泛函分析课后习题答案
泛函分析Rudin习题1

t1 A t n A C ,
这蕴涵着 C co ( A) ;进一步,
CC
C co( A) .反过来的包含由 co( A) C 给出.
3.Proof. (a)设 A X 是开的, C 是 A 的凸壳,那么 A C 蕴涵着 A C .定理 1.13 说C 是 凸的,再由第 2 题就得到 C C ;进一步, C C 是开的. (b)设 E X 是有界的, B 是 X 的一个凸局部基.对每个 V B ,选取t 0 使 E tV .第 2 题指出 co( E ) tV .第 5 题因此指出 co( E ) 是有界的. (c)对 0 X 的每个邻域V ,选取 0 X 的邻域U 和 t 0 使U U V , A tU , B tU . 那么 A B tU tU tV .第 5 题因此指出 A B 是有界的. (d)是 X 中加法连续性的结果. (e)设 x A B ,那么 ( x A) B .选取 0 X 的一个邻域V 使
f (V ) ( 1 (V ))
是 Y 的开集.因此 f 是开的. 反过来的蕴涵是明显的. 这就完成了证明.
10.Proof. (a)设 dimY n , e1 , , en X 使 e1 , , en 成为 Y 的一组基.给定 0 X 的邻 域 V ,标量乘法的连续性给出一个 0 使
5 Chapter 1: Topological Vector Spaces
是 0 Y 的一个邻域. 同样的推理可以用到 (V ) 的每个点.因此 (V ) ,从而 ,是开的. (b)设 : X / N Y 是 诱导的向量空间同构.作为 N 是闭子空间的推论得到: X / N 是 一个有限维拓扑向量空间;结合定理 1.21 就得到 还是一个同胚. 再由 和第 9 题即得.
泛函分析习题解答

第一章 练习题1. 记([,])C a b 是闭区间[,]a b 上连续函数全体构成的集合, 在([,])C a b 上定义距离如下:(,)|()()|,,([,])baf g f x g x dx f g C a b ρ=-∀∈⎰,(1)([,])C a b 按ρ是否完备?(2)(([,]),)C a b ρ的完备化空间是什么?答:(1) 不完备, 例如对于[,][0,2]a b =以及1,2,n =L ,定义,01,():1,1 2.n n x x f x x ⎧≤<=⎨≤≤⎩ 则{()}([0,2])n f x C ⊂在本题所定义的距离的意义下是Cauchy 列, 因为111(,)|()()|110,(,).11n m n m n m f f f x f x dxx dx x dxm n n m ρ=-≤+=+→→∞++⎰⎰⎰另一方面, 点列{()}n f x 并不能在本题所定义的距离的意义下收敛到([0,2])C 中的某个元. 事实上, 在几乎处处收敛的意义下, 我们有0,[0,1)()()1,[1,2].n x f x g x x ∈⎧→=⎨∈⎩因此, 根据Lebesgue 有界收敛定理, 可以得到11100(,)|()()|1|0|0.1n n nnf g f x g x dxx dx x dx n ρ=-=-==→+⎰⎰⎰但()([0,2])g x C ∉.(2) ([,])C a b 的完备化空间是1([,])L a b . 因为(i) 在距离ρ的意义下, ([,])C a b 是1([,])L a b 的稠密子集. 事实上, 任意取定一个1()([,])f x L a b ∈, 需要证明: 对于任意的0ε>, 存在()[,]g x C a b ∈, 使得[,](,)|()()|a b f g f x g x dx ρε=-<⎰.事实上, 首先根据积分的绝对连续性, 存在0δ>, 使得当[,]E a b ⊂, 只要mE δ<, 就有|()|3Ef x dx ε<⎰.因为()f x (Lebesque)可积, 故几乎处处有限, 即10N N m E ∞==I ,其中{[,]||()|}N E x a b f x N =∈>. 由此可以得到 lim ()0N N m E →∞=(因为{}N E 是渐缩集列并且[,]a b 的测度有限),故存在某个自然数N , 使得N mE δ<且|()|3NE f x dx ε<⎰,因此有|()|f x N ≤,[,]\N x a b E ∈.引入一个新函数定义为(),[,]\():0,,NNf x x a b E f x E ∈⎧=⎨⎩% 显然对于[,]x a b ∈恒有|()|f x N ≤%. 由Lusin 定理, 存在连续函数()(,)g x C ∈-∞+∞和闭集[,]F a b ⊂, 使得([,]\)min{,/3}m a b F N δε<且|()|g x N ≤, 进而()()g x f x ≡%,x F ∈.