P、Q两点的坐标分别为P(•0,-1),Q(0,k),其中0<k<4,再以Q点为圆心,PQ长为半径作圆,则当k取何值时,⊙Q•与直线AB相切?11.(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A 地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.12.已知写文章、出版图书所获得稿费的纳税计算方法是f(x)=(800)20%(130%),400(120%)20%(130%),400x xx x--≤⎧⎨-->⎩其中f(x)表示稿费为x元应缴纳的税额.假如张三取得一笔稿费,缴纳个人所得税后,得到7104元,•问张三的这笔稿费是多少元?13.某中学预计用1500元购买甲商品x 个,乙商品y 个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.•又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元. (1)求x 、y 的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x ,y 的值.14. 已知直线1l :45y x =-+和直线2l :142y x =-,求两条直线1l 和2l 的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.15. 已知正比例函数y =kx 经过点P (1,2),如图所示.(1)求这个正比例函数的解析式;(2)将这个正比例函数的图像向右平移4个单位,写出在这个平移下,点P 、原点O 的像P '、O '的坐标,并求出平移后的直线的解析式.16. 如图,在直角坐标系中,已知矩形OABC 的两个顶点坐标(30)A ,,(32)B ,,对角线AC 所在直线为l ,求直线l 对应的函数解析式.x17. “一方有难,八方支援”.在抗击“5.12”汶川特大地震灾害中,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据右表提供的信息,解答下列问题:(1)设装运食品的车辆数为x ,装运药品的车辆数为y .求y 与x 的函数关系式; (2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆, 那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.18. 某农户种植一种经济作物,总用水量y (米3)与种植时间x (天)之间的函数关系式如图10所示.(1)第20天的总用水量为多少米3?(2)当x 20时,求y 与x 之间的函数关系式.(3)种植时间为多少天时,总用水量达到7000米3?物资种类 食品 药品 生活用品 每辆汽车运载量(吨) 6 5 4 每吨所需运费(元/吨) 120 160 100天)19. 武警战士乘一冲锋舟从A地逆流而上,前往C地营救受困群众,途经B地时,由所携带的救生艇将B地受困群众运回A地,冲锋舟继续前进,到C地接到群众后立刻返回A地,途中曾与救生艇相遇.冲锋舟和救生艇距A地的距离y(千米)和冲锋舟出发后所用时间x (分)之间的函数图象如图所示.假设营救群众的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.(1)请直接写出冲锋舟从A地到C地所用的时间.(2)求水流的速度.(3)冲锋舟将C地群众安全送到A地后,又立即去接应救生艇.已知救生艇与A地的距离y(千米)和冲锋舟出发后所用时间x(分)之间的函数关系式为11112y x=-+,假设群众上下船的时间不计,求冲锋舟在距离A地多远处与救生艇第二次相遇?20. 甲乙两人同时登西山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是每分钟米,乙在A地提速时距地面的高度b为米.(2)若乙提速后,乙的速度是甲登山速度的3倍,请分别求出甲、乙二人登山全过程中,登山时距地面的高度y(米)与登山时间x(分)之间的函数关系式.(3)登山多长时间时,乙追上了甲?此时乙距A地的高度为多少米?x(分)21. 我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按>)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系每吨b元(b a如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元?x>时,y与x之间的函数关系式;(2)求b的值,并写出当10(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?22. 