大学物理单摆实验题

大学物理单摆实验题
大学物理单摆实验题

设计性实验(单摆测重力加速度)

预习题

1.重力加速度和摆长成正比,和周期的平方成反比。(错)

2.在实验设计中,为仪器配置的合理性,应使用不确定度等量分配原则(对)

3.由统计原因产生的不确定度称为A类不确定度。(对)

4.由非统计原因产生的不确定度称为B类不确定度。(对)

5.在实验设计时,可以只考虑摆长和时间的B类不确定度。(对)

6.摆长测量时,可以不考虑对小球直径的测量误差。(对)

7.用秒表时间测量时必须考虑操作者的人体反应误差。(对)

8. 单摆摆角越小越好。(错)

9.在调整单摆装置时,弧形尺可以放在任意位置。(错)

10.实验结果越接近理论值越好。(错)

考试题

1.重力加速度和摆长成正比,和周期的平方成反比。(错)

2.根据等精度测量准则,测量时间时周期数应该不变。(对)

3..实验验证时,因为时间是多次测量,所以必须计算其A类不确定度。(对)

4..实验验证时,如果摆长是单次测量,只计算其B类不确定度。(对)

5.在用单摆测量重力加速度的实验设计中,为仪器配置的合理性,我们使用了

( B )。

A,微小误差准则; B,不确定度等量分配原则;

C,粗大误差准则; D,等精度测量准则。

6.在用单摆测量重力加速度的实验中,不考虑小球直径的测量误差的根据是( A )。

A,微小误差准则; B,不确定度等量分配原则;

C,粗大误差准则; D,等精度测量准则。

7.在用单摆测量重力加速度时,摆角过大会给测量带来误差。

这个误差是( C )。

A,随机误差; B,粗大误差;

C ,方法(原理)误差;

D ,仪器误差。

8.在保证 g u g

不变的情况下,摆长L 与周期数n 的关系是( A )。

A ,L 越长,n 越小;

B ,L 越长,n 越大;

C ,L 与n 没有特定的关系。

9.在估算摆长时,考虑如下几项误差:①测长所用的仪器误差 mm L 1.01=?;

②测量时摆线与尺子不平行所带来的误差 mm L 0.22=?;③摆线弹

性造成的误差mm L 0.13=?。对其它误差忽略不计,那么,=L

u ( B )。

A ,0.7mm ;

B ,1.3mm ;

C ,1.7mm ;

D ,2.2mm 。

10.在对摆长L 和周期数n 的估算中,对A 类不确定度,( B )。

A ,必须考虑;

B ,可以不考虑;

C ,视具体情况决定。

11.在实验设计时,对空气的影响( B )。

A ,必须考虑;

B ,可以不考虑;

C ,视具体情况决定。

12.在对摆长和周期数的估算中,对A 类不确定度,( B )。

A ,必须考虑;

B ,可以不考虑;

C ,视具体情况决定。

13.在测量单摆的周期时,最佳计时起点应该是( B )。

A ,放开摆球的时刻;

B ,摆球通过弧形尺零线的时刻;

C ,方便开始计时的时刻。

14.在估算周期数时,考虑如下几项计时误差:①秒表仪器误差 s t 5.01=?;

②人在计时开始和结束时的反应时间误差 s t t 2.032=?=?。对其它误

差忽略不计,那么,=t u ( B )。

A ,0.2s ;

B ,0.3s ;

C ,0.4s ;

D ,0.6s 。

15.如图所示为测量摆长的三种方法,可认为对1l 、2l 测量的误差相同。

那么,三种方法中不确定度最小的是( A )。

A ,221l l L +=;

B ,2

1d l L +=;

C ,2

2d l L -=。

16.在调整单摆装置时,弧形尺的位置应放在( B )。

A ,距摆线悬挂点40厘米处;

B ,距摆线悬挂点50厘米处;

C ,通过目测,选择一个合适的位置即可;

D ,任意位置。

17.在用单摆测量重力加速度的实验中,摆长测量时受操作者影响最大的误差是:

( D )。

A ,测长仪器的仪器误差;

B ,摆球偏心造成的误差;

C ,摆线弹性造成的误差;

D ,尺子与摆线不平行造成的误差。

18.在用单摆测量重力加速度的实验中,时间测量时受操作者影响最大的误差是:

( C )。

A ,秒表的仪器误差;

B , 随机误差;

C ,人体反应误差。

19.测量结果表示为 g=(9.798±0.023)m/s*s,其意义是:(B )

A .所测重力加速度真值在(9.798+0.023)m/s*s--(9.798-0.023)m/s*s 之间;

B .所测重力加速度真值在(9.798+0.023)m/s*s--(9.798-0.023)m/s*s 之间

的概率为68℅;

C .所测重力加速度真值为9.821m/s*s ;

D .所测重力加速度真值为9.775)m/s*s 。

20.如果测量结果不满足设计要求,应该(C )

A .缩短摆长;

B 。缩短测量时间;

C ,增加摆长。

大学物理实验报告-单摆测重力加速度

西安交通大学物理仿真实 验报告 ——利用单摆测重力加速度 班级: 姓名: 学号:

西安交通大学模拟仿真实验实验报告 实验日期:2014年6月1日老师签字:_____ 同组者:无审批日期:_____ 实验名称:利用单摆测量重力加速度仿真实验 一、实验简介 单摆实验是个经典实验,许多著名的物理学家都对单摆实验进行过细致的研究。本实验的目的是学习进行简单设计性实验的基本方法,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源及进行修正的方法。 二、实验原理 用一根绝对挠性且长度不变、质量可忽略不计的线悬挂一个质点,在重力作用下在铅垂平面内作周期运动,就成为单摆。单摆在摆角小于5°(现在一般认为是小于10°)的条件下振动时,可近似认为是简谐运动。而在实际情况下,一根不可伸长的细线,下端悬挂一个小球。当细线质量比小球的质量小很多,而且小球的直径又比细线的长度小很多时,此种装置近似为单摆。单摆带动是满足下列公式: 进而可以推出:

式中L为单摆长度(单摆长度是指上端悬挂点到球重心之间的距离);g 为重力加速度。如果测量得出周期T、单摆长度L,利用上面式子可计算出当地的重力加速度g。 三、实验内容 1.用误差均分原理设计单摆装置,测量重力加速度g. 设计要求: (1) 根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法. (2) 写出详细的推导过程,试验步骤. (3) 用自制的单摆装置测量重力加速度g,测量精度要求△g/g<1%. 可提供的器材及参数: 游标卡尺,米尺,千分尺,电子秒表,支架,细线(尼龙线),钢球,摆幅测量标尺(提供硬白纸板自制),天平(公用). 假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s; 米尺精度△米≈0.05cm;卡尺精度△卡≈0.002cm;千分尺精度△千≈0.001cm;秒表精度△秒≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s左右,所以实验人员开,停秒表总的反应时间近似为△人≈0.2s.