则()g x 限制在[,]a b 即为所求, 因为: [,](,)|()()|a b f g f x g x dx ρ=-⎰([,]\)|()()|a b F Ff xg x dx ⋃=-⎰[,]\|()()||()()|a b FFf xg x dx f x f x dx ≤-+-⎰⎰%[,]\\(|()|)|()()||()()|NNa b FF E F E f x N dxf x f x dx f x f x dx⋂≤++-+-⎰⎰⎰%%[,]\|()|([,]\)a b Ff x dx Nm a b F ≤+⎰\|()|0NNF E F E f x dx dx ⋂++⎰⎰333εεεε<++=.(ii) 1(([,]),)L a b ρ是完备的空间.2. 设(,)X ρ是距离空间,A 是X 的子集,对任意的x X ∈,记(,)inf (,)y Ax A x y ρρ∈=,则(1)(,)x A ρ是x 的连续函数.(2) 若{}n x 是X 中的点列, 使(,)0n x A ρ→,{}n x 是否为Cauchy 列? 为什么? 证:(1) 任意取定12,x x X ∈, 对于任意的y X ∈根据三角不等式, 有1122(,)(,)(,)x y x x x y ρρρ≤+, 2211(,)(,)(,)x y x x x y ρρρ≤+.对两端关于y A ∈取下确界, 可以得到1122inf (,)(,)inf (,)y Ay Ax y x x x y ρρρ∈∈≤+, 2211inf (,)(,)inf (,)y Ay Ax y x x x y ρρρ∈∈≤+.即1122(,)(,)(,)x A x x x A ρρρ≤+, 2211(,)(,)(,)x A x x x A ρρρ≤+.由此可得1212|(,)(,)|(,)x A x A x x ρρρ-≤.由此容易证明()f x (,)x A ρ=是X 上的连续函数, 实际上, (,)x A ρ还满足Lipschitz 常数等于1的Lipschitz 条件.(2) 答: 未必是Cauchy 列. 例如取X =R , 其中的距离是Euclid 距离. 对于{1,1}A =-, 对于1,2,n =L , 定义点列为1(1).n n x n=-+对于点列{}n x ,不难验证,1(,)0n x A nρ=→; 但显然{}n x 不是Cauchy 列. 这里的原因就在于(,)x A ρ不是点到点之间的距离, 而是点到集合的距离, 当这个集合A 含有不止一个点时, (,)x A ρ不再具有点点之间距离的性质.3. E 是nR 中的Lebesgue 可测集合, 试证()L E ∞按距离(,)esssup |()()|x Ef g f x g x ρ∈=-是不可分空间.证法一:记为方便起见, 设[,]E a b =. 定义[,]1,[,],()()0,(,].a x a f x x x b λλλχλ∈⎧==⎨∈⎩显然()f x λ有界,可测, 因此必属于([,])L a b ∞. 记{()|(,]}A f x a b λλ=∈.则([,])A L a b ∞⊂.既然对于不同的12,[,]a b λλ∈, 1f λ与2f λ不同的部分是正测度集, 容易看出A 的势是ℵ.进而有(不妨设12λλ<)1212121212[,][,]\0[,][,]\0[,][,][,][,]\0(,][,][,]\0(,)infsup |()()|inf sup |()()|inf sup |()()|infsup () 1.E a b x a b E mE E a b x a b E mE a a E a b x a b E mE E a b x a b E mE f f f x f x f x f x x x x λλλλλλλλλλρχχχ⊂∈=⊂∈=⊂∈=⊂∈==-=-=-==我们用反证法证明所需的结论.设([,])L a b ∞是可分的,则其必有可数的稠密子集123{,,,,,}i g g g g L L , 因此至少有一个i g 属于两个不同的1(,1/3)S f λ和2(,1/3)S f λ.而由三角不等式, 我们有12121(,)(,)(,)112.333i i f f f g g f λλλλρρρ=≤+≤+=这是一个矛盾. 因此([,])L a b ∞不可能是可分的.证法二:既然E 是正测度集,存在0R >使得((0,))0m S R E ⋂>. 不难验证, 存在一列正数1{}i i R ∞=满足:120i R R R R <<<<<<L L ;且1([(0,)\(0,)])0i i m E S R S R +⋂>.对于每一个12(,,,,)i λλλλ=L L ,其中0i λ=或1, 定义1(),[(0,)\(0,)]i i i f x x E S R S R λλ+=∈⋂,1,2,i =L . 