LTE帧结构和协议

合集下载

LTE综述

LTE综述

(Enhanced Inter-cell Interference Coordination
forHeterogeneous Network)等关键技术,能大大提高无线通信系 统的峰值数据速率、峰值频谱效率、小区平均谱效率以及小区边界
用户性能,同时也能提高整个网络的组网效率,这使得LTE和LTEA系统成为未来几年内无线通信发展的主流.
LTE的关键性需求
3GPP R8 LTE 已完成

LTE (FDD/TDD) :

LTE协议08年3月发布第一版,09年3月已发布商用版本协议。
3GPP LTE TDD和FDD标准制定进度一致
SAE Rel 8 (Functionally Freezing) LTE Advanced Rel 9 LTE Rel8 (Approval) LTE Rel8 (Functionally Freezing ) LTE Rel8 (Enhancement and Improvement )
TDD-LTE 与FDD-LTE分别是4G 两种不同的制式,一个是时分 一个是频分。 简单来说,TDD-LTE 上下行在同一个频点的时隙分配;FDDLTE 上下行通过不同的频点区分。
频段和频点
统一的计算公式为: 下行:FDL = FDL_low + 0.1(NDL – NOffs-DL) 上行:FUL = FUL_low + 0.1(NUL – NOffs-UL)
SCDMA标准。

第四代
LTE(LongTermEvolution,长期演进),又称E-UTRA/EUTRAN,和3GPP2UMB合称E3G(Evolved3G) LTE是由3GPP(The3rdGenerationPartnershipProject,第 三代合作伙伴计划)组织制定的UMTS( UniversalMobileTelecommunicationsSystem,通用移动通信 系统)技术标准的长期演进,于2004年12月在3GPP多伦多 TSGRAN#26会议上正式立项并启动。LTE系统引入了OFDM

0-LTE基本原理介绍

0-LTE基本原理介绍

位于eNB和S-GW之间。
S1-MME控制面协议栈
第 16 页
S1-U用户面协议栈
LTE网络结构
X2接口
X2接口实现eNodeB之间的互联,X2接口控制平面和用户平 面接口定义域S1接口一致。
X2接口控制面协议栈Fra bibliotekX2接口用户面协议栈
第 17 页
LTE网络结构
承载(Bearer)是UE和网关之间有相应QoS(Quality of Service)保障 的IP数据包。 为了应对同时发生的多种形式的服务,EPS根据不同的服务对QoS的不 同要求,将Bearer分为两类:
5 km 的小区半径下,频谱效率、移动性应该达到最优,在30km小区半径
时只能有轻微下降。也需要考虑100 km小区半径的情况。
需要支持Multimedia Broadcast Multicast Service (MBMS)
降低终端复杂性: 采用同样的调制、编码、多址接入方式和频段。 需要同时支持专用话音和 MBMS 业务。 需要支持成对或不成对的频段。
Subframe #2
Subframe #3
Subframe #4
Subframe #5
Subframe #7
Subframe #8
Subframe #9
UpPTS
DwPTS
GP
UpPTS
第 22 页
LTE帧结构
TDD帧结构特殊时隙配置
特殊 子帧配置 0 1 2 3 4 5 6 7 8 DwPTS 6592· Ts 19760· Ts 21952· Ts 24144· Ts 26336· Ts 6592· Ts 19760· Ts 21952· Ts 24144· Ts 4384· Ts 5120· Ts 2192· Ts 2560· Ts 下行常规 CP 配置 UpPTS 上行常规 CP 上行扩展 CP DwPTS 7680· Ts 20480· Ts 23040· Ts 25600· Ts 7680· Ts 20480· Ts 23040· Ts 4384· Ts 5120· Ts 2192· Ts 2560· Ts 下行扩展 CP 配置 UpPTS 上行常规 CP 上行扩展 CP