我市花石镇组织10辆汽车装运完A、B、C三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:(1)设装运A x之间的函数关系式;(2)如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.23. 某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?24. 五月份,某品牌衬衣正式上市销售,5月1日的销售量为10件,5月2日的销售量为35件,以后每天的销售量比前一天多25件,直到日销售量达到最大后,销售量开始逐日下降,至此,每天的销售量比前一天少15件,直到5月31日销售量为0.设该品牌衬衣的日销售量为P(件),销售日期为n(日),P与n之间的关系如图所示.(1)写出P关于n的函数关系式P= (注明n的取值范围);(2)经研究表明,该品牌衬衣的日销售量超过150件的时间为该品牌衬衣的流行期.请问:该品牌衬衣本月在市面的流行期是多少天?(3)该品牌衬衣本月共销售了件.25. 某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过am3时,除了付同上的基本费和损耗费外,超过部分每1m3付b元的超额费.某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:根据上表的表格中的数据,求a、b、c.26.A市、B市和C市有某种机器10台、10台、8台,•现在决定把这些机器支援给D市18台,E市10.已知:从A市调运一台机器到D市、E市的运费为200元和800元;从B•市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元.(1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x(台)的函数关系式,并求W的最大值和最小值.(2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y 表示总运费W(元),并求W的最大值和最小值.27了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;(不要求写出x的取值范围);(2)小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.28.小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x (小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)•求小明出发多长时间距家12千米?29.(宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.30. 某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.根据下表提供的信息,解答数关系式.(2)如果装运每辆土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.。
八年级数学(下)第十九章《一次函数》同步练习题(含答案)

八年级数学(下)第十九章《一次函数》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数中,y 是x 的一次函数的是①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x .A .①②③B .①③④C .①②③④D .②③④ 【答案】C【解析】根据一次函数的定义,可知是一次函数的有①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x ,故选C . 2.如果23(2)2my m x -=-+是一次函数,那么m 的值是 A .2B .-2C .±2D .±1 【答案】B【解析】由题意得:22031m m -≠⎧⎨-=⎩,解得m =-2,故选B . 3.下列说法中正确的是A .一次函数是正比例函数B .正比例函数不是一次函数C .不是正比例函数就不是一次函数D .不是一次函数就不是正比例函数 【答案】D【解析】A .一次函数不一定是正比例函数,故本选项说法错误;B .正比例函数是一次函数,故本选项说法错误;C .不是正比例函数,但有可能是一次函数,故本选项说法错误;C .不是一次函数就不是正比例函数,故本选项说法正确,故选D .4.一次函数y =-2x +1的图象经过A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【答案】B【解析】在一次函数y =-2x +1中,k =-2<0,b =1>0,∴一次函数y =-2x +1的图象经过第一、二、四象限,故选B .5.