显然()f x λ有界,可测, 因此必属于()L E ∞. 记{()|{0,1}}A f x λλ=∈N ,其中{0,1}N表示具有上述性质的λ的全体. 则()A L E ∞⊂.既然对于不同的,λμ∈{0,1}N, (不妨设1(,,,)i λλλ=L L , 1(,,,)i μμμ=L L 且对于某个i ,0i λ=1i μ=)f λ与f μ不同的部分至少是正测度集1[(0,)\(0,)]i i E S R S R +⋂, 容易看出A 的势与{0,1}N的势都是连续统的势ℵ.进而有11\0((0,)\(0,))\0((0,)\(0,))\01(,)inf sup |()()|infsup|()()|inf sup|| 1.i i i i F E x E F mF F E x E S R S R FmF i i F E x E S R S R F mF f f f x f x f x f x λμλμλμρλμ++⊂∈=⊂∈⋂=⊂∈⋂=≥=-≥-=-= 我们用反证法证明所需的结论.设()L E ∞是可分的,则其必有可数的稠密子集123{,,,,,}i g g g g L L , 因此至少有一个j g 属于两个不同的(,1/3)S f λ和(,1/3)S f μ.而由三角不等式, 我们有1(,)(,)(,)11.33j j f f f g g f λμλμρρρ=≤+≤+这是一个矛盾. 因此()L E ∞不可能是可分的. 补充题.证明[,]L a b ∞是不可分空间. 证:记{}[,]()a t K x a t b χ=<<,其中[,]1,,():0,.a t a x t x t x b χ≤≤⎧=⎨<≤⎩显然[,]K L a b ∞⊂, 且只要12,[,]t t a b ∈,12t t ≠, 则有12[,][,],a t a t K χχ∈, 且因为(不妨设12t t <)12(,]t t 的测度为正, 故1212[,][,][,][,][,]||||sup |()()|a t a t a t a t L a b ess x x χχχχ∞-=-1212(,](,]sup |()|1t t x t t x χ∈==.因此, 由(,)a b 是不可数集, 而K 的基数与(,)a b 的基数相同, 故也是不可数集,且K 中任何两个不同元的距离均为1.如果[,]L a b ∞是可分的, 因此有一个可数的稠密子集合{()|1,2,}k A f x k ==L , 且11(,)3kk S f K ∞=⊇U . 但这是荒谬的, 因为上式左端只有可数多个开球, 右端有不可数多个元, 所以至少有K 中的两个不同的12[,][,],a t a t χχ属于同一个开球01(,)3k S f , 由此得到矛盾:121002[,][,][,][,][,][,][,]1||||||||||||112.333a t a t L ab a t k k a t L a b L a b f f χχχχ∞∞∞=-≤-+-<+= 此矛盾表明[,]L a b ∞不可能是可分的.4. 设([,])kC a b 是闭区间[,]a b 上具有k 阶连续导数的函数全体, 定义:()()[,](,)max |()()|,,([,])ki i k x a b i f g f x g x f g C a b ρ∈==-∈∑试证:(1)([,])kC a b 是完备的距离空间; (2)若定义||||(,0)f f ρ=,则(([,]),||||)kC a b ⋅是Banach 空间.证:(1) 这里只证明该距离是完备的. 设1{()}n n f x ∞=是([,])k C a b (0k =时, 0([,])C a b 就理解为[,]C a b )中该距离意义下的Cauchy 列. 因此当,m n →∞时,有()()[,]0(,)max |()()|0ki i m n m n x a b i f f f x f x ρ∈==-→∑.由此容易知道对于每一个0,1,,i k =L , ()1{()}i n n f x ∞=是0([,])C a b 中的Cauchy 列. 根据0([,])C a b 的完备性,知()1{()}i n n f x ∞=收敛到0([,])C a b 中的某个元, 记其为()i f x , 则0()([,])i f x C a b ∈, 且()()()i i n f x f x −−→−−→,,0,1,,n i n →∞=L , 其中“−−→−−→”表示是一致收敛. 