大学物理实验思考题完整版(淮阴工学院)

实验一:物体密度 1、量角器的最小刻度是0.5.为了提高此量角器的精度,在量角器上附加一个角游标,使游标30个分度正好与量角器的29个分度的等弧长。求:(1、)该角游标的精度;( 2、)如图读数 答案:因为量角器的最小刻度为30’.游标30分度与量角器29 分度等弧长,所以游标精度为30/30=1,图示角度为149。45’ 2、测定不规则的固体密度时,若被测物体浸入水中时表面吸附着水泡,则实验结果所得密度值是偏大还是偏小?为什么? 答案:如果是通过观察水的体积的变化来测量不规则物体的体积,那么计算的密度会减小,因为质量可以测出,而吸附气泡又使测量的体积增大(加上了被压缩的气泡的体积)所 以密度计算得出的密度减小 实验二:示波器的使用 1、示波器有哪些组成部分?每部分的组成作用? 答案:电子示波器由Y偏转系统、X偏转系统、Z通道、示波管、幅度校正器、扫描时间校正器、电源几部分组成。 Y偏转系统的作用是:检测被观察的信号,并将它无失真或失真很小地传输到示波管的垂直偏转极板上。 X偏转系统的作用是:产生一个与时间呈线性关系的电压,并加到示波管的x偏转板上去,使电子射线沿水平方向线性地偏移,形成时间基线。 Z通道的作用是:在时基发生器输出的正程时间内产生加亮信号加到示波管控制栅极上,使得示波管在扫描正程加亮光迹,在扫描回程使光迹消隐。 示波管的作用是:将电信号转换成光信号,显示被测信号的波形。 幅度校正器的作用是:用于校正Y通道灵敏度。 扫描时间校正器的作用是:用于校正x轴时间标度,或用来检验扫描因数是否正确。 电源的作用是:为示波器的各单元电路提供合适的工作电压和电流。 2、为什么在实验中很难得到稳住的李萨如图形,而往往只能得到重复变化的某一组李萨如图形? 答案:因为在实验中很难保证X、Y轴的两个频率严格地整数倍关系,故李莎茹图形总是在不停旋转,当频率接近整数倍关系时,旋转速度较慢; 实验三:电位差计测量电动势 1、测量前为什么要定标?V0的物理意义是什么?定标后在测量Ex时,电阻箱为什么不能在调节? 答案:定标是因为是单位电阻的电压为恒定值,V0的物理意义是使实验有一个标准的低值,电阻箱不能动是因为如果动了电阻箱就会改变电压,从而影响整个实验;为了保持工 作电流不变.设标准电压为En,标准电阻为Rn,则工作电流为I=En/Rn,保持工作电流不变,当测量外接电源时,调节精密电阻Ra,使得电流计示数为零,有E=I*Ra,若测试过程中调节了电位器Rc,则导致I产生变化,使测得的E不准(错误)

大学物理实验报告示例(含数据处理)

怀化学院 大学物理实验实验报告 系别物信系年级2009专业电信班级09电信1班姓名张三学号09104010***组别1实验日期2009-10-20 实验项目:长度和质量的测量

【实验题目】长度和质量的测量 【实验目的】 1. 掌握米尺、游标卡尺、螺旋测微计等几种常用测长仪器的读数原理和使用方法。 2. 学会物理天平的调节使用方法,掌握测质量的方法。 3. 学会直接测量和间接测量数据的处理,会对实验结果的不确定度进行估算和分析,能正确地表示测量结果。 【实验仪器】(应记录具体型号规格等,进实验室后按实填写) 直尺(50cm)、游标卡尺(0.02mm)、螺旋测微计(0~25mm,0.01mm),物理天平(TW-1B 型,分度值0.1g ,灵敏度1div/100mg),被测物体 【实验原理】(在理解基础上,简明扼要表述原理,主要公式、重要原理图等) 一、游标卡尺 主尺分度值:x=1mm,游标卡尺分度数:n (游标的n 个小格宽度与主尺的n-1小格长度相等),游标尺分度值: x n n 1-(50分度卡尺为0.98mm,20分度的为:0.95mm ),主尺分度值与游标尺 分度值的差值为:n x x n n x = -- 1,即为游标卡尺的分度值。如50分度卡尺的分度值为: 1/50=0.02mm,20分度的为:1/20=0.05mm 。 读数原理:如图,整毫米数L 0由主尺读取,不足1格的小数部分l ?需根据游标尺与主尺对齐的刻线数 k 和卡尺的分度值x/n 读取: n x k x n n k kx l =--=?1 读数方法(分两步): (1)从游标零线位置读出主尺的读数.(2)根据游标尺上与主尺对齐的刻线k 读出不足一分格的小数,二者相加即为测量值.即: n x k l l l l +=?+=00,对于50分度卡尺:02.00?+=k l l ; 对20分度:05.00?+=k l l 。实际读数时采取直读法读数。 二、螺旋测微器 原理:测微螺杆的螺距为0.5mm ,微分筒上的刻度通常为50分度。当微分筒转一周时,测微螺杆前进或后退0.5mm ,而微分筒每转一格时,测微螺杆前进或后退0.5/50=0.01mm 。可见该螺旋测微器的分度值为0.01mm ,即千分之一厘米,故亦称千分尺。 读数方法:先读主尺的毫米数(注意0.5刻度是否露出),再看微分筒上与主尺读数准线对齐的刻线(估读一位),乖以0.01mm, 最后二者相加。 三:物理天平 天平测质量依据的是杠杆平衡原理 分度值:指针产生1格偏转所需加的砝码质量,灵敏度是分度值的倒数,即n S m = ?,它表示 天平两盘中负载相差一个单位质量时,指针偏转的分格数。如果天平不等臂,会产生系统误差,消除方法:复称法,先正常称1次,再将物放在右盘、左盘放砝码称1次(此时被测质量应为砝码质量减游码读数),则被测物体质量的修正值为:21m m m ?=。 【实验内容与步骤】(实验内容及主要操作步骤)