把直线3y x =-+向上平移m 个单位后,与直线24y x =+的交点在第一象限,则m 的取值范围是A .1<m <7B .3<m <4C .m >1D .m <4【答案】C 【解析】直线3y x =-+向上平移m 个单位后可得:3y x m =-++,联立两直线解析式得:324y x m y x =-++⎧⎨=+⎩,解得132103m x m y -⎧=⎪⎪⎨+⎪=⎪⎩,∴交点坐标为1210()33m m -+,, ∵交点在第一象限,∴10321003m m -⎧>⎪⎪⎨+⎪>⎪⎩,解得m >1,故选C . 6.如果函数y =3x +m 的图象一定经过第二象限,那么m 的取值范围是A .m >0B .m ≥0C .m <0D .m ≤0【答案】A【解析】图象一定经过第二象限,则函数一定与y 轴的正半轴相交,因而0m >,故选A . 7.关于函数y =-x +1,下列结论正确的是A .图象必经过点(-1,1)B .y 随x 的减小而减小C .当x >1时,y <0D .图象经过第二、三、四象限 【答案】C【解析】选项A ,∵当x =-1时,y =2,∴图象不经过点(-1,1),选项A 错误;选项B ,∵k =-1<0,∴y 随x 的增大而减小,选项B 错误;选项C ,∵y 随x 的增大而减小,当x =1时,y =0,∴当x >1时,y <0,选项C 正确;选项D ,∵k =-1<0,b =1>0,∴图象经过第一、二、四象限,选项D 错误.故选C .8.一次函数y =kx +b 的图象如图所示,则k 、b 的值分别为A .k =−12,b =1B .k =-2,b=1C.k=12,b=1 D.k=2,b=1【答案】B【解析】由图象可知:过点(0,1),(12,0),代入一次函数的解析式得:112bk b=⎧⎪⎨=+⎪⎩,解得:k=−2,b=1,故选B.二、填空题:请将答案填在题中横线上.9.已知一次函数y=(m-3)x-2的图象经过一、三、四象限,则m的取值范围为__________.【答案】m>3【解析】∵y=(m-3)x-2的图象经过一、三、四象限,∴m-3>0,解得m>3.故答案为:m>3.10.点(-1,y1),(2,y2)是直线y=2x+1上的两点,则y1__________y2(填“>”或“=”或“<”).【答案】<【解析】∵k=2>0,y将随x的增大而增大,2>−1,∴y1<y2,故y1与y2的大小关系是:y1<y2,故答案为:<.11.已知一次函数的图象与直线y=12x+3平行,并且经过点(-2,-4),则这个一次函数的解析式为__________.【答案】y=12x-3【解析】∵一次函数的图象与直线y=12x+3平行,∴设一次函数的解析式为y=12x+b.∵一次函数经过点(-2,-4),∴12×(-2)+b=-4,解得b=-3,所以这个一次函数的表达式是:y=1 2x-3.故答案为:y=12x-3.12.若点M(x1,y1)在函数y=kx+b(k≠0)的图象上,当-1≤x1≤2时,-2≤y1≤1,则这条直线的函数解析式为__________.【答案】y=x-1或y=-x【解析】∵点M(x1,y1)在在直线y=kx+b上,-1≤x1≤2时,-2≤y1≤1,∴点(-1,-2)、(2,1)或(-1,1)、(2,-2)都在直线上,则有:221k bk b-+=-⎧⎨+=⎩,或122k bk b-+=⎧⎨+=-⎩,解得11kb=⎧⎨=-⎩或1kb=-⎧⎨=⎩,∴y=x-1或y=-x,故答案为:y=x-1或y=-x.三、解答题:解答应写出文字说明、证明过程或演算步骤.13.已知一次函数经过点A(3,5)和点B(-4,-9).(1)求此一次函数的解析式;(2)若点C(m,2)是该函数上一点,求C点坐标.【解析】(1)设其解析式为y=kx+b(k、b是常数,且k≠0),则5394k bk b=+⎧⎨-=-+⎩,∴k=2,b=−1.∴其解析式为y=2x-1,(2)∵点C(m,2)在y=2x-1上,∴2=2m-1,∴m=32,∴点C的坐标为(32,2).14.已知一次函数的图象经过点A(2,1),B(-1,-3).(1)求此一次函数的解析式;(2)求此一次函数的图象与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形面积.【解析】(1)根据一次函数解析式的特点,可得出方程组213 k bk b+=⎧⎨-+=-⎩,解得4353 kb⎧=⎪⎪⎨⎪=-⎪⎩,则得到y=43x-53.(2)根据一次函数的解析式y=43x-53,得到当y=0,x=54;当x=0时,y=-53.所以与x轴的交点坐标(54,0),与y轴的交点坐标(0,-53).(3)在y=43x-53中,令x=0,解得:y=-53,在y=43x-53中,令y=0,解得:x=54.因而此一次函数的图象与两坐标轴所围成的三角形面积是:15525 23424⨯⨯=.15.已知一次函数y=(4-k)x-2k2+32.(1)k为何值时,它的图象经过原点;(2)k为何值时,它的图象经过点(0,-2);(3)k为何值时,它的图象平行于直线y=-x;(4)k为何值时,y随x的增大而减小.