LTE物理层协议分析001_同步过程

LTE物理层协议分析001_同步过程

L TE 物理层协议分析——同步过程本文主要分析物理层的同步过程,其主要源于协议TS36.213。

一、概述同步过程用于保证UE 与ENB 之间的上行链路的时间和频率的同步。

同步过程主要分为两类场景:一是入网场景下的同步,此时UE 通过PSS 和SSS 完成下行链路的同步,通过PRACH 和TA 命令(RAR 中)完成上行链路链路的同步;二是在网场景下的同步,此时UE 通过PSS 和SSS 信号维护下行链路的同步,通过PRACH 、DMRS/SRS 和TA 命令(RAR 或其他PDSCH 数据中)维护上行链路的同步。

需要特别注意的是,在网场景下若无上行数据传输,允许ENB 和UE 之间的上行链路不同步——即上行同步只在有上行数据传输时才被需要。

二、上行链路同步过程TA (Time Advanced )命令指示了上行所有信道和信号的发送时间提前量,用于支持所有UE 发送的上行信号能够同时到达eNodeB ,以便eNodeB 正确接收上行信号。

eNodeB 通过MAC 层的MCE 或RAR 数据单元将TA 信息以TA Command 的形式发送给UE ,TA Command 表示发送时间提前量的基本单位为16Ts 。

物理层不提供相关控制字段接口。

因此,严格意义来讲,TA 并非无线传输资源,但却决定了UE 发送的上行信号是否能够正确接收。

TA 基于上行参考信号(DMRS 、SRS 和PRACH )测量得到,如下图1-1所示, UEENB DMRS(PUSCH)/SRS/PRACHObtain the transmissiondelay by measuring SRSand DMRS MCE_TA/RARPUSCHDetermine the timeadvanced of transmittingPUSCH by MCE_TA图1-1 TA 分配示意图其中RAR 下发的TA Command 为绝对TA 命令,即UE 发送上行信号的绝对提前时间,长度11bit ;MCE_TA 下发的TA Command 为相对TA 命令,即UE 发送上行信号相对于上一次发送时刻的提前时间,此时绝对提前时间为N TA,new = N TA ,old + (TA −31)×16。

LTE物理层空中接口

LTE物理层空中接口
LTE物理层空中接口
通过本节的学习,我们将了解到
` LTE时频资源是如何组织,与码分系统相比,具有什么特点 ` LTE-FDD与LTE-TDD的帧结构是怎样的 ` 下行控制信道如何设计
` 下行共享信道如何设计
` 上行控制信道如何设计
` 上行共享信道如何设计
LTE时频资源
` RE(Reosurce Element), LTE最小的资源 ` REG(RE Group), 将4个RE组合在一起,作为更大的粒度 ` RB(Resource Block), 12subcarrier*1slot,是LTE基本调度单元 ` RB Pair,在一个TTI中两个时间上连续的,频率相同的RB
` MCS的选择由调度器根据信道质量(对应到具体的RB上)决定
CCE(Control Channel Element)
` 所谓CCE,是PDCCH时频资源的一种组织方式,CCE在PDCCH时频资源上 的物理分布是离散的,CCE编号将这些物理上离散的资源(REGs)标识起来
` CCE用于承载DCI
` 1CCE=9 REGs =36 REs ` LTE定义一个DCI使用1、2、4、8个CCE来传输,称作Aggregation Level,
物理层帧结构 – Type 1(FDD)
1 frame = 10 ms 1 frame = 10 subframe 1 subframe = 2 slot(0.5ms) Maximum FFT size (20 MHz Bandwidth) = 2048(110x12=1320
subcarrier used) Subcarrier spacing = 15 kHz Subcarrier Bandwidth 2048x15kHz = 30.72 MHz