如果我们记0()()f x f x =利用数学分析中函数序列一致收敛的分析性质, 可以得到12()()(),()(),,()().k kf x f x f x f x fx f x '''===L (*)例如, 因为1()()n f x f x −−→−−→', 故 1()()xxn aaf t dt f t dt −−→−−→'⎰⎰, 即1()()()xn n af x f a f t dt −−→−−→-⎰, 又0()()n f x f x −−→−−→及0()()nf a f a −−→−−→, 故 001()()()xaf x f a f t dt -=⎰.求导即可得到01()()f x f x '=, 即 1()()f x f x '=.归纳地可得(*).因此0()()f x f x =([,])kC a b ∈且()[,](,)max |()()|ki i n n x a b i f f f x f x ρ∈==-∑()()[,]max |()()|0ki i n x a b i f x f x ∈==-→∑.即([,])kC a b 是完备的距离空间.(2)证略.7. 证明有限维线性赋范空间是完备的.证:记该有限维(实)线性赋范空间为E , 是n 维的,范数记为||||x ,需要证明(,||||)E ⋅是完备的. 记E 中的一组基为:12,,,n v v v L .因此对于任意的x E ∈, 存在唯一一组实数12,,,n x x x L , 使得1122n n x x x x =+++v v v L , 反之亦然.(i) 我们断言存在一个与x 无关的常数0K >, 使得||||||i x K x ≤, 1,2,,i n =L .(*)首先定义一个映射:nf ¡→¡为: 对于任意的12(,,,)n x x x L n ∈¡,121122(,,,):||||||||n n n f x x x x x x x ==+++v v v L L .则对于任意的,x y E ∈(1122n n y y y y =+++v v v L )有1122||||(,,,)n n x y f x y x y x y -=---L 111||||||||||||n n n x y x y ≤-⋅++-⋅v v L≤由此容易知道f 是n R 上的连续函数. 记1B ∂是nR 中的单位球面, 即21121{(,,,)|1}nn k k B x x x x =∂==∑L . 则对于任意的11(,,)n x x B ∈∂L , 有1(,,)0n f x x >L .(事实上, 若有1(,,)0n f x x =L 则111(,,)||||0n n n f x x x x =++=v v L L ,因此110n n x x ++=v v L , 但12,,,n v v v L 线性无关, 故必有120n x x x ====L , 此与11(,,)n x x B ∈∂L 相矛盾. )注意到1B ∂是n R 中的有界闭集(紧子集), 连续函数f 必可在其上达到正的最小值1/0K >.现在我们可以证明式(*). 事实上, 对于任意的x E ∈,存在唯一的一组实数12,,,n x x x L , 使得1122n n x x x x =+++v v v L , 不失一般性, 可设0x ≠因此, 12,,,n x x x L 不全为零, 注意到1y B ⎛⎫ ⎪=∈∂L , 故12()1,n f y f K +++=⎛⎫ ⎪=≥v L L或1122||||n n x x x x =+++≥v v v L 由此容易得出(*)式.(ii) 设()1{}k k x ∞=是E 中的基本列, 这里()()()()1122k k k k n n x x x x =+++v v v L ,即()()||||0k l x x -→, 当,k l →∞.利用(*)式便可以得到对于每一个1,2,,i n =L , 成立()()()()||||||0k l k l i i x x K x x -≤-→, 当,k l →∞.即()1{}k i k x ∞=是1¡中的基本列, 因此收敛. 设()(0)k i i x x →, (k →∞,1,2,,i n =L ).记(0)()(0)(0)1122k n n xx x x =+++v v v L , 显然(0)x E ∈. 根据E 中收敛的等价性(即按范数收敛意味着每个分量收敛或即按坐标收敛), 容易得到()(0)||||0k x x -→, 当k →∞.因此(,||||)E ⋅是完备的.9. 设X 为线性赋范空间, 0X 是X 的线性闭子空间. 在X 中定义等价关系:为0x y x y X ⇔-∈:. 对任意的x X ∈, 以[]x 记x 的等价类, 令0/{[]|}X X x x X =∈.称0/X X 为商空间, 在0/X X 上定义线性运算如下: (i) [][][]x y x y +=+, ,x y X ∈, (ii) [][]x x λλ=, ,x X λ∈∈C .并定义0||[]||inf ||||y X x x y ∈=+.