大学物理量子力学

合集下载

《大学基础物理学》农科用教材自作ppt课件-10量子力学基础2

《大学基础物理学》农科用教材自作ppt课件-10量子力学基础2
海 南 大 学
第十章 量子力学基础(Quantum mechanics)
当前量子力学的重要应用
海 纳 百 川
量子生物学 量子生命科学 量子神经网络 量子化学 量子材料科学 量子信息科学 量子计算机科学 BEC器件、原子器件

目前,它正在向材料科学、化学、生物 学、信息科学、计算机科学大规模渗透。 预计不久的将来它将会成为: 整个近代科 学共同的理论基础
致 远
海 南 大 学
第十章 量子力学基础(Quantum mechanics)
测量黑体辐射出射度实验装置
海 纳
大 道
小孔
百 川
T
空腔
s
L1
平行光管
L2 会聚透镜

c
棱镜 热电偶
海 南 大 学

二、热辐射的基本定律 第十章 量子力学基础(Quantum mechanics)
黑体辐射的实验曲线
M (T ) /(1014 W m3 )
例1 (1)温度为室温 (20 C)的黑体,其单色辐 出度的峰值所对应的波长是多少?(2)若使一黑体 单色辐出度的峰值所对应的波长在红色谱线范围内, 海 其温度应为多少?(3)以上两辐出度之比为多少? 纳 解 (1)由维恩位移定律
大 道
论.
五 了解德布罗意假设及电子衍射实验. 了解实 纳 物粒子的波粒二象性. 理解描述物质波动性的物理量 (波长、频率)和描述粒子性的物理量(动量、能 百 量)之间的关系.

致 远

了解一维坐标动量不确定关系 .
七 了解波函数及其统计解释 . 了解一维定态的 薛定谔方程, 以及量子力学中用薛定谔方程处理一 维无限深势阱等微观物理问题的方法 .

哈工大大学物理课件(马文蔚教材)-第19章-1量子物理

哈工大大学物理课件(马文蔚教材)-第19章-1量子物理
未来,随着量子通信和量子密码学的不断发展,有望实现更加高效和安全的通信和 加密方式。
量子物理的前沿研究与未来发展
目前,量子物理领域的研究重点 包括量子纠缠、量子相干性、量
子计算复杂度等。
未来,随着实验技术的不断进步 和理论研究的深入,量子物理有 望在多个领域取得突破性进展。
例如,利用量子力学原理开发新 型传感器、探测器、加速器等设 备,以及探索宇宙中的量子现象
量子物理
目录
• 量子物理概述 • 光的量子性 • 量子力学的诞生 • 原子结构与量子力学 • 量子力学的数学基础 • 量子力学的应用与展望
01 量子物理概述
量子物理的发展历程
1900年
普朗克提出能量子假说,认为 能量是离散的,而不是连续的。
1925年
海森堡和薛定谔分别提出量子 力学的矩阵力学和波动力学两 种数学描述方式。
测量误差
由于不确定性原理的存在,我们无法同时精确测 量一个量子粒子பைடு நூலகம்位置和动量,测量结果会存在 误差。
互补性
互补性是量子力学中的另一个重要概念,它表明 某些物理量在测量时具有相互排斥的特性,无法 同时精确测量。
06 量子力学的应用与展望
量子计算与量子计算机
量子计算机利用量子比特(qubit)作为信息的 基本单位,相比传统计算机的经典比特(bit), 量子比特具有叠加和纠缠的特性,能够在理论 上大幅度提升计算速度。
薛定谔方程是描述量子粒子运动的偏微分方程, 它决定了波函数的演化。
时间演化
薛定谔方程描述了量子态随时间演化的过程,时 间演化由系统的哈密顿量决定。
空间演化
薛定谔方程的空间部分描述了波函数在空间中的 传播,与粒子的动量和位置有关。
海森堡不确定性原理