LTE 总结

LTE 总结

LTE总结1、覆盖定义:rsrp≥-110dbm、sinr≥-3db2、band 38 D频段 2575~2635MHZ对应中心频点:37900、38098备用(覆盖道路该频段干净底噪低)3、Band 39 F频段 1880 ~1900MHZ 对应中心频点:38400(深度覆盖)4、band 40 E频段 2320~2370MHZ对应中心频点:38950(一般用于室内分布覆盖延伸系统)5、PCI(物理小区标识)=PSS(主同步信号)+3*SSS(辅同步信号)6、LTE网络架构:ue与enodeb之间接口 uu口(空口),enode b与epc接口s1口,enodeb之间接口X2口7、LTE UE状态及其互相转换:rrc connec连接态,rrc idle 空闲态8、OFDM 正交频分复用技术、下行多址方式—OFDMA、上行多址方式— SC-FDMA9、重叠覆盖定义:服务小区rsrp≥-105dbm,有3个以上邻区,rsrp相差6db之内,主控小区不明显,服务小区与众多邻区rsrp相差无几10、参考信号作用:下行信道估计、调度下行资源、切换测量LTE帧结构:1个帧10ms,半帧5ms,1个子帧1ms。

1个子帧2个时隙,1个时隙7个OFDM,1个RB=7个时域*12个频域=84个OFDM配比:F频:特殊时隙配比:3(dwpts):9(gp):2(uppts)、上下行子帧配比:ul:dl=1:3 D频:特殊时隙配比:10:2:2、上下行子帧配比:ul:dl=2:2下行F频满调度600rb、D频满调度800rb(OFDM大于9就可以传输下行数据);上行F/D 频满调度200rb;单时隙满调度100rb(现网一般20M,100rb)调制方式:64QAM(1个re编码速率对应6bit)、16QAM(4bit)、QPSK(2bit),MCS等级:32阶(0-31)详情参考lte关键技术传输模式:TM1,单天线TM2,发射分集,单流,双天线,传输10m数据包,1、2号天线同时传输10m,应用于信道质量不好时,如小区边缘TM3,开环空间复用,双流,双天线发送不同数据,应用于信道质量高且空间独立性好(高速)TM7=TM2+波束赋型,单流TM8=TM3基础上+波束赋型,双流LTE重选小区选择:开关机,s准则,ue测量到的小区rsrp大于最小接入电平(一般设为-126),满足条件,触发小区选择小区重选同频测量门限(相当与A1),一般设为44异频测量门限(相当于A2),一般设为40同频重选(相当于A3):邻区rsrp-cro(0)>服务小区rsrp+迟滞(2)异频重选:A4优先级从低到高,邻小区rsrp>最小接入电平+高优先级重选门限,持续2s,发生小区重选A5优先级从高到低,服务小区rsrp<最小接入电平+服务频点低优先级重选门限,同时满足邻小区rsrp>最小接入电平+低优先级重选门限,满足时延,发生小区重选LTE切换(属于快速硬切换,下载速率会下降,但不会为0;lte切换用x2口站内站间切换,若x2口资源不足,用s1口切换)A1事件:当服务小区电平高于某门限,停止上报测量,关闭异频测量开关服务小区电平>A1事件门限(一般设为-88)+迟滞(2),时延=256msA2事件:服务小区电平低于某门限,开始上报测量,开启异频测量开关服务小区电平<A2事件门限(一般设为-90)-迟滞(2),时延=256msA2门限设置过高,增加信道开销,影响业务质量,设置过低,影响小区切换A1、A2门限设置相差2db,防止频繁开关,对异频测量时,会影响下载速率,信道开销增加20%A3事件:同频切换,当邻区比服务小区高于某一相对值,触发切换邻小区rsrp>服务小区rsrp+迟滞(一般设为2)+ A3偏置(1),时延=256ms小区偏置(邻区级)CIO,参考后台参数,一般设为0,该参数同td一样,街角效应、室分泄露等现象可以修改该参数A3偏置设置过高,导致切换越难发生,设置过低,切换越容易发生A4事件:异频切换,优先级从低到高切换(优先级从高到底依次为E频38390、D频37900、F频38350)A4事件=A2+A4,满足时延服务小区rsrp<a2事件门限-迟滞(开启异频测量开关)邻小区rsrp>a4事件门限(一般设为-98)+迟滞(0)A4门限设置越大,越难往高优先级切换,设置越小,越容易发生切换A4小区偏置cio=0A5事件:异频切换,从高优先级切到低优先级A5事件=a2+a5,满足时延服务小区rsrp<a2事件门限-迟滞(开启异频测量开关)A5:服务小区rsrp<a5事件门限1(一般设为-102)-迟滞(0)邻小区rsrp>a5事件门限2(一般设为-98)+迟滞(0)LTE下载速率低的原因:1、覆盖(重叠覆盖、越区覆盖、室分泄露)2、模3干扰3、调度低(基站问题、用户多)4、传输模式(站点整改)5、参数设置不合理(切换参数设置不合理,双频组网A2参数设置问题)CSFB未接通的原因:1、TAC、LAC规划不一致2、4g小区同2g侧小区不存在邻区关系,缺失邻区(添加虚拟邻区)3、4g侧问题,覆盖问题、模3干扰等等4、位置区更新,TAC、LAC边界,主叫寻呼不到被叫5、2g侧问题,弱覆盖、越区覆盖、干扰等4g侧一般添加15个左右的2g邻区频点,优先添加900(一般10个左右),1800五个左右并发业务LTE小区搜索流程(初搜):1、UE搜索所有可接收到的PSS信号,选取最强扇区与之同步,获取小区的组内ID,并取得频率,时隙和子帧的初始同步2、UE解调SSS信号,获取小区组ID,CP长度,并取得帧同步3、UE解调下行参考信号(DL-CRS),获取更加精确的时间与频率同步4、在PBCH信道上读取MIB消息,获取下行带宽,发射天线数目等等5、在PDSCH信道上读取SIB消息,获取PLMN,小区ID,TDD的上下行配比.LTE随机接入:ue通过物理随机接入信道发送preamble前导码(64个,0-63),请求接入;enb确认收到请求,通过下行物理共享信道指示ue调整上行同步,ue通过上行物理共享信道发送IMSI 或TMSI,正式请求rrc连接(rrc connection request),enb通过下行物理共享信道发送rrc连接建立(rrc connection setup)异频测量为何不与同频切换一样,任何时间点都会对异频邻区进行测量?异频测量需要设置gap(中文意思是间隙、空隙),gap有两种模式,一个40ms测一次,一个80ms测一次,每次测量时间持续6ms,异频测量时不能传输任何数据,接近半个帧不能传数据,速率有一定影响,UE在异频测量时,速率会下降20%左右。