【解析】(1)∵一次函数y=(4-k)x-2k2+32的图象经过原点,∴-2k2+32=0,解得:k=±4,∵4-k≠0,∴k=-4.(2)∵一次函数y=(4-k)x-2k2+32的图象经过(0,-2),∴-2k2+32=-2,解得:k.(3)∵一次函数y=(4-k)x-2k2+32的图象平行于直线y=-x,∴4-k=-1,∴k=5.(4)∵一次函数y=(4-k)x-2k2+32中y随x的增大而减小,∴4-k<0,∴k>4.16.已知一次函数图象经过(-4,-9)和(3,5)两点.(1)求一次函数解析式.(2)求图象和坐标轴交点坐标.并画出图象.(3)求图象和坐标轴围成三角形的面积.(4)若点(2,a)在函数图象上,求a的值.【解析】(1)设一次函数解析式为y=kx+b,把点(3,5),(-4,-9)分别代入解析式,则3549 k bk b+=⎧⎨-+=-⎩,解得21 kb=⎧⎨=-⎩,∴一次函数解析式为y=2x-1.(2)当x=0时,y=-1,当y=0时,2x-1=0,解得:x=0.5,∴与坐标轴的交点为A(0,-1)、B(0.5,0),图象如图,(3)S△AOB1122=⨯⨯|-1|=0.25.(4)∵点(2,a)在图象上,∴a=2×2-1=3,∴a=3.。
一次函数的图像与性质基础练习

一.选择题(共10小题)1.一次函数y1=ax+b与y2=bx+a在同一直角坐标系中的图象可能式()A.B.C.D.2.如图,同一直角坐标系中,能表示一次函数y=x+kb和y=kx+b(k、b为常数,且k≠0)的图象是()A.B.C.D.3.若k>0,b>0,则函数y=kx+b的图象大致是()A.B.C.D.4.直线y1=mx+n2+1和y2=﹣mx﹣n的图象可能是()A.B.C.D.5.在同一直角坐标系中,一次函数y=kx+b与y=bx+k(b≠k)的图象可能是()A.B.C.D.6.将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系中,则下列图象中正确的是()A.B.C.D.7.在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是()A.B.C.D.8.直线l1:y=kx﹣b和l2:y=﹣2kx+b在同一直角坐标系中的图象可能是()A.B.C.D.9.若实数a、c满足a+c=0且a>c,则关于x的一次函数y=cx﹣a的图象可能是()A.B.C.D.10.若式子+(k﹣2)0有意义,则一次函数y=(k﹣2)x+2﹣k的图象可能是()A.B.C.D.二.解答题(共10小题)11.如图,已知直线y=kx+b经过点B(1,4),与x轴交于点A(5,0),与直线y=2x﹣4交于点C(3,m).(1)求直线AB的函数表达式及m的值;(2)根据函数图象,直接写出关于x的不等式组2<kx+b<4的解集:;(3)现有一点P在直线AB上,过点P作PQ∥y轴交直线y=2x﹣4于点Q,若点C到线段PQ的距离为1,求点P的坐标和点Q的坐标.12.如图,在平面直角坐标系中,一次函数y1=﹣2x+10的图象与x轴交于点A,与一次函数y2=x+2的图象交于点B.(1)求点B的坐标;(2)结合图象,当y1>y2时,请直接写出x的取值范围;(3)C为x轴上点A右侧一个动点,过点C作y轴的平行线,与一次函数y1=﹣2x+10的图象交于点D,与一次函数y2=x+2的图象交于点E.当CE=3CD时,求DE的长.13.如图,直线l1:y=2x﹣4与x轴交于点A,与y轴交于点B,直线l2与x轴交于点D,与y轴交于点C,BC=6,OD=3OC.(1)求直线CD的解析式;(2)点Q为直线AB上一动点,若有S△QCD=2S△OCD,请求出Q点坐标;(3)点M为直线AB上一动点,点N为直线x轴上一动点,是否存在以点M,N,C为顶点且以MN为直角边的三角形是等腰直角三角形,若存在,请直接写出点M的坐标,并写出其中一个点M求解过程,若不存在,请说明理由.14.如图,在平面直角坐标系中,直线l经过点A(0,2)、B(﹣3,0).(1)求直线l所对应的函数表达式.(2)若点M(3,m)在直线l上,求m的值.(3)若y=﹣x+n过点B,交y轴于点C,求△ABC的面积.15.如图,已知点A(3,0),B(0,2).(1)求直线AB所对应的函数解析式;(2)若C为直线AB上一点,当△OBC的面积为6时,求点C的坐标.16.如图,直线经过点A(1,6)和点B(﹣3,﹣2).(1)求直线a的函数表达式;(2)求△ABO的面积.17.如图,在平面直角坐标系xOy中,点A在y轴的正半轴上,点B在x轴的正半轴上,OA=OB=10.(1)求直线AB的解析式;(2)若点P是直线AB上的一点,且P的横坐标为4,C(6,0),求△OPC的面积.18.如图,在直角坐标系中,直线AB过点A(0,3)和B(6,﹣3),且与x轴相交于点C.(1)求直线AB所对应的函数表达式;(2)求△OAC的面积.19.如图,过点A(4,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=2.(1)求点B的坐标;(2)若△ABC的面积为20,求直线l2的解析式.20.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求一次函数的解析式;(2)求点C和点D的坐标;(3)求△AOB的面积.。