大学物理近代物理学知识点

大学物理近代物理学知识点

大学物理近代物理学知识点近代物理学是物理学中重要的分支之一,大学物理中也占有重要地位。

在本文中,我们将介绍大学物理中的一些近代物理学知识点。

1. 相对论相对论是一种物理学理论,被广泛应用于高能物理学、天体物理学和宏观物理学。

相对论中的重要理论是狭义相对论和广义相对论,它们主要是研究物质和能量之间的关系。

其中,狭义相对论主要是研究高速运动物体的行为,而广义相对论主要研究引力和引力对时空的影响。

2. 量子力学量子力学是物理学家研究物质与能量交换时发现的新的规律性。

该学科研究微观领域中的粒子行为,如原子核、电子等。

它是现代物理学的基础之一,也被广泛应用于各种领域,如化学、材料科学和电子工程。

3. 基本粒子基本粒子是物理学家研究微观世界时发现的最小的物质组成部分。

它们包括质子、中子、电子等。

近年来,在高能物理研究中,新的基本粒子不断被发现和探测。

这些发现对于人类对物质构成的认识产生了重大的影响。

4. 大爆炸大爆炸理论是现代宇宙学的基石之一,它描述了宇宙的起源和演化。

大爆炸理论认为,宇宙的起源是由于一次巨大的爆炸而形成的。

从此时起,宇宙开始膨胀并不断演化。

5. 暗物质暗物质是一种物质,它对于宇宙的形成和演化有着重要的作用。

虽然暗物质无法直接观测到,但是通过对星系和宇宙大尺度的结构进行观测,科学家们已经确认它的存在。

暗物质对于我们理解宇宙的形成和演化过程,以及对于寻找基本粒子和探索宇宙物理学的深度理解都具有重要意义。

6. 熵熵是物理学的一个基本概念,它是热力学中对于系统无序性的度量。

由于熵是系统的状态函数,因此它在物理学的许多领域都有广泛的应用。

例如,在统计物理学中,熵被用来表示系统的混乱程度。

在信息理论中,熵则被用来表示信息的多少。

7. 超导超导是一种物理现象,它指的是某些材料在低温下的导电特性。

这些材料在特定的温度下,可以形成一个电流稳定状态,这个状态被称为超导态。

超导材料被广泛应用于各种领域,如磁共振成像、电力输送、制冷技术和计算机芯片等。

大学物理-量子物理第十二章波尔的原子量子理论

大学物理-量子物理第十二章波尔的原子量子理论

对后世的影响
促进了量子力学的发展
对现代科技的影响
波尔的理论为量子力学的发展奠定了 基础,提供了重要的启示和指导。
波尔的理论为现代科技的和磁共振成像等。
对化学和材料科学的影响
波尔的理论解释了原子结构和化学键 的本质,对化学和材料科学的发展产 生了深远的影响。
原子中的电子在固定的轨道上 运动,且不发生辐射。
波尔的原子模型
原子中的电子在固定的轨道上运动,且不发生辐 射。
当电子从高能级轨道向低能级轨道跃迁时,会释 放出一定频率的光子。
电子只能在一些特定的轨道上运动,在这些轨道 上运动的电子不辐射能量。
原子吸收光子时,电子从低能级轨道向高能级轨 道跃迁。
波尔的量子化条件
THANK YOU
感谢聆听
波尔引入了量子化的概念,将电子在原子中的运动描述为 不连续的轨道,解决了经典物理无法解释的原子结构和光 谱问题。
对量子力学的推动
波尔的理论为后续的量子力学发展奠定了基础,提供了重 要的启示和方向。
对化学和材料科学的贡献
波尔模型对于理解化学键的本质和材料性质有深远影响, 推动了化学和材料科学的进步。
对未来研究的启示
05
波尔原子理论的局限性
定性解释的局限性
波尔理论主要依赖于定性的解释和假设,缺乏严格的数学基础和 理论推导。
定性解释的局限性导致波尔理论在描述原子结构和行为时存在一 定的模糊性和不确定性。
与现代物理理论的兼容性问题
01
波尔理论虽然在一定程度上解释 了原子的某些行为,但与现代量 子力学理论存在不兼容的矛盾。
电子在稳定的轨道上运动时不 辐射能量,即稳定的轨道满足
量子化条件。
电子在不同轨道之间跃迁时, 释放或吸收光子的频率满足量