试证: 0/X X 按0||[]||x 也是一个线性赋范空间.证:(一) 0/X X 按照所定义的线性运算是线性空间 (证明略).(二) 0||[]||x 是0/X X 中的范数. 按照定义, 对于每一个 0[]/x X X ∈显然0||[]||inf ||||y X x x y ∈=+是一个确定的数, 因此00||||:/X X ⋅→R 是映射.(i) (非负性) 对于x X ∈, 显然0||[]||inf ||||0y X x x y ∈=+≥.(正定性) 当0[]=[0]=x X 时, 有00||[]||||[0]||inf ||||0y X x y ∈===.反之, 如果我们假设0000||[]||inf ||||0y X x x y ∈=+=, 需要证明 00[]=[0]=x X , 也只需证明00x X ∈. 事实上, 根据下确界的定义, 对每一个自然数1,2,k =L , 存在0k y X ∈, 使得00000111||||||[]||inf ||||k y X x y x x y k k k∈+<+=++=, 由此得到一个序列0{}k y X ⊂且||||0k y x ⋅−−−→-.因为0X 是闭子空间因此00x X -∈故00x X ∈, 即00[]=[0]=x X . (ii) (正齐性) 对于,x X λ∈∈C , 如果0λ=, 则000x x X λ==∈, 故0[][0]0[][]x X x x λλ====. 如果0λ≠, 则当y 取遍0X 中的所有元时,yλ也取遍0X 中的所有元, 反之亦然, 因此 00||[]||inf ||||inf ||||||y X y X yx x y x λλλλ∈∈=+=⋅+||inf ||||||inf ||||yy X X yyx x λλλλλ∈∈=+=+||inf ||||||||[]||z X x z x λλ∈=+=⋅,(iii) (三角不等式) 设,x y X ∈. 设0,u v X ∈, 当,u v 取遍0X 中的所有元时, u v +也取遍0X 中的所有元, 反之亦然, 进而, ,u v 的取法是相互独立的, 因此0||[]||inf ||||u X x y x y u ∈+=++,inf ||||u v X x y u v ∈=+++()0,inf ||||||||u v X x u y v ∈≤+++inf ||||inf ||||u X v X x u y v ∈∈=+++00||[]||||||x y =+.也可用下面的证明方法: 对于任意的0ε>, 由下确界的定义, 存在0,u v X εε∈使得0||||||[]||x u x εε+<+, 0||||||[]||y v y εε+<+,因此可以得到0||[]||inf ||||||||u X x y x y u x y u v εε∈+=++≤+++||||||||x u y v εε≤+++ 00||[]||||[]||2x y ε<++.因为0ε>的任意性, 可得0||[]||x y +00||[]||||[]||x y ≤+.10. 设X 为线性赋范空间,1nn x∞=∑收敛, 即1kk nn S x==∑按X 中的范数收敛, 则11nn n n xx ∞∞==≤∑∑.证:记1kk n n S x ==∑.对于有限项之和, 利用三角不等式, 成立111||||kk k nn n n n n S xx x ∞====≤≤∑∑∑. (*)又因为1kk nn S x==∑在范数意义下收敛, 其极限自然可以记为1nn x∞=∑, 即1k n n S x ∞=→∑,再一次利用三角不等式, 可以得到当k →∞时11||||0k nk n n n S xS x ∞∞==-≤-→∑∑,即1||||k nn S x∞=→∑, 因此在(*)式中令k →∞, 可得11nn n n xx ∞∞==≤∑∑.11. 设{0}X ≠为线性赋范空间, 试证X 是Banach 空间当且仅当{|||||1}x X x ∈=是完备的.证:记{|||||1}T x X x =∈=.(必要性) 设X 是Banach 空间, {}n x T ⊂是T 中的Cauchy 列, 即||||1n x =且||||0m n x x -→(当,m n →∞).因为X 是Banach 空间, 故{}n x 收敛, 即存在0x X ∈, 使得||||0n x x ⋅−−→, 由三角不等式容易得到:||||||||||||x y x y -≤-,因此00||||||||||||0n n x x x x -≤-→,知0||||||||n x x →, 故0||||1x =因此0x T ∈, 即T 完备.(充分性) 设T 是完备的, 并设{}n x X ⊂是X 中的Cauchy 列, 即||||0m n x x -→当,m n →∞. 