圆解方程练习题带答案
2020秋人教版九年级数学上《一元二次方程》和《圆》测试卷含答案

《一元二次方程》单元测试一.选择题1.已知一元二次方程的两根分别是3和﹣2,则这个方程可以是()A.(x+3)(x﹣2)=0B.x2+x+6=0C.(x﹣3)(x+2)=0D.x2﹣3x+2=02.已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根及c的值分别为()A.2,8B.3,4C.4,3D.4,83.用配方法将二次三项式a2﹣4a+3变形,结果是()A.(a﹣2)2﹣1B.(a+2)2﹣1C.(a+2)2﹣3D.(a﹣2)2﹣64.一元二次方程x2+11x﹣1=0()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根5.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x,则x满足的方程是()A.5000(1+x)=6050B.5000(1+2x)=6050C.5000(1﹣x)2=6050D.5000(1+x)2=60506.关于x的一元二次方程(k﹣1)x2﹣2kx+k=0有两个实数根,则k的取值范围是()A.k≥0且k≠1B.k≠1C.k≥0D.k≤07.若关于x的方程ax2+3x+1=0是一元二次方程,则a满足的条件是()A.a≤B.a>0C.a≠0D.a>8.已知一元二次方程x2﹣x=3,则下列说法中正确的是()A.方程有两个相等的实数根B.方程无实数根C.方程有两个不相等的实数根D.不能确定9.若x1是方程ax2﹣4x﹣c=0(a≠0)的一个根,设p=(ax1﹣2)2,q=ac+5,则p与q的大小关系为()A.p<q B.p=q C.p>q D.不能确定10.用公式法x=解一元二次方程3x2+5x﹣1=0中的b是()A.5B.﹣1C.﹣5D.1二.填空题11.一元二次方程x2﹣ax+2=0的一根是1,则a的值是.12.某超市一月份的营业额为200万元,已知二月和三月的总营业额为1000万元,如果平均每月增长率为x,则由题意列方程应为.13.等腰三角形的三边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣8x+n+10=0的两根,则n的值为.14.已知关于x的一元二次方程x2﹣2(k﹣1)x+k(k+2)=0有两个不相等的实数根.(1)写出k的取值范围;(2)写出一个满足条件的k的值,并写出此时方程的根.15.关于x的一元二次方程(2k+3)x2﹣x﹣=0有实数根,则常数k的取值范围是.三.解答题16.解下列方程:(1)2x2+5x+2=0;(2)(x﹣2)(3x﹣5)=1.17.已知关于x的一元二次方程x2﹣(m﹣2)x﹣m=0.(1)求证:无论m取任何的实数,方程总有两个不相等的实数根;(2)如果方程的两实根为x1、x2,且:x12+x22﹣2x1x2=13,求m的值.18.如图,利用一面墙(墙的长度不限),篱笆长20m.(1)围成一个面积为50m2的矩形场地,求矩形场地的长和宽;(2)可以围成一个面积为60m2的矩形场地吗?如果能,求出矩形场地的长和宽;如果不能,请说明理由.19.如图所示,在△ABC中,∠ACB=90°,AB=50cm,AC=40cm,点P从点C开始沿CA边向点A以4cm/s的速度运动,同时,另一点Q从点C开始以3cm/s的速度沿CB边向点B运动.(1)几秒钟后,PQ的长度是15cm?(2)几秒钟后,△PCQ的面积是△ABC面积的?20.如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”.例如,一元二次方程x2+x=0的两个根是x1=0,x2=﹣1,则方程x2+x=0是“邻根方程”.(1)通过计算,判断下列方程是否是“邻根方程”;①x2﹣x﹣6=0;②2x2﹣2x+1=0.(2)已知关于x的方程x2﹣(m﹣1)x﹣m=0(m是常数)是“邻根方程”,求m的值;(3)若关于x的方程ax2+bx+1=0(a、b是常数,a>0)是“邻根方程”,令t=12a﹣b2,试求t的最大值.参考答案一.选择题1.解:∵3+(﹣2)=1,3×(﹣2)=﹣6,∴以3和﹣2为根的一元二次方程可为x2﹣x﹣6=0.故选:C.2.解:设方程的另一个根为t,根据题意得t+2=6,2t=c,解得t=4,c=8.故选:D.3.解:a2﹣4a+3=a2﹣4a+4﹣1=(a﹣2)2﹣1,故选:A.4.解:∵a=1,b=11,c=﹣1,∴△=b2﹣4ac=112﹣4×1×(﹣1)=125>0,∴一元二次方程x2+11x﹣1=0有两个不相等的实数根.故选:A.5.解:设每天的增长率为x,依题意,得:5000(1+x)2=6050.故选:D.6.