一次函数的应用练习题及答案

一次函数的应用练习题及答案一次函数是数学中一个非常基础且常见的函数类型,其形式为 y = ax + b。
在现实生活中,我们经常会遇到一次函数的应用场景。
本文将提供一些基于一次函数的应用练习题,并附带答案,希望能够帮助读者更好地理解一次函数的概念和应用。
练习题1:某公司的年工资总额与员工人数之间存在一次函数关系。
已知当公司的员工人数为100人时,年工资总额为500万元;当员工人数为200人时,年工资总额为800万元。
求该公司年工资总额与员工人数的一次函数表达式,并根据该函数回答以下问题:a) 当员工人数为300人时,年工资总额是多少?b) 当员工人数为0人时,年工资总额是多少?解答:设年工资总额为 y,员工人数为 x。
根据题意,我们可以列出两个方程:100a + b = 500200a + b = 800通过解这个方程组,我们可以得到 a 的值为 1.5,b 的值为 350。
因此,该公司的年工资总额与员工人数的一次函数表达式为 y = 1.5x + 350。
a) 当员工人数为 300 人时,将 x = 300 代入函数表达式中,可得年工资总额为 1.5 * 300 + 350 = 850 万元。
b) 当员工人数为 0 人时,将 x = 0 代入函数表达式中,可得年工资总额为 1.5 * 0 + 350 = 350 万元。
练习题2:某手机品牌的某款手机的售价与销量之间存在一次函数关系。
已知当该手机的销量为3000部时,售价为2000元/部;当销量为5000部时,售价为1500元/部。
求该手机的售价与销量的一次函数表达式,并根据该函数回答以下问题:a) 当销量为4000部时,售价是多少?b) 当销量为0部时,售价是多少?解答:设售价为 y,销量为 x。
根据题意,我们可以列出两个方程:3000a + b = 20005000a + b = 1500通过解这个方程组,我们可以得到 a 的值为 -0.1,b 的值为 500。
一次函数练习题(大题30道)

一次函数练习题(大题30道)1.已知一次函数y=ax+b的图象经过点A(2,k)与B(m,4)。
1) 求一次函数的解析式,并在直角坐标系画出这个函数的图象;2) 如果(1)中所求的函数y的值在-4≤y≤4围,求相应的x的取值范围。
2.已知y=p+kx,这里p是一个常数,k与x成正比例,且x=2时,y=1;x=3时,y=-1.1) 写出y与x之间的函数关系式;2) 如果x的取值范围是1≤x≤4,求y的取值范围。
3.一次函数的图象经过点(2,1)和(-1,-3)。
1) 求此一次函数表达式;2) 求此一次函数与x轴、y轴的交点坐标;3) 求此一次函数的图象与两坐标轴所围成的三角形的面积。
4.已知一次函数y=kx+b的图象经过点(-1.-5),且与正比例函数y=x的图象相交于点(2,a)。
1) 求a的值;2) 求k和b的值;3) 求这两个函数图象与x轴所围成的三角形面积。
5.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B在第三象限,它的横坐标为-2,△AOB 的面积为6平方单位。
求正比例函数和一次函数的解析式。
6.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),求光线从A点到B点经过的路线的长度。
7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?8.直角坐标系xOy中,一次函数y=2x+2的图象与x轴、y 轴,分别交于A、B两点,点C坐标为(1,0),点D在x轴上,且∠BCD=∠ABD,求图象经过B、D两点的一次函数的解析式。
9.已知:如图一次函数y=(1/2)x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标。
10.已知直线y=(4/3)x+4与x轴、y轴的交点分别为A、B。
又P、Q两点的坐标分别为P(0,-1),Q(k,m),其中0<k<4,再以Q点为圆心,PQ长为半径作圆,则当k取何值时,圆与直线AB相切?11.某租赁公司共有50台联合收割机,其中甲型20台,乙型30台。
一次函数练习题(带答案)

1. 若一次函数y=kx+b 的图象经过(0,1)和(-1,3)两点,则此函数的解析式为_____________.
2. 若正比例函数y=kx 的图象经过点(1,2),则此函数的解析式为_____________.
3、一次函数的图象与y 轴的交点为(0,-3),且与坐标轴围成的三角形的面积为6,求这个一次函数的解析式.