3gpp协议

3gpp协议

3GPP协议1. 引言3GPP(第三代合作伙伴计划)是一个跨国合作组织,致力于制定和发展无线通信标准和技术。

3GPP协议是由该组织制定的一系列标准和规范,用于支持全球范围内的移动通信网络。

本文档将介绍一些常见的3GPP协议,包括LTE和5G等。

2. LTE协议LTE(Long-Term Evolution)是一种4G移动通信技术,它是3GPP协议中的一部分。

LTE协议定义了整个网络架构和通信协议层,包括物理层、数据链路层、网络层和应用层等。

•物理层:LTE物理层定义了信道、调制解调、传输和编码等。

它使用了OFDM(正交频分多路复用)和MIMO(多输入多输出)等技术,以提供高速数据传输和更好的信号质量。

•数据链路层:LTE数据链路层负责广播和多址接入,以及无线资源的调度和管理。

它使用了一种称为LTE无线接入接口的协议,用于无线资源的分配和调度。

•网络层:LTE网络层包括用户面和控制面,它负责用户数据的路由和传输,以及控制消息的传递。

LTE网络层使用IP协议进行数据传输,并提供QoS(服务质量)管理、移动性管理和安全性等功能。

•应用层:LTE应用层提供基于IP的应用服务,如VoIP(语音通信)、视频流媒体和互联网访问等。

3. 5G协议5G是下一代移动通信技术,也是3GPP协议的一部分。

5G协议在LTE的基础上进行了扩展和改进,以提供更高的数据传输速度、更低的延迟和更好的网络容量。

•物理层:5G物理层采用了新的技术,如更高的频率、更宽的频带和更高的MIMO级别等。

它可以支持更高的数据传输速率和更低的延迟。

•数据链路层:5G数据链路层引入了新的帧结构和调度算法,以提高网络的容量和效率。

它还支持更复杂的调度和编码技术,以适应不同的应用需求。

•网络层:5G网络层引入了网络切片(Network Slicing)的概念,以支持不同种类的应用和服务。

它还支持更灵活的移动性管理和安全性机制。

•应用层:5G应用层将继续提供基于IP的应用服务,并支持更高质量的多媒体传输和更低的延迟。

ltebbu和rru之间的接口是什么协议

ltebbu和rru之间的接口是什么协议

ltebbu和rru之间的接⼝是什么协议
CPRI协议定义了两个协议层。

两个协议层为物理层(L1)和数据链路层(L2)。

在物理层中,将上层接⼊点的传输数据进⾏复/分接,并采⽤8B/10B编解码,通过光模块串⾏收发数据。

数据链路层定义了⼀个同步的帧结构,包含基本帧和超帧(由256个基本帧组成),数据在L2层中,通过CPRI固定的帧结构形式进⾏相应的成帧和解帧处理。

基带处理单元(BBU)和射频拉远单元(RRU)之间可以通过⼀条或多条CPRI数据链路来连接,每条CPRI数据链路⽀持614.4Mbps、1228.8M-bps和2457.6Mbps三种⽐特率⾼速串⾏传输。

当前⼯业界,通过将四条并⾏CPRI数据链路进⾏相应串⾏化处理,可实现BBU 与RRU之间通过光纤以近10Gbps(即4X2457.6 Mbps)速率超⾼速传输。

TD-LTE技术原理介绍

TD-LTE技术原理介绍

LTE上行天线技术:接收分集
关键技术
原理
接收机使用来自多个信道的副本信息能比较正确的恢复出原 发送信号,从而获得分集增益。手机受电池容量限制,因此 在上行链路中采用接收分集也可有效降低手机发射功率
帧结构
物理信道 物理层过程
接收分集的主要算法:MRC &IRC
MRC (最大比合并)
• 线性合并后的信噪比达到最大化
计算方法:TS36.213规定,特殊时隙DwPTS如果用于传输数据,那么吞吐量按照正常下行时隙的0.75倍 传输。如果采用10:2:2配置,则下行容量为3个正常时隙吞吐量+0.75倍正常时隙吞吐量。如果丢失此 0.75倍传输机会,则损失的吞吐量为0.75/3.75 = 20%
0.7ms
= 1.475ms 0.675ms
PCFICH
PHICH
PDCCH
PBCH PUCCH PDSCH\PUSCH
资源调度单位
REG REG CCE
N/A RB
资源位置
占用4个REG,系统全带宽平均分配 时域:下行子帧的第一个OFDM符号 最少占用3个REG 时域:下行子帧的第一或前三个OFDM符号 下行子帧中前1/2/3个符号中除了PCFICH、 PHICH、参考信号所占用的资源 频域:频点中间的72个子载波 时域:每无线帧subframe 0第二个slot 位于上行子帧的频域两边边带上 除了分配给控制信道及参考信号的资源
上行多址方式—SC-FDMA
关键技术 帧结构 物理信道 物理层过程
和OFDMA相同,将传输带宽划分成一系列正交的子载波资源,将不同的
子载波资源分配给不同的用户实现多址。注意不同的是:任一终端使用的
子载波必须连续 频率 用户A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、协议知识 1. LTE帧结构及物理资源基本概念RE/RB/CCE/REG/RBG 帧结构Type1:FDD(全双工和半双工)(FDD上下行数据在不同的频带里传输;使用成对频谱) 每一个无线帧长度为10ms,由20个时隙构成,每一个时隙长度为Tslot = 15630 x Ts = 0.5ms。 对于FDD,在每一个10ms中,有10个子帧可以用于下行传输,并且有10个子帧可以用于上行传输。上下行传输在频域上进行分开。