解:由题意可知:k﹣1≠0且4k2﹣4k(k﹣1)≥0,∴k≥0且k≠1,故选:A.7.解:∵关于x的方程ax2+3x+1=0是一元二次方程,∴a≠0,故选:C.8.解:一元二次方程x2﹣x=3,整理得:x2﹣x﹣3=0,∵a=1,b=﹣1,c=﹣3,∴△=1+12=13>0,则方程有两个不相等的实数根.故选:C.9.解:∵x1是方程ax2﹣4x﹣c=0(a≠0)的一个根,∴ax12﹣4x1=c,则p﹣q=(ax1﹣2)2﹣(ac+5)=a2x12﹣4ax1+1﹣ac﹣5=a(ax12﹣4x1)﹣ac﹣5=ac﹣ac﹣5=﹣5,∴p﹣q<0,∴p<q.故选:A.10.解:3x2+5x﹣1=0中的b=5,故选:A.二.填空题11.解:把x=1代入方程x2﹣ax+2=0得1﹣a+2=0,解得a=3.故答案为:3.12.解:∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200(1+x)+200(1+x)2=1000,故答案为:200×(1+x)+200×(1+x)2=1000.13.解:当2为底边长时,则a=b,a+b=8,∴a=b=4.∵4,4,2能围成三角形,∴n+10=4×4,解得:n=6;当2为腰长时,a、b中有一个为2,则另一个为6,∵6,2,2不能围成三角形,∴此种情况不存在.故答案为:6.14.解:(1)∵关于x的一元二次方程x2﹣2(k﹣1)x+k(k+2)=0有两个不相等的实数根,∴△=[﹣2(k﹣1)]2﹣4k(k+2)=﹣16k+4>0,解得:k<;(2)当k=0时,原方程为x2+2x=0,∴x(x+2)=0,解得:x1=0,x2=﹣2.∴当k=0时,方程的根为0和﹣2.15.解:根据题意得2k+3≠0且1﹣k≥0且△=(﹣)2﹣4(2k+3)×(﹣)≥0,解得﹣4≤k≤1且k≠﹣.故答案为﹣4≤k≤1且k≠﹣.三.解答题16.解:(1)2x2+5x+2=0,(2x+1)(x+2)=0,2x+1=0或x+2=0,x1=﹣,x2=﹣2;(2)整理得,3x2﹣11x+9=0,∵a=3,b=﹣11,c=9,∴△=b2﹣4ac=(﹣11)2﹣4×3×9=13>0,∴方程有两个不相等的实数根,∴x==,∴x1=,x2=.17.解:(1)证明:∵x2﹣(m﹣2)x﹣m=0,∴△=[﹣(m﹣2)]2﹣4×1×(﹣m)=m2+4>0,∴无论m为任何的实数,方程总有两个不相等的实数根;(2)∵x2﹣(m﹣2)x﹣m=0,方程的两实根为x1、x2,∴x1+x2=m﹣2,x1x2=﹣m,又,∴,∴(m﹣2)2﹣4×(﹣m)=13,解得,m1=3,m2=﹣3,即m的值是3或﹣3.18.解:(1)设垂直于墙的边长为xm,则平行于墙的边长为(20﹣2x)m,依题意,得:x(20﹣2x)=50,整理,得:x2﹣10x+25=0,解得:x1=x2=5,∴20﹣2x=10.答:矩形场地的长为10m,宽为5m.(2)不能,理由如下:设垂直于墙的边长为ym,则平行于墙的边长为(20﹣2y)m,依题意,得:y(20﹣2y)=60,整理,得:y2﹣10y+30=0,∵△=(﹣10)2﹣4×1×30=﹣20<0,∴不能围成一个面积为60m2的矩形场地.19.解:(1)设t秒钟后,PQ的长度是15cm,此时CP=4tcm,CQ=3tcm.∵∠C=90°,∴PQ2=CP2+CQ2,即152=(4t)2+(3t)2,解得:t1=3,t2=﹣3(不合题意,舍去).答:3秒钟后,PQ的长度是15cm.(2)在Rt△ABC中,∠ACB=90°,AB=50cm,AC=40cm,∴BC==30cm.设x秒后,△PCQ的面积是△ABC面积的,此时CP=4xcm,CQ=3xcm.依题意,得:CP•CQ=×AC•BC,即×4x×3x=××40×30,解得:x1=5,x2=﹣5(不合题意,舍去).答:5秒后,△PCQ的面积是△ABC面积的.20.解:(1)①解方程得:(x﹣3)(x+2)=0,x=3或x=﹣2,∵2≠﹣3+1,∴x2﹣x﹣6=0不是“邻根方程”;②x==,∵=+1,∴2x2﹣2x+1=0是“邻根方程”;(2)解方程得:(x﹣m)(x+1)=0,∴x=m或x=﹣1,∵方程x2﹣(m﹣1)x﹣m=0(m是常数)是“邻根方程”,∴m=﹣1+1或m=﹣1﹣1,∴m=0或﹣2;(3)解方程得x=,∵关于x的方程ax2+bx+1=0(a、b是常数,a>0)是“邻根方程”,∴﹣=1,∴b2=a2+4a,∵t=12a﹣b2,∴t=8a﹣a2=﹣(a﹣4)2+16,∵a>0,∴a=4时,t的最大值为16.《圆》单元提升训练一.选择题1.如图,在△ABC中,∠ACB=90°,AC=3,BC=4.以B为圆心作圆与AC相切,则该圆的半径等于()A.2.5B.3C.4D.52.如图,△ABC内接于圆,∠ACB=90°,过点C的切线交AB的延长线于点P,∠P=28°.