大学物理实验报告-单摆测重力加速度

大学物理仿真实验 实验报告 拉伸法钢丝测杨氏模量 实验名称:拉伸法测金属丝的杨氏模量

一、实验目的 1、学会测量杨氏模量的一种方法; 2、掌握光杠杆放大法测量微小长度的原理; 3、学会用逐差法处理数据; 二、实验原理 任何物体(或材料)在外力作用下都会发生形变。当形变不超过某一限度时,撤走外力则形变随之消失,为一可逆过程,这种形变称为弹性形变,这一极限称为弹性极限。超过弹性极限,就会产生永久形变(亦称塑性形变),即撤去外力后形变仍然存在,为不可逆过程。当外力进一步增大到某一点时,会突然发生很大的形变,该点称为屈服点,在达到屈服点后不久,材料可能发生断裂,在断裂点被拉断。人们在研究材料的弹性性质时,希望有这样一些物理量,它们与试样的尺寸、形状和外加的力无关。于是提出了应力F/S(即力与力所作用的面积之比)和应变ΔL/L(即长度或尺寸的变化与原来的长度或尺寸之比)之比的概念。在胡克定律成立的范围内,应力和应变之比是一个常数,即 / ) /( =/ / ((1) ? ) FL = S L L L E? F S E被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅与材料的结构、化学成分及其加工制造方法有关。某种材料发生一定应变所需要的力大,该材料的杨氏模量也就大。杨氏模量的大小标志了材料的刚性。

通过式(1),在样品截面积S 上的作用应力为F ,测量引起的相对伸长量ΔL/L ,即可计算出材料的杨氏模量E 。因一般伸长量ΔL 很小,故常采用光学放大法,将其放大,如用光杠杆测量ΔL 。光杠杆是一个带有可旋转的平面镜的支架,平面镜的镜面与三个足尖决定的平面垂直,其后足即杠杆的支脚与被测物接触,见图1。当杠杆支脚随被测物上升或下降微小距离ΔL 时,镜面法线转过一个θ角,而入射到望远镜的光线转过2θ角,如图2所示。当θ很小时, l L /tan ?=≈θθ (2) 式中l 为支脚尖到刀口的垂直距离(也叫光杠杆的臂长)。根据光的反射定律,反射角和入射角相等,故当镜面转动θ角时,反射光线转动2θ角,由图可 D b =≈θθ22tan (3) 式中D 为镜面到标尺的距离,b 为从望远镜中观察到的标尺移动的距离。 从(2)和(3)两式得到 D b l L 2=? (4) 由此得 D bl L 2=? (5)

大学物理实验报告及答案

(此文档为word格式,下载后您可任意编辑修改!) 大学物理实验报告答案大全(实验数据及思考题答案全包括) 伏安法测电阻 实验目的(1) 利用伏安法测电阻。 (2) 验证欧姆定律。 (3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。 U 实验方法原理根据欧姆定律,R =,如测得U 和I 则可计算出R。值得注意的是,本实验待测电阻有两只, I 一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。 实验装置待测电阻两只,0~5mA 电流表1 只,0-5V 电压表1 只,0~50mA 电流表1 只,0~10V 电压表一只,滑线变阻器1 只,DF1730SB3A 稳压源1 台。 实验步骤本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。必要时,可提示学生参照第2 章中的第2.4 一节的有关内容。分压电路是必须要使用的,并作具体提示。 (1) 根据相应的电路图对电阻进行测量,记录U 值和I 值。对每一个电阻测量3 次。 (2) 计算各次测量结果。如多次测量值相差不大,可取其平均值作为测量结果。 (3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。 数据处理 (1) 由?U =U max ×1.5% ,得到?U 1 = 0.15V,?U2 = 0.075V ; (2) 由?I = I max ×1.5% ,得到?I 1 = 0.075mA,?I 2 = 0.75mA; (3) 再由u= R ( ?U )2 + ( ?I ) 2 ,求得u= 9 ×101?, u= 1?; R 3V 3I R1 R2 (4) 结果表示R1 = (2.92 ± 0.09) ×10光栅衍射实验目的 (1) 了解分光计的原理和构造。 (2) 学会分光计的调节和使用方法。?, R 2 = (44 ±1)? (3) 观测汞灯在可见光范围内几条光谱线的波长实验方法原理

大学物理实验报告范例

怀化学院 大学物理实验实验报告系别数学系年级2010专业信息与计算班级10信计3班姓名张三学号**组别1实验日期2011-4-10 实验项目:验证牛顿第二定律

1.气垫导轨的水平调节 可用静态调平法或动态调平法,使汽垫导轨保持水平。静态调平法:将滑块在汽垫上静止释放,调节导轨调平螺钉,使滑块保持不动或稍微左右摆动,而无定向运动,即可认为导轨已调平。 2.练习测量速度。 计时测速仪功能设在“计时2”,让滑块在汽垫上以一定的速度通过两个光电门,练习测量速度。 3.练习测量加速度 计时测速仪功能设在“加速度”,在砝码盘上依次加砝码,拖动滑块在汽垫上作匀加速运动,练习测量加速度。 4.验证牛顿第二定律 (1)验证质量不变时,加速度与合外力成正比。 用电子天平称出滑块质量滑块m ,测速仪功能选“加速度”, 按上图所示放置滑块,并在滑块上加4个砝码(每个砝码及砝码盘质量均为5g),将滑块移至远离滑轮一端,使其从静止开始作匀加速运动,记录通过两个光电门之间的加速度。再将滑块上的4个砝码分四次从滑块上移至砝码盘上,重复上述步骤。 (2)验证合外力不变时,加速度与质量成反比。 计时计数测速仪功能设定在“加速度”档。在砝码盘上放一个砝码(即 g m 102=),测量滑块由静止作匀加速运动时的加速度。再将四个配重块(每个配重 块的质量均为m ′=50g)逐次加在滑块上,分别测量出对应的加速度。 【数据处理】 (数据不必在报告里再抄写一遍,要有主要的处理过程和计算公式,要求用作图法处理的应附坐标纸作图或计算机打印的作图) 1、由数据记录表3,可得到a 与F 的关系如下: 由上图可以看出,a 与F 成线性关系,且直线近似过原点。 上图中直线斜率的倒数表示质量,M=1/=172克,与实际值M=165克的相对误差: %2.4165 165 172=- 可以认为,质量不变时,在误差范围内加速度与合外力成正比。