#0#1#18#19#2

Sub-frame slot

One radio frame = 10ms

帧结构Type2:TDD (TDD上下行数据可以在同一频带内传输;可使用非成对频谱) 一个无线帧10ms,每个无线帧由两个半帧构成,每个半帧长度为5ms。每一个半帧由8个常规时隙和DwPTS、GP和UpPTS三个特殊时隙构成,DwPTS和UpPTS的长度可配置,要求DwPTS、GP以及UpPTS的总长度为1ms。 One radio frame =10 ms One half frame =5 ms

# 0# 2# 3# 4# 5# 7# 8# 9 1 msDwPTSUpPTSGPDwPTSUpPTSGP DwPTS: Downlink Pilot Time Slot GP: Guard Period (GP越大说明小区覆盖半径越大) UpPTS: Uplink Pilot Slot

Ts = 1 / (15000x2048) s Frame 帧的长度:Tf = 307200 x Ts = 10ms Subframe 子帧的长度:Tsubframe = 30720 x Ts = 1ms Slot 时隙的长度:Tslot = 15360 x Ts = 0.5ms

1 Sub-Carrier = 15 kHz; 1 TTI = 1 ms => 1 sub-frame => 2 slots (0.5 ms *2) # for one user, min 2 RB allocation. 1 RB = 12 sub-carriers during 1 slot (0.5 ms) =>12 * 15kHz = 180kHz (Bandwidth); => 12 * 7 symbols= 84 REs 1 RE = 1 sub-carrier x 1 symbol period (Each symbol is QPSK, 16QAM or 64QAM modulated.)

LTE支持可变带宽:1.4MHz, 3, 5, 10, 15 和 20MHz 一个小区最少使用6个RB, 即最少包含72个sub-carriers: 6 RB * 12 sub-carriers = 72 sub-carriers 一个小区最多支持110个RB,相当于1320个sub-carriers: 110 *12 =1320 sub-carriers Channel bandwidth BWChannel [MHz]

1.4 3 5 10 15 20

Transmission bandwidth configuration NRB 6 15 25 50 75 100 Special subframe configuration Normal cyclic prefix in downlink Extended cyclic prefix in downlink DwPTS UpPTS DwPTS UpPTS Normal cyclic prefix in uplink Extended cyclic prefix in uplink Normal cyclic prefix in uplink Extended cyclic prefix in uplink

0 s6592T s2192T s2560T s

7680T

s2192T s2560T 1 s

19760T

s20480T

2 s21952T s

23040T

3 s24144T s

25600T

4 s

26336T

s7680T

s4384T s5120T 5 s6592T s4384T s5120T s20480T 6 s19760T s23040T

7 s21952T - - - 8 s24144T - - - 特殊帧格式5:DwPTS:GP:UpPTS => (6592Ts-16Ts) : (19744Ts-16Ts) : 4384Ts=> 3:9:2 特殊帧格式7:DwPTS:GP:UpPTS => (21952Ts-32Ts) : 4384Ts : 4384Ts=> 10:2:2 最小分配单位为: s2192T

Configure TDD: 上下行配置(下图) + 特殊帧格式(上图) (e.g.: 2:7 1:7) Uplink-downlink configuration Downlink-to-Uplink Switch-point periodicity Subframe number 0 1 2 3 4 5 6 7 8 9 0 5 ms D S U U U D S U U U 1 2:2 5 ms D S U U D D S U U D 2 3:1 5 ms D S U D D D S U D D 3 10 ms D S U U U D D D D D 4 10 ms D S U U D D D D D D 5 10 ms D S U D D D D D D D 6 5 ms D S U U U D S U U D TDD支持5ms和10ms的周期转换: => 5ms转换周期:一个帧的上下半帧的特殊帧格式配置相同, => 10ms转换周期:一个帧分成上下半帧,下半帧的特殊帧为DwPTS=1ms,用于DL传输(如上图3,4,5所示) RE:Resource Element,称为资源粒子,是上下行传输使用的最小资源单位。 1 RE = 1 subcarrier x 1 symbol period