则∠CAB=()A.62°B.31°C.28°D.56°3.用反证法证明命题:“已知△ABC,AB=AC,求证:∠B<90°.”第一步应先假设()A.∠B≥90°B.∠B>90°C.∠B<90°D.AB≠AC4.一个圆锥的底面半径是4cm,其侧面展开图的圆心角是120°,则圆锥的母线长是()A.8cm B.12cm C.16cm D.24cm5.下列说法中,不正确的是()A.直径是最长的弦B.同圆中,所有的半径都相等C.圆既是轴对称图形又是中心对称图形D.长度相等的弧是等弧6.挂钟的分针长10cm,经过45分钟,它的针尖经过的路程是()A.cm B.15πcm C.cm D.75πcm7.⊙O是△ABC的外接圆,则点O是△ABC的()A.三条边的垂直平分线的交点B.三条角平分线的交点C.三条中线的交点D.三条高的交点8.平面内,⊙O的半径为2,点P到O的距离为2,过点P可作⊙O的切线条数为()A.0条B.1条C.2条D.无数条9.如图,AB是半圆O的直径,AB=5cm,AC=4cm.D是弧BC上的一个动点(含端点B,不含端点C),连接AD,过点C作CE⊥AD于E,连接BE,在点D移动的过程中,BE的取值范围是()A.﹣2<BE≤B.﹣2≤BE<3C.≤BE<3D.﹣≤BE<310.如图,△OAC按顺时针方向旋转,点O在坐标原点上,OA边在x轴上,OA=8,AC=4,把△OAC绕点A按顺时针方向转到△O′AC′,使得点O′的坐标是(4,4)则在这次旋转过程中线段OC扫过部分(阴影部分)的面积为()A.8πB.πC.2πD.48π二.填空题11.已知弦AB把圆周分成1:9两部分,则弦AB所对圆心角的度数为.12.如图,⊙O的半径为1,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则的长为.13.如图所示的一扇形纸片,圆心角∠AOB为120°,半径OA的长为3,用它围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为.14.如图,PA、PB、DE分别切⊙O于点A、B、C,且D、E分别在PA、PB上,若PA=10,则△PDE的周长为.15.从一块直径为4m的圆形铁皮上剪出一个如图所示圆周角为90°的最大扇形,则阴影部分的面积为m2(结果保留π).三.解答题16.如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=30°.(1)求∠BAD的度数;(2)若AD=,求DB的长.17.如图,△ABC是⊙O的内接三角形,BC=4,∠A=30°,求⊙O的直径.18.如图,已知正方形ABCD,AB=4,以点A为圆心,AB为半径画弧得到扇形ABD,现将该扇形围成一圆锥的侧面,求出该圆锥底面圆的半径.19.已知圆锥的高为12,底面直径为10,求圆锥的表面积.20.已知:Rt△ABC,∠C=90°.(1)点E在BC边上,且△ACE的周长为AC+BC,以线段AE上一点O为圆心的⊙O恰与AB、BC边都相切.请用无刻度的直尺和圆规确定点E、O的位置;(2)若BC=8,AC=4,求⊙O的半径.参考答案一.选择题1.解:∵∠ACB=90°,即BC⊥AC,∴当圆的半径等于BC=4时,以B为圆心作圆与AC相切,故选:C.2.解:连接OC,如图,∵PC为切线,∴OC⊥PC,∴∠PCO=90°,∴∠POC=90°﹣∠P=90°﹣28°=62°,∵OA=OC,∴∠A=∠OCA,而∠POC=∠A+∠OCA,∴∠A=×62°=31°.故选:B.3.解:用反证法证明命题:“已知△ABC,AB=AC,求证:∠B<90°.”第一步应先假设∠B≥90°.故选:A.4.解:圆锥的底面周长为2π×4=8πcm,即为展开图扇形的弧长,由弧长公式得=8π,解得,R=12,即圆锥的母线长为12cm.故选:B.5.解:A、直径是最长的弦,说法正确;B、同圆中,所有的半径都相等,说法正确;C、圆既是轴对称图形又是中心对称图形,说法正确;D、长度相等的弧是等弧,说法错误;故选:D.6.解:∵分针经过60分钟,转过360°,∴经过45分钟转过270°,则分针的针尖转过的弧长是l===15π(cm).故选:B.7.解:∵⊙O是△ABC的外接圆,∴点O是△ABC的三条边的垂直平分线的交点.故选:A.8.解:∵⊙O的半径为2,点P到O的距离为2,∴点P在⊙O上,∴过点P可作⊙O的一条切线.故选:B.9.解:如图,由题意知,∠AEC=90°,∴E在以AC为直径的⊙M的上(不含点C、可含点N),∴BE最短时,即为连接BM与⊙M的交点(图中E′点),∵AB是半圆O的直径,∴∠ACB=90°,∴AB=5,AC=4,∴BC=3,CM=2,则BM===,∴BE长度的最小值BE′=BM﹣ME′=﹣2,当BE最长时,即E与C重合,∵BC=3,且点E与点C不重合,∴BE<3,综上,﹣2≤BE<3,故选:B.10.