大学物理实验报告单摆测重力加速度

——利用单摆测重力加速度 班级: 姓名: 学号: 西安交通大学模拟仿真实验实验报告 实验日期:2014年6月1日 老师签字:_____ 同组者:无 审批日期:_____ 实验名称:利用单摆测量重力加速度仿真实验 一、实验简介 单摆实验是个经典实验,许多著名的物理学家都对单摆实验进行过细致的研究。本实验的目的是学习进行简单设计性实验的基本方法,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源及进行修正的方法。 二、实验原理 用一根绝对挠性且长度不变、质量可忽略不计的线悬挂一个质点,在重力作用下在铅垂平面内作周期运动,就成为单摆。单摆在摆角小于5°(现在一般认为是小于10°)的条件下振动时,可近似认为是简谐运动。而在实际情况下,一根不可伸长的细线,下端悬挂一个小球。当细线质量比小球的质量小很多,而且小球的直径又比细线的长度小很多时,此种装置近似为单摆。单摆带动是满足下列公式: 进而可以推出: 式中L 为单摆长度(单摆长度是指上端悬挂点到球重心之间的距离);g 为重力加速度。如果测量得出周期T 、单摆长度L ,利用上面式子可计算出当地的重力加速度g 。 西安交通大学物理仿真实验报告

三、实验内容 1. 用误差均分原理设计单摆装置,测量重力加速度g. 设计要求: (1)根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法. (2)写出详细的推导过程,试验步骤. (3)用自制的单摆装置测量重力加速度g,测量精度要求△g/g < 1%. 可提供的器材及参数: 游标卡尺,米尺,千分尺,电子秒表,支架,细线(尼龙线),钢球,摆幅测量标尺(提供硬白纸板自制),天平(公用). 假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s; 米尺精度△ 米≈0.05cm;卡尺精度△ 卡 ≈0.002cm;千分尺精度△ 千 ≈0.001cm; 秒表精度△ 秒 ≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s 左右,所以实验人员开,停秒表总的反应时间近似为△ 人 ≈0.2s. 2. 对重力加速度g的测量结果进行误差分析和数据处理,检验实验结果是否 达到设计要求. 3. 研究单摆周期与摆长,摆角,悬线的质量和弹性系数,空气阻力等因素的关 系,试分析各项误差的大小. 四、实验仪器 单摆仪,摆幅测量标尺,钢球,游标卡尺(图1-图4)

大学物理实验课后答案

实验一霍尔效应及其应用 【预习思考题】 1.列出计算霍尔系数、载流子浓度n、电导率σ及迁移率μ的计算公式,并注明单位。 霍尔系数,载流子浓度,电导率,迁移率。 2.如已知霍尔样品的工作电流及磁感应强度B的方向,如何判断样品的导电类型? 以根据右手螺旋定则,从工作电流旋到磁感应强度B确定的方向为正向,若测得的霍尔电压为正,则样品为P型,反之则为N型。 3.本实验为什么要用3个换向开关? 为了在测量时消除一些霍尔效应的副效应的影响,需要在测量时改变工作电 流及磁感应强度B的方向,因此就需要2个换向开关;除了测量霍尔电压,还要测量A、C间的电位差,这是两个不同的测量位置,又需要1个换向开关。总之,一共需要3个换向开关。 【分析讨论题】 1.若磁感应强度B和霍尔器件平面不完全正交,按式(5.2-5)测出的霍尔系数比实际值大还是小?要准确测定值应怎样进行? 若磁感应强度B和霍尔器件平面不完全正交,则测出的霍尔系数比实际值偏小。要想准确测定,就需要保证磁感应强度B和霍尔器件平面完全正交,或者设法测量出磁感应强度B和霍尔器件平面的夹角。 2.若已知霍尔器件的性能参数,采用霍尔效应法测量一个未知磁场时,测量误差有哪些来源? 误差来源有:测量工作电流的电流表的测量误差,测量霍尔器件厚度d的长度测量仪器的测量误差,测量霍尔电压的电压表的测量误差,磁场方向与霍尔器件平面的夹角影响等。 实验二声速的测量 【预习思考题】 1. 如何调节和判断测量系统是否处于共振状态?为什么要在系统处于共振的条件下进行声速测定? 答:缓慢调节声速测试仪信号源面板上的“信号频率”旋钮,使交流毫伏表指针指示达到最大(或晶体管电压表的示值达到最大),此时系统处于共振状态,显示共振发生的信号指示灯亮,信号源面板上频率显示窗口显示共振频率。在进行声速测定时需要测定驻波波节的位置,当发射换能器S1处于共振状态时,发射的超声波能量最大。若在这样一个最佳状态移动S1至每一个波节处,媒质压缩形变最大,则产生的声压最大,接收换能器S2接收到的声压为最大,转变成电信号,晶体管电压表会显示出最大值。由数显表头读出每一个电压最大值时的位置,即对应的波节位置。因此在系统处于共振的条件下进行声速测定,可以容易和准确地测定波节的位置,提高测量的准确度。 2. 压电陶瓷超声换能器是怎样实现机械信号和电信号之间的相互转换的? 答:压电陶瓷超声换能器的重要组成部分是压电陶瓷环。压电陶瓷环由多晶结构的压电材料制成。这种材料在受到机械应力,发生机械形变时,会发生极化,同时在极化方向产生电场,这种特性称为压电效应。反之,如果在压电材料上加交

大学物理实验报告范文

大学物理实验报告范文 科技实验报告是描述、记录某个科研课题过程和结果的一种科技应用文体。撰写实验报告是科技实验工作不可缺少的重要环节。下面是小编为大家整理的最新小学生零花钱调查报告,欢迎阅读参考! 精确测定银川地区的重力加速度 测量结果的相对不确定度不超过5% 初步确定有以下六种模型方案: 方法一、用打点计时器测量 所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等. 利用自由落体原理使重物做自由落体运动.选择理想纸带,找出起始点0,数出时间为t的P点,用米尺测出OP的距离为h,其中t=0.02秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g. 方法二、用滴水法测重力加速度 调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2. 方法三、取半径为R的玻璃杯,内装适当的液体,固定在旋转台上.旋转台绕其对称轴以角速度ω匀速旋转,这时