理工大学物理工程学院电子科学与技术专业量子力学期末考试试卷及答案

理工大学物理工程学院电子科学与技术专业量子力学期末考试试卷及答案

、如果原子本身处于激发态,在没有外界光照时,也可能跃迁到某些较低能级而放出光来,(B)自发和受激吸收(C)光的吸收是可观测量,应为实数,表示力学量的算符必须是ˆx p μω+ˆx p μω-1=- (2),a a a +⎡⎤⎣⎦,a a a a +++⎤=⎦(3)ˆH 、2题各15分,第3、,要求有具体计算步骤)的矩阵为: ⎤⎥理工大学教务处试题标准答案及评分标准用纸| 课程名称—量子力学—— ( A 卷) | 一、选择题(每题3分,共15分) 装 1.B 2.C 3. A 4.D 5.B | 二、填空题 (每空2分,共20分)1. 单值的,平方可积的2. 线性算符,厄米算符3. 平均值 几率分布4. 4 200ψ,211ψ,210ψ,211ψ-5. 平均场 积三、 证明题(共15分)证明:(1)[][]ˆˆˆˆ,,21111ˆˆˆˆˆˆˆˆ,,,,2222ˆˆˆˆ,,122a a x p x p i i i x x x p p x p pi i x p p x μωμωμωμωμωμωμωμωμωμω+⎡⎤⎫⎛⎫⎡⎤=-+⎥⎪ ⎪⎣⎦⎪ ⎪⎥⎭⎝⎭⎦⎡⎤⎡⎤⎡⎤⎤=+--⎢⎥⎢⎥⎢⎥⎥⎢⎥⎢⎥⎢⎥⎦⎣⎦⎣⎦⎣⎦=-=- 其中利益[]ˆˆ,xp i = (6分) (2)[],,,a a a aa a a a a a +++⎡⎤⎡⎤=+=-⎣⎦⎣⎦ ,,,a a a a a a a a a a +++++++⎡⎤⎡⎤⎡⎤=+=⎣⎦⎣⎦⎣⎦ (4分)(3)可以求得:()ˆxa a +=+ ()ˆpa a +=-系统Hamilton 为()()()()22222ˆ1111ˆˆ2222211121222p H x a a a a a a aa a a a a μωωμωωω++++++⎡⎤=+=--++⎢⎥⎣⎦⎛⎫=+=+=+ ⎪⎝⎭(5分)四 计算题(第1、2题各15分,第3、4题各10分,要求有具体计算步骤)1、解:(1)一维无限深势阱的本征态波函数是()n n xx aπψ=(2分) 利用三角函数积化和、差,将()x ψ改写 ()2cos x xx a a ππψ=21cosx x a a ππ⎡⎤=+⎢⎥⎣⎦ 22sin 2sin cos x x x a a aπππ⎤=+⎥⎦3sin sin x x a a ππ⎤=+⎥⎦ 3x x a a ππ⎤=⎥⎦()()13x x ψψ=+⎤⎦ (4分)()x ψ是非本征态,它可以有二种本征态,部分处在()1xx aπψ=出现几率为12,能量为22122E ma π=部分处在()33x x a πψ=,出现几率为12,能量为223292E ma π= (2分) (2)处于这种状态下粒子的能量平均值22132115222E E E ma π=+= (3分)(3)粒子随时间变化的波函数为 ()222292223,sin 2n i i iE tt t ma ma nnx x x t C ee e a a ππππψψ---⎫⎛⎫==+⎪ ⎪⎪⎪⎭⎭∑ (4分) 2、解:(1)在z σ表象中,0110x σ⎛⎫=⎪⎝⎭ 00y i i σ-⎛⎫= ⎪⎝⎭ 1001z σ⎛⎫= ⎪-⎝⎭(3分)cos sin sin cos i x x y y z z i e n n n n eϕϕθθσσσσθθ-⎛⎫=++= ⎪-⎝⎭,其本征方程为cos sin cos sin 0sin cos sin cos i i i i a a a e e b b b ee ϕϕϕϕθθθλθλθθθθλ--⎛⎫⎛⎫-⎛⎫⎛⎫⎛⎫=⇒= ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 有非零解的条件为cos sin 01sin cos i i e eϕϕθλθλθθλ--=⇒=±-- (4分)当1λ=时,对应的本征态为()()1cos /2sin /2i e ϕθψθ-⎛⎫=⎪⎝⎭ 