解:过O′作O′M⊥OA于M,则∠O′MA=90°,∵点O′的坐标是(4,4),∴O ′M =4,OM =4,∵AO =8, ∴AM =8﹣4=4,∴tan ∠O ′AM ==,∴∠O ′AM =60°,即旋转角为60°,∴∠CAC ′=∠OAO ′=60°,∵把△OAC 绕点A 按顺时针方向旋转到△O ′AC ′,∴S △OAC =S △O ′AC ′, ∴阴影部分的面积S =S 扇形OAO ′+S △O ′AC ′﹣S △OAC ﹣S 扇形CAC ′=S 扇形OAO ′﹣S 扇形CAC ′=﹣=8π,故选:A .二.填空题11.解:∵弦AB 把圆周分成1:9两部分,∴弦AB 所对圆心角的度数=×360°=36°.故答案为36°.12.解:由圆周角定理得,2∠BAD=∠BOD,∵四边形ABCD是⊙O的内接四边形,∴∠BCD=180°﹣∠BAD,∴180°﹣∠BAD=2∠BAD,解得,∠BAD=60°,∴∠BOD=2∠BAD=120°,∴的长==π,故答案为:π.13.解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=1,即该圆锥底面圆的半径为1.故答案为:1.14.解:∵PA、PB、DE分别切⊙O于A、B、C,∴PA=PB,DA=DC,EC=EB;=PD+DE+PE=PD+DA+EB+PE=PA+PB=10+10=20;∴C△PDE∴△PDE的周长为20;故答案为:20.15.解:∵∠ABC=90°,∴AC为⊙O的直径,即AC=4m,∴AB=AC=2m;∴S阴影=S圆﹣S扇形=π×22﹣=2π;故答案为2π.三.解答题16.解:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴∠BAD=90°﹣∠B=90°﹣30°=60°;(2)在Rt△ADB中,BD=AD=×=3.17.解:连接OB,OC,∵∠A=30°,∴∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴OC=BC=4,∴⊙O的直径=8.18.解:设底面圆的半径为r,根据题意得:2πr=,解得:r=1,所以该圆锥的底面圆的半径为1.19.解:底面直径为10,则底面周长=10π,底面面积=25π;由勾股定理得,母线长=13,圆锥的侧面面积S侧=×10π×13=65π,∴它的表面积S=25π+65π=90π,20.(1)如图,作∠ABC的平分线BO,作线段AB的垂直平分线EG,交BC于E,连接AE交BO于O,则点E、O即为所求作点;(2)解:设AE=BE=x,则CE=8﹣x,在Rt△ACE中,42+(8﹣x)2=x2,解得:x=5,在Rt△ABC中,AB===4,设⊙O的半径为r,∵S△ABE =S△AOB+S△BOE∴×5×4=×4r+×5r ∴r=,即⊙O的半径为.。
方程练习题混合运算练习题

方程练习题一、一元一次方程1. 解方程:3x 7 = 112. 解方程:5 2x = 3x + 13. 解方程:4(x 3) = 84. 解方程:7 3(x + 2) = 4 2x5. 解方程:2(3x 1) + 5 = 7x + 3二、一元二次方程1. 解方程:x^2 5x + 6 = 02. 解方程:x^2 4x 12 = 03. 解方程:2x^2 3x 2 = 04. 解方程:x^2 + 6x + 9 = 05. 解方程:4x^2 12x + 9 = 0三、二元一次方程组1. 解方程组:\[\begin{cases}2x + 3y = 8 \\x y = 1\end{cases}\]2. 解方程组:\[3x 2y = 7 \\ 5x + y = 11\end{cases}\]3. 解方程组:\[\begin{cases} 4x + 5y = 12 \\ 2x 3y = 9\end{cases}\]4. 解方程组:\[\begin{cases} x + 6y = 15 \\ 2x 3y = 4\end{cases}\]5. 解方程组:\[\begin{cases} 5x + 3y = 26 \\ 2x y = 8\]混合运算练习题一、分数四则混合运算1. 计算:$\frac{2}{3} + \frac{1}{4} \frac{3}{8}$2. 计算:$\frac{5}{6} \times \frac{3}{4} \div\frac{2}{3}$3. 计算:$\frac{7}{8} + \frac{1}{2} \times \frac{3}{4}$4. 计算:$\frac{4}{9} \frac{2}{3} \div \frac{1}{4}$5. 计算:$\frac{3}{5} \times (\frac{2}{3} \frac{1}{6})$二、小数四则混合运算1. 