液体相对于玻璃杯的形状为旋转抛物面 重力加速度的计算公式推导如下: 取液面上任一液元A,它距转轴为x,质量为m,受重力mg、弹力N.由动力学知: Ncosα-mg=0 (1) Nsinα=mω2x (2) 两式相比得tgα=ω2x/g,又tgα=dy/dx,∴dy=ω2xdx/g, ∴y/x=ω2x/2g. ∴ g=ω2x2/2y. .将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标x、y测出,将转台转速ω代入即可求得g. 方法四、光电控制计时法 调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2. 方法五、用圆锥摆测量 所用仪器为:米尺、秒表、单摆. 使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h(见图1),用秒表测出摆锥n转所用的时间t,则摆锥角速度ω=2πn/t 摆锥作匀速圆周运动的向心力F=mgtgθ,而tgθ=r/h

大学物理仿真实验报告

大学物理仿真实验报告

单摆测量重力加速度 一、实验目的 本实验的目的是学习进行简单设计性实验的基本方法,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源及进行修正的方法。 二、实验原理 单摆的结构如实验仪器中所示,其一级近似周期公式为: 由此公式可知,测量周期与摆长就可以计算得到重力加速度g 三、实验内容 一用误差均分原理设计一单摆装置,测量重力加速度g. 设计要求: (1) 根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法. (2) 写出详细的推导过程,试验步骤. (3) 用自制的单摆装臵测量重力加速度g,测量精度要求△g/g < 1%. 可提供的器材及参数: 游标卡尺、米尺、千分尺、电子秒表、支架、细线(尼龙线)、钢球、摆幅测量标尺(提供硬白纸板自制)、天平(公用). 假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s; 米尺精度△米≈0.05cm;卡尺精度△卡≈0.002cm;千分尺精度△千≈0.001cm;秒表精度△秒≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s左右,所以实验人员开,停秒表总的反应时间近似为△人≈0.2s. 二. 对重力加速度g的测量结果进行误差分析和数据处理,检验实验结果是否达到设计要求. 三. 自拟实验步骤研究单摆周期与摆长,摆角,悬线的质量和弹性系数,

空气阻力等因素的关系,试分析各项误差的大小. 四. 自拟试验步骤用单摆实验验证机械能守恒定律. 四、实验仪器实验仪器 单摆仪,摆幅测量标尺,钢球,游标卡尺

大学物理实验思考题

测非线性电阻的伏安特性 [思考题]: ⒈从二极管伏安特性曲线导通后的部分找出一点,根据实验中所用的电表,试分析若电流表接,产生的系统误差有多大?如何对测量结果进行修正? 答:如图5.9-1,将开关接于“1”,称电流表接法。由于电压表、电流表均有阻(设为R L 与R A ),不能严格满足欧姆定律,电压表所测电压为(R L +R A )两端电压,这种“接入误差”或 “方法误差”是可以修正的。测出电压V 和电流I ,则V I =R L +R A , 所以R L =V I -R A =R L ′+R A ①。 接入误差是系统误差,只要知道了R A ,就可把接入误差计算出来加以修正。通常是适当选择电表和接法,使接入误差减少至能忽略的程度。 由①式可看出,当R A <>R A ,应采用接法。 ⒉根据实验中所用仪器,如果待测电阻为线性电阻,要求待测电阻R 的测量相对误差不大于4%,若不计接入误差,电压和电流的测量值下限V min 和I min 应取何值? 答:根据误差均分原则,电流表、电压表的准确度等级、量程进行计算.

迈克尔逊干涉仪的使用 [预习思考题] 1、根据迈克尔逊干涉仪的光路,说明各光学元件的作用。 答:在迈克尔逊干涉仪光路图中(教材P181图5.13--4),分光板G将光线分成反射与透射两束;补偿板G/使两束光通过玻璃板的光程相等;动镜M1和定镜M2分别反射透射光束和反射光束;凸透镜将激光汇聚扩束。 2、简述调出等倾干涉条纹的条件及程序。 答:因为公式λ=2△d △k 是根据等倾干涉条纹花样推导出来的,要用此 式测定λ,就必须使M1馆和M2/(M2的虚像)相互平行,即M1和M2相互垂直。另外还要有较强而均匀的入射光。调节的主要程序是: ①用水准器调节迈氏仪水平;目测调节激光管(本实验室采用激光光源)中心轴线,凸透镜中心及分束镜中心三者的连线大致垂直于定镜M2。 ②开启激光电源,用纸片挡住M1,调节M2背面的三个螺钉,使反射光点中最亮的一点返回发射孔;再用同样的方法,使M1反射的最亮光点返回发射孔,此时M1和M2/基本互相平行。 ③微调M2的互相垂直的两个拉簧,改变M2的取向,直到出现圆形干涉条纹,此时可以认为M1与M2/已经平行了。同方向旋动大、小鼓轮,就可以观察到非定域的等倾干涉环纹的“冒”或“缩”。 3、读数前怎样调整干涉仪的零点?

大学物理实验单摆测重力加速度

大学物理实验单摆测重力加速度 学院: 班级: 姓名: 学号: 时间: 辅导老师: 实验目的 1、研究测定重力加速度的方法; 2、测定本地区的重力加速度。 实验器材 带孔小钢球一个,约1m长的细线一条,铁架台,米尺,数字毫秒计,记时器,螺旋测微仪. 实验原理

一个小球和一根细线就可以组成一 个单摆. 单摆在摆角很小的情况下 做简谐运动.单摆的周期与振幅、摆 球的质量无关.与摆长的二次方根 成正比.与重力加速度的二次方根 成反比. 单摆做简谐运动时,其周期为: 故有: 因此只要测出单摆的摆长L和振动周期T,就可以求出当地的重力加速度g的值,并可研究单摆的周期跟摆长的关系.

实验步骤 (1)取约1m长的细线穿过带孔的小钢球,并打一个比 小孔大一些的结,然后拴在桌边的支架上. (2)用米尺量出悬线长L′,准确到毫米;用螺旋测微 仪测摆球直径,算出半径r。则单摆的摆长为L+r. (3)把单摆从平衡位置拉开一个很小的角度(例如不 超过10o),然后放开小球让它摆动,用停表分别测量单摆完成10、15、20、25、30、35次全振动所用的时间,求出完成一次全振动所需要的时间,这个平均时间就是单摆的周期. (4)把测得的周期和摆长的数值代入公式,求 出重力加速度g的值. 数据处理 误差分析 ①本实验系统误差主要来源于单摆模型本身是否符 合要求.即:悬点是否固定,是单摆还是复摆,球、线是否符合要求,振动是圆锥摆还是在同一竖直平面内振动,以及测量哪段长度作为摆长等等。只要注意了上面这些方面,就可以使系统误差减小到远小于偶然

误差而忽略不计的程度. ②本实验偶然误差主要来自时间(即单摆周期)的测量上.因此,要注意测准时间(周期).要从摆球经过平衡位置开始计时,并采用倒数计时计数的方法,不能多记或漏记振动次数.为了减小偶然误差,应进行多次测量后取平均值. ③本实验中长度(摆线长、摆球的直径)的测量值.