4.已知一次函数图象经过(-4,15),(6, -5)的两点,求其解析式。
5.已知点A (1,-1),B (3, 4)在x 轴上找一点P ,PA+PB 最短,求P 点的坐标。
6.直线1-=ax y
向上平移3个单位时过点(-1,-1),求该函数解析式。
7.已知直线62+-=x y 上点A 的横坐标为2,直线b kx y +=经过点A 且与x 轴交于点B (0,2
1),求k 、b 的值。
8. 已知正比例函数x k y 1=的图象与一次函数92-=x k y 的图象交于P(3,-6)。
求k 1 , k 2的值;(2)如果一次函数92-=x k y 与x 轴交于点A ,求点A 的坐标。
(1)y 与x 成正比例函数,当 时,y=5.求这个正比例函数的解析式.
(2)已知一次函数的图象经过A (-1,2)和B (3,-5)两点,求此一次函数的解析式.
9. 拖拉机开始工作时,油箱中有油20升,如果每小时耗油5升,求油箱中的剩余油量Q (升)与工作时间t (时)之间的函数关系式,指出自变量x 的取值范围,并且画出图象.
分析:拖拉机一小时耗油5升,t 小时耗油5t 升,以20升减去5t 升就是余下的油量.
10. 已知一次函数的图象经过点P (-2,0),且与两坐标轴截得的三角形面积为3,求此一次函数的解析式.。
一次函数练习题及答案

一次函数练习题及答案一、选择题(每题2分,共10分)1. 一次函数y=kx+b的斜率k表示什么?A. 函数的截距B. 函数的增长速度C. 函数的对称轴D. 函数的顶点2. 下列哪个选项不是一次函数?A. y = 3x + 5B. y = x^2 + 1C. y = -2x - 3D. y = 53. 一次函数y=kx+b中,当k>0时,函数的图像在坐标平面内如何变化?A. 从左下角向右上角延伸B. 从左上角向右下角延伸C. 从右上角向左下角延伸D. 从左上角向右上角延伸4. 已知一次函数y=2x-4,当x=3时,y的值是多少?A. 2B. -2C. 0D. 55. 如果一次函数y=kx+b的图像经过点(1,1)和(2,4),那么k和b的值分别是多少?A. k=3, b=-2B. k=2, b=-1C. k=1, b=2D. k=4, b=-3二、填空题(每题2分,共10分)6. 一次函数y=kx+b的图像是一条______。
7. 当k<0时,一次函数y=kx+b的图像会经过第______象限。
8. 一次函数y=kx+b中,如果b>0,则函数的图像与y轴的交点在y轴的______半轴。
9. 已知一次函数y=kx+b的图像经过点(-1,5),且与x轴相交于点(3,0),则k=______。
10. 一次函数y=kx+b的图像与x轴相交于点(x,0),则x=______。
三、解答题(每题5分,共20分)11. 已知一次函数y=kx+b的图像经过点(2,-3)和(-1,6),请求出k和b的值。
12. 一次函数y=kx+b的图像与x轴相交于点(a,0),与y轴相交于点(0,b),若a=4,b=-1,请写出该一次函数的解析式。
13. 已知一次函数y=kx+b的图像经过点(0,5)和(1,10),求出该一次函数的解析式,并判断其增减性。
14. 一次函数y=kx+b的图像与反比例函数y=1/x的图像在第一象限相交于点(2,m),求m的值。
一次函数专题练习题含答案

一次函数专题练习题含答案一次函数知识点专题练题一、相信你一定能填对!(每小题3分,共30分)1.下列函数中,自变量x的取值范围是x≥2的是()A.y=2-x。
B.y=1/x。
C.y=4-x^2.D.y=x+2/(x-2)答案:D5.若函数y=(2m+1)x^2+(1-2m)x(m为常数)是正比例函数,则m的值为()A.m>1/2.B.m=1/2.C.0<m<1/2.D.m<0答案:D11.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,该函数的解析式为_______答案:m=1,y=x+1二、相信你也能找到正确答案!(每小题6分,共36分)2.下面哪个点在函数y=x+1的图象上()A.(2,1)B.(-2,1)C.(2,3)D.(-2,-1)答案:A15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.答案:a+b=818.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.答案:a=0,b=717.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组x-y-3=02x-y+2=0的解是________.答案:(-1,-2)4.一次函数y=-5x+3的图象经过的象限是()A.一、二、三。
B.二、三、四。
C.一、二、四。