计算:2.5 + 1.3 0.752. 计算:3.6 × 2.4 ÷ 1.23. 计算:4.8 + 2.5 × 0.64. 计算:5.2 3.4 ÷ 1.75. 计算:6.3 × (2.1 1.2)三、整数四则混合运算1. 计算:18 + 24 ÷ 6 52. 计算:7 × (9 4) + 83. 计算:45 ÷ (5 + 3) × 24. 计算:64 32 ÷ 4 + 75. 计算:100 25 × 2 ÷ 5四、方程与不等式混合运算1. 解不等式:3(2x 1) > 4x + 22. 解不等式:5 2(x 3) ≤ 3x + 13. 解不等式组:\[\begin{cases}2x 3 > 7 \\x + 4 < 2x + 1\end{cases}\]4. 解不等式组:\[\begin{cases}3x + 2y ≥ 6 \\x y < 3\end{cases}\]5. 解不等式组:\[\begin{cases}4x 5 > 2x + 3 \\2x + 3y ≤ 12\end{cases}\]五、几何问题中的方程应用1. 已知直角三角形的两条直角边分别为3cm和4cm,求斜边的长度。
最新最全《简易方程》练习题及答案

最新最全《简易方程》练习题及答案一、选择题1. 下列方程中,属于简易方程的是()A. x^2 + 3x + 2 = 0B. 2x + 3 = 5C. y^3 4y^2 + 5y = 0D. 3z 2 = 2z + 12. 解方程 3x 5 = 4x + 2 的结果是()A. x = 7B. x = 7C. x = 1D. x = 13. 下列方程中,属于一元一次方程的是()A. 2x + 3y = 6B. 3x^2 2x + 1 = 0C. 4x 5 = 3x + 2D. 5y^3 3y^2 + 2y = 04. 解方程 2x + 3 = 5x 4 的结果是()A. x = 1B. x = 2C. x = 3D. x = 45. 下列方程中,属于二元一次方程的是()A. 3x + 2y = 6B. 4x^2 3y^2 = 0C. 5x 6y = 7D. 8x + 9y = 10二、填空题1. 一元一次方程的一般形式是__________。
2. 二元一次方程的一般形式是__________。
3. 解方程 2x 3 = 5 的结果是__________。
4. 解方程 3x + 4 = 7x 2 的结果是__________。
5. 解方程 4x + 5y = 12 的结果是__________。
三、解答题1. 解方程 3x 2 = 5x + 1。
2. 解方程 2x + 3y = 6。
3. 解方程组 3x 2y = 4 和 5x + y = 7。
4. 解方程 2x^2 5x + 3 = 0。
5. 解方程组 4x + 3y = 7 和 2x y = 5。
答案部分(答案部分请在文档的下一部分给出)最新最全《简易方程》练习题及答案二、填空题答案1. 一元一次方程的一般形式是 ax + b = 0,其中a ≠ 0。
2. 二元一次方程的一般形式是 ax + = c,其中a ≠ 0,b ≠ 0。
3. 解方程 2x 3 = 5 的结果是 x = 4。
数学书上练习题的答案

数学书上练习题的答案
数学书上的练习题答案如下:
1. 第一题:求函数f(x) = 2x + 3在x=1时的值。
答案:将x=1代入函数f(x) = 2x + 3,得到f(1) = 2*1 + 3 = 5。
2. 第二题:解方程3x - 7 = 11。
答案:将方程3x - 7 = 11两边同时加7,得到3x = 18,再将两边同时除以3,得到x = 6。
3. 第三题:计算圆的面积,半径为4。
答案:圆的面积公式为A = πr^2,将半径r=4代入公式,得到A = π*4^2 = 16π。
4. 第四题:求等差数列3, 7, 11, ...的第10项。
答案:等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d 为公差,n为项数。
将a1=3,d=4,n=10代入公式,得到a10 = 3 + (10-1)*4 = 39。
5. 第五题:计算函数g(x) = x^2 - 4x + 4在x=2时的导数值。
答案:首先求函数g(x) = x^2 - 4x + 4的导数g'(x) = 2x - 4,然后将x=2代入导数公式,得到g'(2) = 2*2 - 4 = 0。
以上为数学书上部分练习题的答案,供参考。
历年高考直线与圆真题以及解析

【详解】(1)根据题意,圆C:(x﹣a)2+(y﹣b)2=1(a>0)关于直线3x﹣2y=0对称,
【详解】(1) 直线 与直线 垂直,
,解得 .
(2)当 时,直线 化为: 不满足题意.
当 时,可得直线 与坐标轴的交点 , .