大学物理实验思考题答案

大学物理实验思考题答案

相关答案 力学和热学 电磁学 光学 近代物理 1. 是否可以测摆动一次的时间作周期值?为什么? 答:不可以。因为一次测量随机误差较大,多次测量可减少随机误差。 2. 将一半径小于下圆盘半径的圆盘,放在下圆盘上,并使中心一致,讨论此时三线摆的周期和空载时的周期相比是增大、减小还是不一定?说明理由。 答:当两个圆盘的质量为均匀分布时,与空载时比较,摆动周期将会减小。因为此时若把两盘看成为一个半径等于原下盘的圆盘时,其转动惯量I0小于质量与此相等的同直径的圆盘,根据公式(3-1-5),摆动周期T0将会减小。 3. 三线摆在摆动中受空气阻尼,振幅越来越小,它的周期是否会变化?对测量结果影响大吗?为什么? 答:周期减小,对测量结果影响不大,因为

本实验测量的时间比较短。 实验2 金属丝弹性模量的测量 1. 光杠杆有什么优点,怎样提高光杠杆测量的灵敏度? 答:优点是:可以测量微小长度变化量。提高放大倍数即适当地增大标尺距离D或适当地减小光杠杆前后脚的垂直距离b,可以提高灵敏度,因为光杠杆的放大倍数为2D/b。 2. 何谓视差,怎样判断与消除视差? 答:眼睛对着目镜上、下移动,若望远镜十字叉丝的水平线与标尺的刻度有相对位移,这种现象叫视差,细调调焦手轮可消除视差。 3. 为什么要用逐差法处理实验数据? 答:逐差法是实验数据处理的一种基本方法,实质就是充分利用实验所得的数据,减少随机误差,具有对数据取平均的效果。因为对有些实验数据,若简单的取各次测量的平均值,中间各测量值将全部消掉,只剩始末两个读数,实际等于单次测量。为了保持多次测量的优越性,一般对这种自变量等间隔变化的情况,常把数据分成两组,两组逐次求差再算这个差的平均值。

大学物理实验思考题答案

大学物理实验思考题答案 实验一:用三线摆测物体的转动惯量 1. 是否可以测摆动一次的时间作周期值?为什么? 答:不可以。因为一次测量随机误差较大,多次测量可减少随机误差。 2. 将一半径小于下圆盘半径的圆盘,放在下圆盘上,并使中心一致,讨论此时三线摆的周期和空载时的周期相比是增大、减小还是不一定?说明理由。 答:当两个圆盘的质量为均匀分布时,与空载时比较,摆动周期将会减小。因为此时若把两 盘看成为一个半径等于原下盘的圆盘时,其转动惯量10小于质量与此相等的同直径的圆盘, 根据公式(3-1-5),摆动周期T0将会减小。 3. 三线摆在摆动中受空气阻尼,振幅越来越小,它的周期是否会变化?对测量结果影响大吗?为什么?答:周期减小,对测量结果影响不大,因为本实验测量的时间比较短。 [实验二]金属丝弹性模量的测量 1. 光杠杆有什么优点,怎样提高光杠杆测量的灵敏度? 本帖隐藏的内容需要回复才可以浏览 答:优点是:可以测量微小长度变化量。提高放大倍数即适当地增大标尺距离D或适当地 减小光杠杆前后脚的垂直距离b,可以提高灵敏度,因为光杠杆的放大倍数为2D/b。2?何谓视差,怎样判断与消除视差? 答:眼睛对着目镜上、下移动,若望远镜十字叉丝的水平线与标尺的刻度有相对位移,这种现象叫视差,细调调焦手轮可消除视差。 3.为什么要用逐差法处理实验数据? 答:逐差法是实验数据处理的一种基本方法,实质就是充分利用实验所得的数据,减少随机误差,具有对数据取平均的效果。因为对有些实验数据,若简单的取各次测量的平均值,中间各测量值将全部消掉,只剩始末两个读数,实际等于单次测量。为了保持多次测量的优越性,一般对这种自变量等间隔变化的情况,常把数据分成两组,两组逐次求差再算这个差 的平均值。 [实验三]随机误差的统计规律 1?什么是统计直方图?什么是正态分布曲线?两者有何关系与区别?本帖隐藏的内容需要回复才可以浏览答:对某一物理量在相同条件下做n次重复测量,得到一系列测量值,找出它的最大值和最小值,然后确定一个区间,使其包含全部测量数据,将区间分成若干小区间,统计测量结果出现在各小区间的频数M,以测量数据为横坐标,以频数M为纵坐标,划出各小区间及其对应的频数高度,则可得到一个矩形图,即统计直方图。 如果测量次数愈多,区间愈分愈小,则统计直方图将逐渐接近一条光滑的曲线,当n趋向于 无穷大时的分布称为正态分布,分布曲线为正态分布曲线。 2. 如果所测得的一组数据,其离散程度比表中数据大,也就是即S(x)比较大,则所得到的周期平均值是否也会差异很大? 答:(不会有很大差距,根据随机误差的统计规律的特点规律,我们知道当测量次数比较大时,对测量数据取和求平均,正负误差几乎相互抵消,各误差的代数和趋于零。

大学物理实验报告范例简易版

The Short-Term Results Report By Individuals Or Institutions At Regular Or Irregular Times, Including Analysis, Synthesis, Innovation, Etc., Will Eventually Achieve Good Planning For The Future. 编订:XXXXXXXX 20XX年XX月XX日 大学物理实验报告范例简 易版

大学物理实验报告范例简易版 温馨提示:本报告文件应用在个人或机构组织在定时或不定时情况下进行的近期成果汇报,表达方式以叙述、说明为主,内容包含分析,综合,新意,重点等,最终实现对未来的良好规划。文档下载完成后可以直接编辑,请根据自己的需求进行套用。 摘要:热敏电阻是阻值对温度变化非常敏 感的一种半导体电阻,具有许多独特的优点和 用途,在自动控制、无线电子技术、遥控技术 及测温技术等方面有着广泛的应用。本实验通 过用电桥法来研究热敏电阻的电阻温度特性, 加深对热敏电阻的电阻温度特性的了解。 关键词:热敏电阻、非平衡直流电桥、电 阻温度特性 1、引言 热敏电阻是根据半导体材料的电导率与温 度有很强的依赖关系而制成的一种器件,其电 阻温度系数一般为(-0.003~+0.6)℃-1。因