D.一、三、四答案:B6.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3.B.0<k≤3.C.-1≤k<3.D.0<k<3答案:-1≤k<3三、最后,再来几道大题吧!(每小题12分,共54分)7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()答案:y=-x+1010.一次函数y=kx+b的图象经过点(2,-1)和(4,3),那么这个一次函数的解析式为()答案:y=2x-512.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为()答案:y=3x1.农民卖土豆一位农民带了一些土豆去卖。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可编辑修改 精选doc 一次函数基础练习题
1、汽车以60千米/时的速度匀速行驶,行驶路程y(千米)与行驶时间x之间的函数关系是 ; 2、.圆的面积y(厘米2)与它的半径x之间的函数关系是 。 3.直角三角形两锐角的度数分别为x,y,其关系式为________________ 。 4.若点A(m-1,2)在函数y=2x-6的图象上,则m的值为 。 5、已知一次函数y=x+4的图像经过点(m,6),则m=________ 6、已知一次函数y=2x+4的图像经过点(m,8),则m=________。 7.已知点P(a,4)在函数3xy的图象上,则a 。 8.已知一次函数y=kx+5的图象经过点(-1,2),则k= . 9.已知一次函数y=2x+4的图像经过点(m,8),则m=________。 10.已知点P(a,4)在函数3xy的图象上,则a 。 11、若直线y=kx+b平行直线y=3x+2,且过点(2,-1),则k=______ ,b=______ . 12. 函数)0(kkxy的图象过P(-3,7) ,则k ,图象经过 象限。 13.若函数y= -2xm+2是正比例函数,则m的值是 .
14.在一次函数35xy中,已知0x,则y ;若已知2y,则x ; 15.已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是 16.在一次函数35xy中,已知0x,则y ;若已知2y,则x ; 17.已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是 18.已知一次函数y=kx+5的图象经过点(-1,2),则这个一次函数的表达式是 . 19、(1)已知一个正比例函数的图象经过点(1,5),则这个正比例函数的表达式是 . (2)已知一次函数y=kx-k+4的图象与y轴的交点坐 标是(0,-2),那么这个一次函数的表达式是___ _。 20、两直线y=x-1与y=-x+2的交点坐标 一次函数y= 2x-4的图象与x轴交点坐标是 ,与y轴交点坐标是 . 21.直线y=4x-6与x轴交点坐标为_______,与y轴交点坐标为_________,图象经过第________象限,y随x增大而_________.一次函数y=-3x+6的图象与x轴的交点坐标是 ,与y轴的交点坐标是 ;可编辑修改 精选doc 22.已知直线8xy与x轴,y轴围成一个三角形,则这个三角形面积为 .
23.已知一次函数1)2(xmy,函y的值随x值的增大而增大,则m的取值范围是 . 24.若一次函数y=kx+b的图像经过(-2,-1)和点(1,2),则这个函数的图像不经过 象限 25.若函数y=mx-(4m-4)的图象过原点,则m=_______,此时函数是__ _ ___•函数. 26.若函数y=mx-(4m-4)的图象经过(1,3)点,则m=____,此时函数是__ __函数. 27.点M(-2,k)在直线y=2x+1上,求点M到x轴的距离d= 28、已知一次函数1)2(xmy,函数y的值随x值的增大而增大,则m的取值范围是 . 29、已知直线6xy与x轴,y轴围成一个三角形,则这个三角形面积为 30、已知一次函数y=-3x+6。(1)x______时,y<0;x______时,y=0;x______时,y>0。 (2)若-3≤ x ≤ 3,则y的范围是______ ___。 31.当自变量x 时,函数45xy的值大于0;当x 时,函数45xy的值小于0。 32.已知函数82xy,当x 时,4y;当x 时,2y。 33. 如下图1,是一次函数123xy的图像,观察图像思考:当0y时,x 。由此可知方程0312x的解为 。
34.当自变量x 时,函数45xy的值大于0;当x 时,函数45xy的值小于0。 35.已知函数82xy,当x 时,4y;当x 时,2y。 36.如上图2,直线l是一次函数bkxy的图象,观察图象,可知(1)b ;k 。(2)当2y时,x 。
xyO123123-1
-1
l
C B
Y X A 6 3 O 2 O
y
x4812
4812 可编辑修改
精选doc 37.如上图3中的两条直线1l、2l的交点坐标是 ,可以看作方程组: 的解。
38.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220xyxy
的解是________.