当1λ=-时,对应的本征态为()()2sin /2cos /2i e ϕθψθ-⎛⎫= ⎪-⎝⎭ (2分) (2)在ˆz s本征态1/2χ下,n σ的可能测值为1± 故n σ的可能测值为1+的几率为()()()()22211/21cos /2,sin /2cos /20i e ϕψχθθθ⎛⎫== ⎪⎝⎭(3分)故n σ的可能测值为1-的几率为()()()()22221/21sin /2,cos /2sin /20i e ϕψχθθθ-⎛⎫=-= ⎪⎝⎭(3分)3、解:微扰算符的的矩阵是'''111213'''212223'''31323300'000H H H b H H H H a H H H ba **⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ (1) 根据无简并微扰论,一级能量修正量是: kk H从(1)中看出,对角位置的矩阵元全是零,因此一级修正量0)0(3)0(2)0(1===E E E (2分)又二级能量公式是: 2'(2)(0)(0)nkkn k nn kH E E E ≠=-∑(2分)所需的矩阵元'nk H 已经直接由式(1)表示出,毋需再加计算,因而有:2222'''12131(2)1(0)(0)(0)(0)(0)(0)(0)(0)1121313n nnH H H b E EEEEE E E E ==+=----∑(2分) 2222'''21232(2)2(0)(0)(0)(0)(0)(0)(0)(0)2312123n nnH H H a E E E E E E E E E ==+=----∑(2分) 22222'''32313(2)3(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)332313132n nnH H Hb a E EEEEE E E E E E ==+=+-----∑(2分) 4.解:(1)利用21ˆˆ2q H P A q c φμ⎛⎫=-+ ⎪⎝⎭可得系统的哈密顿量为 222222211ˆˆˆˆˆ221ˆˆˆ2x x y y zz x y z q q q q H P A q P A P A P A q y c c c c q P By P P q yc φεμμεμ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+=-+-+--⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎡⎤⎛⎫=+++-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4分)(2)证明:2222221ˆˆˆˆˆˆ,,2111ˆˆˆˆˆˆˆ,,,,0222x x y z x x x y x z x x q H P P By P P q y P c q P By P P P P P q y P c εμεμμμ⎡⎤⎡⎤⎛⎫⎡⎤=+++-⎢⎥⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎛⎫⎡⎤⎡⎤⎡⎤=+++-=⎢⎥ ⎪⎣⎦⎣⎦⎣⎦⎝⎭⎢⎥⎣⎦2222221ˆˆˆˆˆˆ,,2111ˆˆˆˆˆˆˆ,,,,0222z x y z z x z y z z z z q H P P By P P q y P c q P By P P P P P q y P c εμεμμμ⎡⎤⎡⎤⎛⎫⎡⎤=+++-⎢⎥⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎛⎫⎡⎤⎡⎤⎡⎤=+++-=⎢⎥ ⎪⎣⎦⎣⎦⎣⎦⎝⎭⎢⎥⎣⎦ˆx P 的本征函数为()/x x ip x P x e ψπ=,本征值为x p -∞<<∞ ˆz P 的本征函数为()/z zip z P x e ψπ=,本征值为z p -∞<<∞ (4分) (3)选守恒量完全集为()ˆˆˆ,,x zH P P (2分)。