由||||||||||||0m n m n x x x x -≤-→,知{||||}n x 是1¡中的Cauchy 数列, 因此收敛, 即存在某个数A ∈¡使得||||n x A →.如果0A =, 显然{}n x 收敛于X 中的零元, 故不妨设0A >. 由此知当n 充分大时, 总有||||0n x >, 不失一般性, 可设对所有的n , 都有||||0n x >. 考虑新的点列:||||nn n x y x =, 显然n y T ∈. 进而 ||||||||||||m n m n m n x xy y x x -=- ||||||||||||||||m m m n m n n n x x x xx x x x ≤-+- 111||||||||||||||||m m n m n n x x x x x x =-+-, 由此易知{}n y T ⊂是T 中的Cauchy 列. 因为T 作为距离空间是完备的, 故{}n y 收敛, 即存在0y T ∈, 使得||||0n y y ⋅−−→. 最后我们断言: ||||0n x Ay ⋅−−→.事实上,0||||||||||||||||n n n n n x Ay x Ay x x x -=- 0||||||||n n n Ay x y x =-000||||||||n n n Ay x y y y x ⎛⎫≤-+- ⎪⎝⎭00||||1||||n n n A x y y y x ⎛⎫=-+-⎪⎝⎭0→.综上可得X 是Banach 空间.15.试证定理4中(f)式定义的(,)x y 的确满足内积分的定义.证明: 即要证明: 对于赋范线性空间(,||||)X ⋅, 如果范数满足平行四边形法则:2222||||||||2(||||||||)x y x y x y ++-=+(*)则由221(,):[||||||||]4x y x y x y =+--R (K =R 时) (f ’)或221(,):[||||||||4x y x y x y =+--C22||||||||]i x iy i x iy ++-- (K =C 时) (f)所定义的确实是内积. (i) 对于x X ∈,221(,)[||||||||4x x x x x x =+--C22||||||||]i x ix i x ix ++--2||||0x =≥,因为|1||1|i i +=-, 并且根据范数的性质2(,)00(,)||||0x x x x x x =⇔==⇔=C C .同理可证(,)0x x ≥R 且(,)00x x x =⇔=R . (ii)首先考虑K =R 时的情形, 对于,,x y z X ∈, 可将(,)(,)x z y z +R R 表示为如下形式: (,)(,)x z y z +R R221[||||||||4x z x z =+--22||||||||]y z y z ++-- ()()22221||||||||||||||||4x z y z x z y z ⎡⎤=+++--+-⎣⎦ 22142222x y x yx y x yz z ⎛⎫+-+-=++++-⎪ ⎪⎝⎭22142222x y x y x y x y z z ⎛⎫+-+---++--⎪ ⎪⎝⎭, 再由平行四边形法则222222x y x y x y x yz z +-+-++++-22222x y x y z ⎛⎫+-=++ ⎪ ⎪⎝⎭; 222222x y x y x y x yz z +-+--++--22222x y x y z ⎛⎫+-=-+ ⎪ ⎪⎝⎭. 因此(,)(,)x z y z +R R 221222x y x yz z⎛⎫++=+-- ⎪ ⎪⎝⎭2,2x y z +⎛⎫= ⎪⎝⎭R.进而, 令0y =可以得到(,)x z R 2,2x z ⎛⎫= ⎪⎝⎭R,这里利用了(0,)0z =R . 因为x 是任意的, 故可将x 换为x y +, 即可得到(,)x y z +R 2,2x y z +⎛⎫= ⎪⎝⎭R. 对照上述二式, 即有(,)(,)x z y z +R R =(,)x y z +R .(**)至于K =C 时的情形, 注意到从形式上看(,)=(,)(,)x y x y i x iy +C R R ,利用上述已经证明了的等式(**)不难得到(,)(,)x z y z +C C =(,)x y z +C .(iii) 首先考虑K =R 时的情形, 对于,x z X ∈和任意实数,s t ∈R , 由已经证明的(**)式有(,)(,)sx z tx z +R R =((),)s t x z +R ,可知函数():(,)f t tx z =R 满足如下的函数方程:()()()f s f t f s t +=+.(***)又():(,)f t tx z =R 关于t 是连续的, 因此必有()(1)(,)f t f t t x z ==R .