此,热敏电阻一般可以分为: Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件 常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。国产的主要是指MF91~MF96型半导体热敏电阻。由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。大多应用于测温控温技术,还可以制成流量计、功率计等。

大学物理实验报告优秀模板.doc

大学物理实验报告优秀模板 大学物理实验报告模板 实验报告 一.预习报告 1.简要原理 2.注意事项 二.实验目的 三.实验器材 四.实验原理 五.实验内容、步骤 六.实验数据记录与处理 七.实验结果分析以及实验心得 八.原始数据记录栏(最后一页) 把实验的目的、方法、过程、结果等记录下来,经过整理,写成的书面汇报,就叫实验报告。 实验报告的种类因科学实验的对象而异。如化学实验的报告叫化学实验报告,物理实验的报告就叫物理实验报告。随着科学事业的日益发展,实验的种类、项目等日见繁多,但其格式大同小异,比较固定。实验报告必须在科学实验的基础上进行。它主要的用途在于帮助实验者不断地积累研究资料,总结研究成果。 实验报告的书写是一项重要的基本技能训练。它不仅是对每次实验

的总结,更重要的是它可以初步地培养和训练学生的逻辑归纳能力、综合分析能力和文字表达能力,是科学论文写作的基础。因此,参加实验的每位学生,均应及时认真地书写实验报告。要求内容实事求是,分析全面具体,文字简练通顺,誊写清楚整洁。 实验报告内容与格式 (一) 实验名称 要用最简练的语言反映实验的内容。如验证某程序、定律、算法,可写成“验证×××”;分析×××。 (二) 所属课程名称 (三) 学生姓名、学号、及合作者 (四) 实验日期和地点(年、月、日) (五) 实验目的 目的要明确,在理论上验证定理、公式、算法,并使实验者获得深刻和系统的理解,在实践上,掌握使用实验设备的技能技巧和程序的调试方法。一般需说明是验证型实验还是设计型实验,是创新型实验还是综合型实验。 (六) 实验内容 这是实验报告极其重要的内容。要抓住重点,可以从理论和实践两个方面考虑。这部分要写明依据何种原理、定律算法、或操作方法进行实验。详细理论计算过程. (七) 实验环境和器材 实验用的软硬件环境(配置和器材)。

大学物理实验思考题答案及解析教学提纲

实验四、波器及其应用 1.在示波器状况良好的情况下,荧光屏看不见亮点,怎样才能找到亮点?显示的图形不清晰怎么办? 首先将亮点旋钮调至适中位置,不宜过大,否则损坏荧光屏,也不宜聚焦。在示波器面板上关掉扫描信号后(如按下x-y键),调节上下位移键或左右位移键。调整聚焦旋钮,可使图形更清晰。 2.如果正弦电压信号从Y轴输入示波器,荧光屏上要看到正弦波,却只显示一条铅直或水平直线,应该怎样调节才能显示出正弦波? 如果是铅直直线,则试检查x方向是否有信号输入。如x-y键是否弹出,或者(t/div)扫描速率是否在用。如果是水平直线,则试检查y方向是否信号输入正常。如(v/div)衰减器是否打到足够档位。 3.观察正弦波图形时,波形不稳定时如何调节? 调节(t/div)扫描速率旋钮及(variable)扫描微调旋钮,以及(trig level)触发电平旋钮。 4.观察李萨如图形时,如果只看到铅直或水平直线的处理方法? 因为李萨如图形是由示波器x方向的正弦波信号和y方向的正弦波信号合成。所以,试检查CH1通道中的(v/div)衰减器旋钮或CH2通道中的(v/div)衰减器旋钮。 5.用示波器测量待测信号电压的峰-峰值时,如何准确从示波器屏幕上读数? 在读格数前,应使“垂直微调”旋到CAL处。建议用上下位移(position)旋钮将正弦波的波峰或波谷对齐某一横格再数格数,就不会两头数格时出现太大的误差。 6.用示波器怎样进行时间(周期)的测量? 在读格数前,应使“垂直微调”旋到CAL处。根据屏幕上x轴坐标刻度,读得一个周期始末两点间得水平距离(多少div),如果t/div档示值为0.5ms/div,则周期=水平距离(div)×0.5ms/div。 7.李萨如图形不稳定怎么办? 调节y方向信号的频率使图形稳定。 实验六、霍尔效应(Hall Effect) 1、实验过程中导线均接好,开关合上,但Vh无示数,Im和Is示数正常,为什么? (1) Vh组的导线可能接触不良或已断。仔细检查导线与开关连接以及导线是否完好正常。 (2)Vh的开关可能接触不良。反复扳动开关看是否正常。 (3)可能仪器的显示本身有问题。 2、Im和Is示数稳定,Vh示数极不稳定,为什么? 仪器本身问题。更换仪器。 3、利用对称测量法测霍耳电压时,改变Is或Im方向,霍耳电压值的符号不改变? (1)可能由于霍耳元件的四根连线连接错误而导致霍耳元件已烧坏。 (2)可能导线未接在中间的接线柱上,导致开关不能改变方向。

大学物理实验思考题答案

实验一:用三线摆测物体的转动惯量 1. 是否可以测摆动一次的时间作周期值?为什么? 答:不可以。因为一次测量随机误差较大,多次测量可减少随机误差。 2. 将一半径小于下圆盘半径的圆盘,放在下圆盘上,并使中心一致,讨论此时三线摆的周期和空载时的周期相比是增大、减小还是不一定?说明理由。 答:当两个圆盘的质量为均匀分布时,与空载时比较,摆动周期将会减小。因为此时若把两盘看成为一个半径等于原下盘的圆盘时,其转动惯量I0小于质量与此相等的同直径的圆盘,根据公式(3-1-5),摆动周期T0将会减小。 3. 三线摆在摆动中受空气阻尼,振幅越来越小,它的周期是否会变化?对测量结果影响大吗?为什么? 答:周期减小,对测量结果影响不大,因为本实验测量的时间比较短。 [实验二] 金属丝弹性模量的测量 1. 光杠杆有什么优点,怎样提高光杠杆测量的灵敏度? 答:优点是:可以测量微小长度变化量。提高放大倍数即适当地增大标尺距离D或适当地减小光杠杆前后脚的垂直距离b,可以提高灵敏度,因为光杠杆的放大倍数为2D/b。 2. 何谓视差,怎样判断与消除视差? 答:眼睛对着目镜上、下移动,若望远镜十字叉丝的水平线与标尺的刻度有相对位移,这种现象叫视差,细调调焦手轮可消除视差。 3. 为什么要用逐差法处理实验数据? 答:逐差法是实验数据处理的一种基本方法,实质就是充分利用实验所得的数据,减少随机误差,具有对数据取平均的效果。因为对有些实验数据,若简单的取各次测量的平均值,中间各测量值将全部消掉,只剩始末两个读数,实际等于单次测量。为了保持多次测量的优越性,一般对这种自变量等间隔变化的情况,常把数据分成两组,两组逐次求差再算这个差的平均值。 [实验三]