大学量子力学专业

大学量子力学专业

大学量子力学专业
大学量子力学专业是一门涵盖物理学、数学和化学内容的学科,旨在使学生全面了解和掌握量子力学的理论和实践方面的知识。

该专业将重点研究量子物理、量子化学、量子计算、量子信息等量子领域的前沿科学和技术,了解量子力学的基本原理和应用情况,同时熟悉量子结构理论、量子动力学、量子激光学、量子电动力学等量子力学研究方法,更加深入地探索量子效应。

大学量子力学专业重点在于使学生深入学习量子大气物理学、量子场论、量子计算机科学等方面的理论知识,以及应用量子力学去研究和解决复杂物理学问题和应用问题。

同时,大学量子力学课程还介绍了量子力学前沿研究应用的理论和实践知识,例如量子信息处理、量子密码学、量子通信、量子计算机等。

学生还可以学习量子噪声的影响原理和量子信息的传递机制,以及量子效应的利用技术,进行量子量测和量子计算设计分析。

大学量子力学专业毕业生能够掌握科学研究中量子力学的理论和实践,掌握量子物理学、量子化学、量子计算机科学等量子技术,了解量子力学在物理、化学和其它相关领域的应用;熟练运用量子计算机、量子信息技术和量子力学原理,独立进行量子信息处理,量子量测等研究、设计、分析;并具有基本科学研究能力,能够在科学研究机构、高等学校、工程技术院、科研院所等单位从事量子力学及相关领域的研究工作。

大学物理教学 51.量子力学基础-2

大学物理教学 51.量子力学基础-2

1
称为归一化
V
的波函数
a) 波函数的归一化
Байду номын сангаас

ψ
2
dV

1,寻找一个系数k使得
k
ψ
2
dV

1,
V
V
这一过程称为波函数的归一化。
b) 波函数的归一化系数

2dV
2
CψdV1
V
V
C k 就称为归一化系数。 Cψ
,ψ所描述的粒子状态相同
5
例:讨论一维自由粒子在空间各点出现的概率。
xPx 2 h h / 2
t E 2
同一微观粒子,其坐标和动量不能同时被准确测定(波粒二象性)。
对y、z方向有类似的表达式。 不确定关系式一般用于估算。
2

波函数 自由粒子的波函数

(r,t)

0ei
2
h
( Et Pr)
● 波函数的物理意义 (统计解释)
(r,t)(r)e iEt
16
4. 定态 薛定谔方程的应用
[[22m22 ddx222V ((xr)]((xr))EE(x()r)
1)设求粒一子维处无在限势深阱、V方(x势)中阱中粒子的[2波m2函ddx数22VV( x()x)](x)E(x)
13
3. 定态薛定谔方程
i

(r,t
t
)[
2 2m

2
V
(r,t
)]
(r,t
)
设若粒粒子子的所波处函的数力为场:不随( 时r ,间t) 变化( r ,)则f( 薛t) 定谔方程可化简。
V

浙江理工大学大三物理专业量子力学试卷及答案 (4)

浙江理工大学大三物理专业量子力学试卷及答案 (4)

浙江理工大学20XX-20XX 学年第二学期《量子力学》(B )卷及参考解答及评分标准一、简答题1. 写出三维无限深势阱⎩⎨⎧∞<<<<<<=其余区域,0,0,0,0),,(c z b y a x z y x V中粒子的能级和波函数。

解:能量本征值和本征波函数为 ⎪⎪⎭⎫ ⎝⎛=++222222222c n b n a n mE z yx n n n zy x π ,,3,2,1,00,0,0,sin sin sin 8),,(=⎪⎩⎪⎨⎧<<<<<<=n c z b y a x czn b y n a x n abc z y x z y x n n n z y x 其余区域πππψ2. 电子自旋假设的两个要点。

解:(1)电子具有自旋角动量s,它在空间任意方向的投影只有两个取值:2 ±;(2)电子具有自旋磁矩M,它的回转磁比值为轨道回转磁比值的2倍,即自旋回转磁比值 ⎪⎭⎫⎝⎛===为单位取自旋内禀磁矩mc e mc e g s 22,轨道回转磁比值 12===mceg l 轨道角动量轨道磁矩。