直线 在两轴上的截距相等,
,解得: .
该直线的方程为 ,即 .
11.
(1) ;(2)存在,理由见解析
【分析】
(1)根据题意得到 ,再解不等式即可得到答案.
(2)首先假设存在得以 为直径的圆过原点,设 , ,直线与圆联立得到 ,再根据韦达定理和圆的性质即可得到答案.
化简可得: 即为点Q的轨迹方程.
【点睛】本题考查直线与圆的位置关系,考查直线被圆截得的弦长公式的应用,考查直线恒过定点问题和轨迹问题,属于中档题.
10.
(1) ;(2) .
【分析】
(1)利用两条直线垂直的条件列方程,解方程求得 的值.
(2)分成 和 两种情况,结合直线 在两轴上的截距相等求得 ,由此求得所求直线方程.
②当切线斜率存在时,设切线斜率为 ,
则切线方程为 ,即
因为圆心到切线距离等于半径,
所以 ,解得 ,此时切线方程为 ,
综上所述,过点 的圆的切线方程为 和 .
(2)因为 即 , 为圆上任意一点,
所以 即原点到圆上一点的直线的斜率,
令 ,则原点到圆上一点的直线的方程为 ,即
小学五年级数学《圆》易错题

小学五年级数学《圆》易错题第一篇:小学五年级数学《圆》易错题《圆》易错题集锦一、填空1、在一个长8厘米、宽4厘米的长方形纸片上剪下一个最大的半圆,半圆的周长是()厘米。
2、如果一个圆的半径由2厘米增加到4厘米,周长要增加()厘米。
3、两圆半径的比为4:5,则直径的比为():(),周长比为():(),面积比为():()。
4、李平想在一个长5厘米、宽6厘米的长方形中画一个最大的圆,这个圆的周长是()厘米,面积是()平方厘米。
二、判断1、因为d=2r,所以同一个圆的任何两条半径都能组成一条直径。
()2、周长相等的两个圆,面积也一定相等。
()3、圆的半径扩大3倍,面积也扩大3倍。
()4、半径是2厘米的圆,它的周长和面积相等。
()5、圆的位置是由圆心决定的,圆的大小是由半径决定的。
()6、两圆的半径比是2:1,则其周长的比是4:1。
7、圆规两脚间的距离是3厘米,所画的圆的直径就是3厘米。
()8、两端都在圆上的线段中,直径最长。
()9、圆周率π=3.14.()10、圆的直径扩大到原来的2倍,周长也扩大到原来的2倍。
()11、半圆的周长就是圆周长的一半。
()12、圆有无数条对称轴。
()13、圆的周长与它直径的比的比值是π。
()14、两端在圆上的线段是圆的直径。
()15、圆规两脚间的距离是4厘米,画出的圆的周长是12.56厘米。
()三、画图1、画一个半径是1.5厘米的圆。
(1)用字母标出圆心、半径和直径。
(2)画出它的一条对称轴。
2、四、计算阴影部分的面积。
(单位:dm)五、解决问题1、依墙而建的鸡舍围城半圆形,其直径是5米。
(1)需要多长的篱笆才能把鸡舍全围起来?(2)如果将鸡舍的直径增加2米,需要增加多长的篱笆?2、用20米的钢筋制作直径为20米的铁环,最多能制作多少个?如果铁环的直径是35厘米,要制作20个铁环,至少需要多少米的钢筋?3、圆形水池四周种了40棵树,每两棵树之间的距离是1.57米。
这个水池的半径是多少米?4、一张桌面直径为2米的桌子,如果要给桌面铺上同样大小的玻璃,这块玻璃的面积是多少平方米?如果在桌面周围镶上金属条,需要多少米?5、用一张长是3米,宽是2米的长方形铁板,切割出一个最大的圆,圆的面积是多少?剩余部分的面积是多少?6、一个圆形旱冰场的直径是30米,扩建后半径增加了5米。
最新人教版高中数学必修2第四章《直线与圆的位置关系》

4.2.1 直线与圆的位置关系1.知道直线与圆的位置关系的分类.2.能根据方程,判断直线和圆的位置关系. 3.能够解决有关直线和圆的位置关系的问题.直线A x +B y +C =0与圆(x -a)2+(y -b)2=r 2的位置关系及判断【做一做】 直线3x +4y +12=0与圆(x -1)+(y +1)=9的位置关系是( ) A .过圆心 B .相切 C .相离 D .相交答案:两 一 零 < = > > = < 【做一做】 D代数法与几何法的比较剖析:代数法的运算量较大,几何法的运算量较小,并且也简单、直观.受思维定式的影响,看到方程就想解方程组,自然就想到代数法.【例】 若直线4x -3y +a =0与圆x 2+y 2=100:①相交;②相切;③相离,试分别求实数a 的取值范围.解法一:(代数法)由方程组⎩⎪⎨⎪⎧4x -3y +a =0,x 2+y 2=100,消去y ,得25x 2+8a x +a 2-900=0.则Δ=(8a)2-4×25(a 2-900)=-36a 2+90 000.①当直线和圆相交时,Δ>0,即-36a 2+90 000>0,解得-50<a <50; ②当直线和圆相切时,Δ=0,解得a =50或a =-50; ③当直线和圆相离时,Δ<0,解得a <-50或a >50. 