39.写出下列各函数中自变量的取值范围: ①122xy ; ②xy1 ;③22xxy ④12xxy ;
40、函数1yx中,自变量x的取值范围是 ,23xyx
中自变量x的取值范围是 ,
11yx的自变量的取值范围是 __;
41、若函数28(3)mymx是正比例函数,则常数m的值是 。 42、若一次函数2(3)9ymxm是正比例函数,则m的值为 ; 43、一次函数y=-3x+6的图象与x轴的交点坐标是 ,与y轴的交点坐标是 ; 44、已知y与x成正比例,且当x=1时,y=2,那么当x=3时,y=_______; 45、已知)2()3(mxmy,y随x的增大而减少,并且与y轴的交点在y轴的负半轴,则m的 取值范围是 ; 46、两直线 y =x+3和y =-2x+6与x轴所围成的面积为 ; 47.将直线xy2向上平移两个单位,所得的直线是( )
A.22xy B.22xy C.)2(2xy D.)2(2xy 48.若把一次函数y=2x-3,向上平移3个单位长度,得到图象解析式是( ) (A)y=2x (B) y=2x-6 (C) y=5x-3 (D)y=-x-3 49.下面函数图象不经过第二象限的为 ( ) (A) y=3x+2 (B) y=3x-2 (C) y=-3x+2 (D) y=-3x-2 50.已知一次函数y=3x-b的图象经过点P(1,1),则该函数图象必经过点( ) A.(-1,1) B.(2,2) C.(-2,2) D.(2,-2) 51.函数y = k(x – k)(k<0)的图象不经过 ( )可编辑修改
精选doc A、第一象限 B、第二象限 C、第三象限 D、第四象限
52. 点A(5,y1)和B(2,y2)都在直线y=-x上,则y1与y2的关系是( ) A、y1≥ y2 B、 y1= y2 C、 y1 <y2 D、 y1 >y2 53、已知等腰三角形的周长为12cm,若底边长为y cm,一腰长为x cm..(1)写出y与x的函数关系式;2)求自变量x的取值范围.
54、某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关 系如下表: 若日销售量y是销售价x的一次函数. (1)求出日销售量y(件)与销售价x(元)的函数关系式; (2)求销售价定为30元时,每日的销售利润.
55.画出函数3xy的图象 56.已知,一条直线经过点A(1,3)和B(2,5). 求:(1)这个一次函数的解析式。 (2)当3x时,y的值. (3)求此一次函数与X轴、Y轴的交点坐标及其图像与两坐标轴围成的面积。
x (元) 15 20 25 … y (件) 25 20 15 …
x … …
y … …
2
-2 -4 -3
-1
3 1 0 4 1 2
3 -1 -2 -3
y x 可编辑修改
精选doc 57.已知y -2与x成正比,且当x=1时,y= -6 (1)求y与x之间的函数关系式 (2)若点(a,2)在这个函数图象上,求a
58. 如图是某汽车行驶的路程S(km)与时间t(min)的函数关系图.观察图中所提供的信息,解答下列问题: (1)汽车在前9分钟内的平均速度是 km/min (2)汽车在中途停了多长时间? min (3)当16≤t≤30时,求S与t的函数关系式.
59、作出函数24yx的图象,并根据图象回答下列问题:(1)当 -2≤x≤4时,求函数y的取值范围;(2)当x取什么值时,y<0,y=0,y>0?(3)当x取何值时,-4
60、第五届中国宜昌长江三峡国际龙舟拉力赛在黄陵庙揭开比赛帷幕.20日上午9时,参赛龙舟从黄陵庙同时出发.其中甲、乙两队在比赛时,路程y(千米)与时间x(小时)的函数关系如图所示.甲队在上午11时30分到达终点黄柏河港. (1)哪个队先到达终点?乙队何时追上甲队? (2)在比赛过程中,甲、乙两队何时相距最远?
0 9 16 30 t/min
S/km 40
12
CBA
路程/千米
时间/时1.5160.52.52140
35
20
0