(事实上, 由(***)式对于任意的正整数n 和m , 利用数学归纳法有()()f ns f s s s =+++L ()()()()f s f s f s nf s =+++=L ;进而取1s n =, 有11()(1)f f n n=, 因此 1()()(1)n nf nf f m m m==. 又(***)中取0s t ==可得(0)0f =, 取s t =-可得()()f s f s -=-. 因此对于所有的有理数, 均成立()(1)f s sf =.利用()f s 的连续性, 可知对所有的实数也成立. ) 因此得到(,)()(1)(,)tx z f t f t t x z ===R R .至于K =C 时的情形, 注意到由(f)221(,)[||||||||4ix y ix y ix y =+--C 22||||||||]i ix iy i ix iy ++--221[||||||||4ix y ix y =+--22||||||||]i x y i x y ++-- 22221[||||||||4i ix y i ix y =-++-22||||||||]i x y i x y ++-- 22[||||||||4ii x iy i x iy =--++22||||||||]x y x y ++-- (,)i x y =C .由此也容易得到, 对于t ∈C(,)(,)tx z t x z =C C .(iv) 当K =R 时, 容易知道221(,)[||||||||](,)4x y x y x y y x =+--=R R ;而当K =C 时, 直接计算也可得到221(,)[||||||||4x y x y x y =+--C 22||||||||]i x iy i x iy -++-221[||||||||4y x y x =+--22||||||||]i y ix i y ix --++ (,)y x =C .16.设D 是C 中单位开圆盘, 即{|||1}D z z =∈<C . dA 是D 上的面积测度, 2()a L D 定义为22(){|()|}a L D f f Df z dz =<∞⎰在中解析且|. (见课本第六页例4)在2()a L D 中定义内积为,()()Df g f z g z dA =⎰.试证(1)1()n n z ϕ-=(1,2,n =L )构成2()a L D 的正交基.(2) 若2()af L D ∈的Taylor 展开式是0()kk k f z a z ∞==∑, 则201kk a k∞=<∞+∑;(3) 若2()ag L D ∈的展开式是0()kk k g z b z∞==∑, 则,1k kk a b f g k π∞==+∑. 证:先给出一个预备性结果: 对于2()a f L D ∈,因为()f z 是解析函数, 因此可以展开为幂级数: 0()kk k f z a z∞==∑.由此可以断言:(),()n f z z ϕ=n a - (*)事实上,因为()f z 是解析函数,幂级数kk k a z∞=∑在D 中内闭一致收敛, 即对于D 的任意闭子集F ,kk k a z∞=∑在F 上一致收敛. 对于01ε<<, 以下取闭子集F 为:{|||1}D z D z εε=∈≤-.容易知道D ε是D 中的闭子集.对于每一个1,2,n =L ,注意到级数10k k a z -=∑在ε中仍旧一致收敛, 以下的积分号和求和号可以交换顺序:(),()()()n n Df z z f z z dA ϕϕ=⎰lim ()()n D f z z dA εεϕ→=⎰100lim k D k a z dA εε∞-→==∑⎰10k n k D a z z dA εε∞-→==⎰10(cos sin )(cos(1)sin(1))k n k D a r k i k n i n dAεεθθθθ∞+-→==+⋅⋅---⎰2110(cos sin )(cos(1)sin(1))k n k a d r k i k n i n rdrπεεθθθθθ∞-+-→==+⋅⋅---⎰⎰1210(cos sin )(cos(1)sin(1))k n k a r rdr k i k n i n d επεθθθθθ∞-+-→==+⋅⋅---⎰⎰12110n n a r dr εεπ---→=⎰210(1)2nn a nεεπ-→-=n a -=因此(*)式得证.(1) 首先证明{}111()n n n n z ϕ∞∞-==⎫⎪=⎬⎪⎭是正交集. 