大学物理仿真实验报告概要

大学物理仿真实验报告 姓名: 学号: 班级:

实验-----利用单摆测量重力加速度 实验目的 利用单摆来测量重力加速度 实验原理 单摆的结构参考图1单摆仪,一级近似的周期公式为 由此通过测量周期摆长求重力加速度 实验仪器 单摆仪、摆幅测量标尺、钢球、游标卡尺 实验内容 一.用误差均分原理设计一单摆装置,测量重力加速度g. 设计要求: (1)根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法. (2)写出详细的推导过程,试验步骤.

(3)用自制的单摆装置测量重力加速度g,测量精度要求△g/g < 1%. 可提供的器材及参数: 游标卡尺、米尺、千分尺、电子秒表、支架、细线(尼龙线)、钢球、摆幅测量标尺(提供硬白纸板自制)、天平(公用). 假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s; 米尺精度△米≈0.05cm;卡尺精度△卡≈0.002cm;千分尺精度△千≈0.001cm;秒表精度△秒≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s左右,所以实验人员开,停秒表总的反应时间近似为△人≈0.2s. 二.对重力加速度g的测量结果进行误差分析和数据处理,检验实验结果是否达到设计 要求. 三.自拟实验步骤研究单摆周期与摆长,摆角,悬线的质量和弹性系数,空气阻力等因素 的关系,试分析各项误差的大小. 四.自拟试验步骤用单摆实验验证机械能守恒定律. 实验数据 摆线长+小球直径L=91.50cm

D(平均)=(1.750+1.752+1.744+1.740+1.749+1.748)÷6=1.7 47m R=D/2=0.850cm l=L-R=91.05cm t=95.91s,周期数n=50,周期T=1.92s 所以g=9.751 2ΔT/t=0.0022,ΔL/l=0.0005,所以Δg/g=0.27%,Δg=0.026 所以: g=(9.751±0.026) 实验结论与误差分析: 结论:g=(9.751±0.026),Δg/g=0.27%<1%,所以达到设计要求。 误差分析: 1.若θ>5°(即角度过大)因为T 与θ相关,当θ越大时T也越大,所以θ偏大,测量 值比值偏小。

大学物理实验思考题解答

用分光计测棱镜玻璃的折射率 [预习思考题] 1.分光计主要由哪几部分组成各部分的作用是什么为什么要设置一对游标 2.什么是最小偏向角利用最小偏向角法测棱镜折射率的公式是什么 3. 望远镜调焦至无穷远是什么含义为什么当在望远镜视场中能看见清晰且无视差的绿十字像时,望远镜已调焦至无穷远 答:望远镜调焦至无穷远是指将望远镜的分划板调至其物镜的焦面位置上,使从无穷远处射来的光线、即平行光会聚于分划板上。 根据薄透镜近轴成像与光线反射的原理,当从分划板下方的透明十字中出射的光线经物镜折射与平面镜反射后能清晰且无视差地成像于望远镜的视场中(即成像于分划板上)时,分划板必处于望远镜物镜的焦面位置上,故此时望远镜已调焦至无穷远。 4.为什么当平面镜反射回的绿十字像与调节用叉丝重合时,望远镜主光轴必垂直于平面镜为什么当双面镜两面所反射回的绿十字像均与调节用叉丝重合时,望远镜主光轴就垂直于分光计主轴 答:调节用叉丝与透明十字位于分划板中心两侧的对称位置上。根据薄透镜近轴成像与光线反射的原理,要使平面镜反射回的绿十字像与调节用叉丝重合,则与望远镜出射平行光平行的副光轴和与平面镜反射平行光平行的副光轴必须与望远镜主光轴成相等的角且三轴共面。要达到此要求,平面镜的镜面就必须垂直于望远镜主光轴。 当双面镜两面所反射回的绿十字像均与调节用叉丝重合时,仪器系统必同时满足以下条件:①双面镜的镜面平行于载物台转轴,即分光计主轴;②望远镜的主光轴垂直于双面镜的镜面。根据立体几何的知识易知,此时望远镜的主光轴必垂直于分光计主轴。 5.为什么要用“二分法”调节望远镜主光轴与分光计的主轴垂直 答:事实上,调望远镜主光轴与分光计主轴严格垂直的方法不止一种,用“二分法”调节的优点在于快捷。可以证明,用“二分法”调节可以迅速地使双面镜的镜面平行于分光计主轴(实际操作中一般只需调两三次就可实现),同时在调节中又始终保持望远镜主光轴与双面镜镜面垂直,从而使调节工作迅速方便地完成。 6.如何测量最小偏向角 答:略(详见教材)。 [实验后思考题] ⒈通过实验,你认为分光计调节的关键在何处 答:主观题,请学生自答。 ⒉能否直接通过三棱镜的两个光学面来调望远镜主光轴与分光计主轴垂直 答:不能。原因如下。 我们通过调节载物台面与望远镜的倾斜度总可以把仪器系统调整到如图所示的状态。图中,E为分光计主轴OO/上的任一点,EF、EQ分别为E点到三棱镜两光学面A/ACC/与A/ABB/ 的距离;θ 1、θ 2 分别为EF、EQ与OO/轴的夹角,且θ 1 =θ 2 ≠90°;望远镜主光轴∥EG。 容易证明,在此状态下,望远镜的主光轴首先⊥A/ABB/面,而当三棱镜随载物台转过φ角(即EF与EG的夹角)后,A/ACC/面就转至与先前A/ABB/面平行或重合的位置,此时望远镜的主光轴又⊥A/ACC/面。由此可见,在三棱镜随同载物台转动φ角前后,三棱镜两光学面反回的绿十字像都与调节用叉丝重合,但此时,望远镜的主光轴显然不垂直OO/轴。

相关文档
最新文档