3. 二粒子体系,仅限于角动量涉及的自由度,有哪两种表象?它们的力学量完全集分别是什么?在两种表象中,各力学量共同的本征态及对应的本征值又是什么?解:有耦合表象和非耦合表象两种。

耦合表象的力学量完全集是()z J J J J ,,,22221,其共同的本征态是jm j j 21,jm 简记为,本征值分别由下式给出:。

,)1(,)1(,)1(2121212212212222122212112121jm j j m jm j j J jm j j j j jm j j Jjm j j j j jm j j J jm j j j j jm j j J z=+=+=+=非耦合表象的力学量完全集是()z z J J J J 222121,,,,其共同的本征态是2211m j m j ,本征值分别是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理量子力学
量子力学是物理学中一门重要的学科,它探索了微观领域中粒子的行为和性质。

量子力学的理论框架最早由康普顿、德布罗意等科学家在20世纪初提出,并经过多年的实验证实。

本文将详细介绍量子力学的基本概念、主要理论以及它在现代科技中的应用。

一、量子力学的基本概念
量子力学的一个核心概念是量子,它表示物质在微观领域中存在的最基本单元。

与经典物理学不同,量子力学认为微观粒子的性质无法准确地同时确定,而是通过概率分布来描述。

这是由于量子力学的不确定性原理所决定的。

量子力学中的另一个重要概念是波粒二象性,即微观粒子既可以表现出波动性,又可以表现出粒子性。

这个概念最早由德布罗意在他的波动力学理论中提出,并在实验证实了电子的波动性。

波粒二象性的存在使得量子力学的理论更加复杂和奇特。

二、量子力学的主要理论
1. 波函数和薛定谔方程
量子力学中,波函数是描述量子系统状态的数学工具。

它包含了有关粒子位置、动量和能量等信息。

薛定谔方程是描述波函数随时间演化的基本方程。

它是量子力学中的核心方程之一,通过求解薛定谔方程可以得到粒子的能级和波函数的形式。

2. 算符和观测量
在量子力学中,算符是一种数学工具,用来描述物理量的运算。


理量通常用厄米算符表示,例如位置算符、动量算符等。

观测量则是
通过测量来得到的物理量,量子力学认为观测量的结果是离散的,即
只能取特定的值。

3. Heisenberg不确定性原理
Heisenberg不确定性原理是量子力学中的重要原理之一,它表明在
测量某个物理量时,不可能同时准确地确定另一个共轭物理量。

例如,位置和动量是共轭的物理量,根据不确定性原理,我们无法同时确定
粒子的精确位置和动量。

三、量子力学的应用
量子力学的理论不仅在理论物理学中有重要应用,而且在现代科技
中也有广泛的应用。

以下是几个重要的应用领域:
1. 量子计算与量子通信
量子计算利用了量子叠加和量子纠缠的特性,可以实现比传统计算
更快速和更强大的计算能力。

而量子通信则利用量子纠缠实现了更加
安全可靠的通信方式。

2. 量子光学与量子电子学
量子光学研究光与物质相互作用的量子效应,如光的干涉、散射等。

而量子电子学研究电子在微观尺度上的行为和性质,如量子隧穿效应、量子点等。

3. 量子传感与量子测量
量子力学的量子态对传感和测量领域有很大的应用潜力。

例如,通
过利用量子纠缠和量子叠加的特性,可以提高传感器的灵敏度和精度。

四、结论
通过对量子力学的介绍,我们可以看到它是一门深奥而有趣的学科,它揭示了微观世界的规律和奇异性。

量子力学的基本概念、主要理论
以及应用领域展示了它在科学研究和技术发展中的重要性。

对于大学
物理学专业的学生来说,学好量子力学将为他们深入理解和应用物理
学提供坚实的基础。

相关文档
最新文档