RB:Resource Block,称为资源块,用于描述物理信道到资源粒子的映射。一个RB包含若干个RE。一个RB由12个在频域上的子载波和时域上一个slot周期构成(1 RB = 12 subcarriers x 1 slot)。 1个RB在频域上对应180kHz:1 RB = 12 subcarriers x 15kHz = 180kHz 1个RB在时域上对应1个时隙,1 slot =0.5ms

CCE:Control Channel Element,称为控制信道粒子,PDCCH在一个或多个CCE上传输,CCE对应于9个REG,每个REG包含4个RE,CCE从0开始编号。(1 CCE = 9 REGs = 9 x 4 REs = 36 REs) PDCCH format与CCE之间的关系如下图所示:

PDCCH format Number of CCEs Number of REGs Number of PDCCH bits

(QPSK) 0 1 9 72 1 2 18 144 2 4 36 288 3 8 72 576

REG:Resource Element Group,用来定义控制信道到RE的映射.(1 REG = 4 REs) RBG:Resource Block Group,RBG是连续的PRB的集合,其大小根据系统带宽配置的不同而定,如下图所示: System Bandwidth (Number of DL RBs) RBG Size (P)

≤10 1 11 – 26 2 27 – 6463 (e.g.: 10MHz - 50 RBs) 3 64 – 110 (e.g.: 20MHz - 100 RBs) 4

2. 下行物理信道及物理信号的功能和占用时频码域位置(DL:PDSCH/PDCCH/PHICH/PCFICH/PBCH/ PSS/SSS/RS) Page 72

©SancharGmbHPBCHS-

SCH

DwPTSGPUpPTSP-SCHSymbolsfrequencySubframe #0Slot #0Slot #1Special subframe

S-SCHSymbolsfrequencyPDCCHPDSCHPDSCHCentral 6 RBsPDCCHPBCHDwPTSGPUpPTSP-SCHCentral 6 RBs

Normal CP case

Extended CP case

Slot #0Subframe #0Slot #1Special subframe

Location of PBCH for FS2 (normal CP, extededCP):TDD:PCFICH PHICHSSS

PSS

2.1 PBCH:Physical Broadcast Channel (物理广播信道) - 主要用来传输MIB信息,MIB消息包含:DL带宽信息;PHICH组号;系统帧号SFN - MIB: DL-Bandwidth, PHICH-Config, SFN, # of antennas. - - MIB消息的重复周期为40ms,起始位置为subfram#0 of SFN mod 4 = 0。每10ms传递一次MIB,传递内容一致,40ms组成一个MIB消息。可实现时间分集,提高UE接收MIB消息时的增益,改善接收质量

2.2 PCFICH:Physical Control Format Indicator Channel (物理控制格式指示信道) - 用来指示在一个sub-frame中PDCCH传输的OFDM symbol数量(1, 2 or 3) - 在每个subframe(TTI)的第1个symbol上进行传递(symbol 0 within each TTI) - 承载CFI信息,每TTI占用16个RE资源,即4个REG

2.3 PDCCH:Physical Downlink Control Channel (物理下行控制信道) - 用于承载DCI信息,包括资源调度分配和其他控制信息,如与DL-SCH和PCH相关的HARQ信息等 - PDCCH在每个subframe的前3个symbol(symbol 0~2)中进行传递,占用个数由PCFICH承载的CFI消息来确定。 - PDCCH的大小对应于一个或者多个CCE,如下图所示:

相关文档
最新文档