解法二:(几何法)圆x 2+y 2=100的圆心为(0,0),半径r =10,则圆心到直线4x -3y +a =0的距离d =|a|32+42=|a|5.①当直线和圆相交时,d<r ,即|a|5<10,所以-50<a <50;②当直线和圆相切时,d =r ,即|a|5=10,所以a =50或a =-50;③当直线和圆相离时,d>r ,即|a|5>10,所以a <-50或a >50.处理直线与圆的位置关系的代数法和几何法,都具有普遍性,都要熟练掌握.由这两种解法可看到,几何法比代数法运算量要小,也比较简单、直观.题型一:直线与圆的相交问题【例1】 过点(-4,0)作直线l 与圆x 2+y 2+2x -4y -20=0交于A ,B 两点,如果|AB|=8,求直线l 的方程.反思:(1)讨论直线与圆的相交问题时,通常情况下不求出交点坐标.利用半径、半弦和弦心距组成的直角三角形,由勾股定理能解决弦长问题.(2)解答本题时易出现漏掉x +4=0的错误结果,导致这种错误的原因是对直线点斜式方程存在的条件理解不透,从而思维不严密,分类不完整.题型二:直线与圆的相切问题【例2】 求经过点(1,-7)且与圆x 2+y 2=25相切的直线方程.反思:解决直线与圆的相切问题时,通常利用圆心到切线的距离等于半径来解决.答案:【例1】 解:将圆的方程配方得(x +1)2+(y -2)2=25,由圆的性质可得,圆心到直线l 的距离d =(25)2-⎝⎛⎭⎫822=3.当l 的斜率不存在时,x =-4满足题意.当l 的斜率存在时,设方程为y =k (x +4),即kx -y +4k =0.由点到直线的距离公式,得3=|-k -2+4k |1+k 2,解得k =-512.所以直线l 的方程为5x +12y +20=0.综上所述,直线l 的方程为x +4=0或5x +12y +20=0.【例2】 解:(1)当直线斜率不存在时,其方程为x =1,不与圆相切;(2)当直线斜率存在时,设斜率为k ,则切线方程为y +7=k (x -1),即kx -y -k -7=0.∴|-k -7|k 2+(-1)2=5,解得k =43或k =-34.∴所求切线方程为y +7=43(x -1)或y +7=-34(x -1),即4x -3y -25=0或3x +4y +25=0.1.(2011·山东济南一模)若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+(y -1)2=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1D .(x -3)2+(y -1)2=1 2.圆x 2+y 2-2x +4y -20=0截直线5x -12y +c =0所得的弦长为8,则c 的值是( ) A .10 B .10或-68 C .5或-34 D .-683.直线l:3x-4y-5=0被圆x2+y2=5所截得的弦长为__________.4.(2011·北京丰台高三期末)过点(-3,4)且与圆(x-1)2+(y-1)2=25相切的直线方程为__________.5.已知一个圆C与y轴相切,圆心C在直线l1:x-3y=0上,且在直线l2:x-y=0上截得的弦长为C的方程.答案:1.A 2.B 3.4 4.4x-3y+24=05.解:∵圆心C在直线l1:x-3y=0上,∴可设圆心为C(3t,t).又∵圆C与y轴相切,∴圆的半径为r=|3t|.再由弦心距、半径、弦长的一半组成的直角三角形,可得2+2=|3t|2,解得t=±1.∴圆心为(3,1)或(-3,-1),半径为3.故所求圆的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.。
初一解方程组练习题50道

初一解方程组练习题50道解方程组是初中数学中的一种重要知识点,对学生的运算能力和逻辑思维能力有很好的培养作用。
为了帮助初一的同学们加深对解方程组的理解,我为大家准备了50道初一解方程组练习题。
请同学们认真思考并运用所学知识解答。
1. 某糖果店有两种糖果,甲袋中有红色圆形糖果5颗、黄色圆形糖果3颗,乙袋中有红色圆形糖果4颗、黄色圆形糖果6颗,两袋共计有18颗红色圆形糖果和24颗黄色圆形糖果。
求甲袋、乙袋各颜色圆形糖果的数量。
2. 某商店购进若干只笔和若干只橡皮共计79元。
已知笔每只10元,橡皮每只5元,若购进笔多六只,则每只笔4元,每只橡皮5元;若购进笔少六只,则每只笔6元,每只橡皮4元。
求购进的笔和橡皮各有几只?3. 一根木棍分成甲、乙两段,甲段比乙段长18cm。
如果把甲段减短9cm,乙段增长9cm,两段正好一样长。
求原来的木棍长度。
4. 一枝蜡烛和一本书的总重量是80g,蜡烛比书轻64g。
如果蜡烛变重或者书变轻4倍,它们的总重量将相等。
求蜡烛和书各自的重量。
5. 小明和小红共有钱30元。
已知小红比小明多5元,若小明钱增加10元,小红钱减少10元,则两人钱数相等。
求小明和小红各有多少钱?6. 一根绳子分成甲、乙两段,甲段比乙段长30米。
现在甲段增加了20米,乙段减少了10米,两段正好一样长。
求原来的绳子长度。
7. 某地的气温周一比周二高7℃,周二比周三低5℃,周三比周四低3℃,周四是-1℃,周一比周五高多少℃?8. 小明和小李正在玩一种游戏。
经过一天的游戏后,小明还剩下小李的一半多8个馒头。
第二天,经过一天的游戏后,小明还剩下小李的三分之一多10个馒头。
已知小明每天剩下的馒头数是基数,小李每天剩下的馒头数是偶数。
求小明和小李开始时的馒头数各为多少?9. 某地有红、蓝两种小球,共有球50个。
如果用两个红球和三个蓝球组成一个小组,则剩下一个球;如果用四个红球和一个蓝球组成一个小组,则少两个球。
求红球和蓝球各有几个?10. 某公司购进红、蓝两种花束共计24个,红色花束比蓝色花束多4个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆解方程练习题带答案
解方程是数学中重要的内容之一,帮助我们理解数学概念并解决实际问题。
在解方程的学习过程中,练习题是不可或缺的一部分。
本文将提供一些圆解方程的练习题及其答案,帮助读者加深对圆解方程的理解。
练习题1:
已知圆的半径为3,求圆的面积。
解答:
圆的面积公式为:S = π * r^2
将半径r代入公式中,得到:
S = π * 3^2
S = π * 9
S = 9π
练习题2:
已知圆心坐标为(2, 4),半径为5,求圆的方程。
解答:
圆的方程为:(x - a)^2 + (y - b)^2 = r^2
其中,(a, b)为圆心坐标,r为半径。
将已知数据代入方程中,得到:
(x - 2)^2 + (y - 4)^2 = 5^2
x^2 - 4x + 4 + y^2 - 8y + 16 = 25
x^2 + y^2 - 4x - 8y - 5 = 0
练习题3:
已知圆心坐标为(-1, 2),过点(4, 1)的直线与圆交于两个点,求这两个点的坐标。
解答:
设圆心为C(-1, 2),过点(4, 1)的直线为l。
首先求直线l的方程:
设直线l的斜率为k。
k = (1 - 2) / (4 - (-1)) = -1/5
直线l的方程为:y = -1/5 * x + b
将过圆心C的直线l带入圆的方程中,求得交点:
(-1)^2 + (2 - (-1)/5 * x + b)^2 = r^2
x^2 - 2/5x + 2 - 2/5b + b^2 = r^2
将直线l的方程代入上式中,得到:
x^2 - 2/5x + 2 - 2/5(-1/5 * x + b) + b^2 = r^2
x^2 - 2/5x + 2 + 2/25x - 2/25b + b^2 = r^2
整理得:
(1 + 2/25)x^2 + (-2/5 + 2/25b - 2/25x)x + (2 + b^2) - r^2 = 0
令A = 1 + 2/25,B = -2/5 + 2/25b - 2/25x,C = 2 + b^2 - r^2
则上式可化为:Ax^2 + Bx + C = 0
由已知直线l与圆交于两个点可得到两个解,即求二次方程Ax^2 + Bx + C = 0的解。
通过求根公式得到x的解:
x = (-B ± √(B^2 - 4AC)) / (2A)
带入已知数据计算可得交点坐标。
练习题4:
已知圆心坐标为(0, 0),过点(3, 4)的直线与圆交于一个点,求这个点的坐标。
解答:
与练习题3类似,设圆心为C(0, 0),过点(3, 4)的直线为l。
直线l的斜率k = (4 - 0) / (3 - 0) = 4/3
直线l的方程为:y = 4/3x + b
将过圆心C的直线l带入圆的方程中,求得交点:
x^2 + (4/3x + b)^2 = r^2
x^2 + (16/9)x^2 + 8/3bx + b^2 = r^2
整理得:
(1 + 16/9)x^2 + 8/3bx + b^2 - r^2 = 0
令A = 1 + 16/9,B = 8/3b,C = b^2 - r^2
则上式可化为:Ax^2 + Bx + C = 0
通过求根公式得到x的解:
x = (-B ± √(B^2 - 4AC)) / (2A)
带入已知数据计算可得交点坐标。
通过解答以上练习题,读者可以加深对圆解方程的理解,并在解决实际问题时能够灵活运用。
以上为圆解方程练习题及答案。
希望本文能帮助读者巩固对圆解方程的理解,并提高解决数学问题的能力。