事实上, 对于复数(cos sin )z r i θθ=+,根据所给的定义112(),()sin)sin)mm nm n n mz z dAi i r dAϕϕθθθθ----+-==+-⎰⎰2(cos(1)sin(1))(cos(1)sin(1))n mDr m i mn i n dAθθθθ+-=-+-⋅⋅---21200(cos(1)sin(1))(cos(1)sin(1))n md r m i mn i n rdrπθθθπθθ+-=-+-⋅⋅---⎰⎰12200(cos(1)(1)sin)(cos(1)sin(1))n mr rdr m i mn i n dπθθθθθ+-=-+-⋅---⎰11,,20,.m nmm nππ==⎪=⎨⎪≠⎩因此{}1()n nzϕ∞=是正交集. 因为2()aL D是完备的空间, 故只需再证{}1()n nzϕ∞=是完备的即可得知其也是正交基. 设有2()af L D∈且{}1()()n nf z zϕ∞=⊥. 因为()f z是解析函数, 因此可以展开为幂级数:()kkkf z a z∞==∑.根据(*)式,可以得到,对于每一个1,2,n=L,0(),()nf z zϕ=na-=由此即得1na-=, (1,2,n=L). 所以()0f z≡. 即{}1()n nzϕ∞=是完备的, 因此是2()aL D中的正交基.(2) 既然{}1()n nzϕ∞=是基,由Parseval等式可以得到221(),()||||nnf z z fϕ∞==<∞∑.利用(*)式,上式的左端可以表示为:21221110(),().1nnn nnn n nf z za aan nϕππ∞=∞∞∞--======+∑∑∑∑由此可得所预期的结论.(3) 对于()kkkf z a z∞==∑和()kkkg z b z∞==∑, 有1()()kkf z a z∞+==∑和1()()kkg z b z∞+==∑,利用内积的连续性和(*)式,1,(),()kkf g a z g z∞+==∑1(),()kka z g z∞+==∑ka∞==∑kka∞==∑.1k kka bkπ∞==+∑18.设H是内积空间,{}n e是H中的正交集, 求证:1(,)(,)||||||||n nnx e y e x y∞=≤⋅∑, (,x y H∀∈).证:对于任意的正整数k, 由Cauchy不等式和Bessel不等式可以得到1(,)(,)kn nnx e y e=≤∑≤||||||||x y≤⋅,由k的任意性, 知正项级数1(,)(,)n nnx e y e∞=∑收敛, 因此级数1(,)(,)n nnx e y e∞=∑绝对收敛,并且11(,)(,)(,)(,)||||||||nnnnn n x e y e x e y e x y ∞∞==≤≤⋅∑∑.19.试证nt ⎫⎪⎬⎪⎭构成2([0,])L π的正交基, 但不是2([,])L ππ-的正交基. 证:(1) 首先证明{}11()n n n t nt ϕ∞∞==⎫⎪=⎬⎪⎭是2([0,])L π中的正交集. 事实上,[]0(),()2cos()cos()2m n t t ntdtm n t m n t dtππϕϕπ==-+--⎰1()1,,0,.m n m n ππ⎧--==⎪=⎨⎪≠⎩因此{}1()n n t ϕ∞=是2([0,])L π中的正交集. 同理, 也容易证明{}1()n n t ϕ∞=还是2([,])L ππ-中的正交集.(2) 因为2([0,])L π是完备的空间, 故只需再证{}1()n n t ϕ∞=是完备的即可得知其也是正交基. 设有2([0,])f L π∈且{}1()()n n f t t ϕ∞=⊥. 将()f t 做奇延拓成为°()f t : °(),[0,],():(),[,0).f t t f t f t t ππ∈⎧=⎨--∈-⎩则°()f t ∈2([,])L ππ-. 注意到对于1,2,n =L , 利用{}1()()n n f t t ϕ∞=⊥,°°,()sin n f f t ntdt ππϕ-=⋅⎰ °°0()sin ()sin f t ntdt f t ntdt ππ-=⋅+⋅⎰⎰ 00()sin ()sin f t ntdt f t ntdt ππ-=--⋅+⋅⎰⎰()sin ()sin f t ntdt f t ntdt ππ-=--⋅+⋅⎰⎰00()sin ()()sin f s n s ds f t ntdt ππ=-⋅-+⋅⎰⎰2()sin 0f t ntdt π=⋅=⎰.设{}{}00()cos n n n t nt ψ∞∞===,对于0,1,2,n =L ,利用()f t 是奇函数, 可得°°,()cos 0n f f t ntdt ππψ-=⋅=⎰. 因此°{}{}()10()()()n n n n f t t t ϕψ∞∞==⊥⋃.进而也容易得到°()f t ⊥⎫⎬⎭L L .又已经知道与{}{}{}{}1010()()sin )cos n n n n n n t t t nt ϕψ∞∞∞∞====⋃=⋃仅相差一个常数因子的三角函数系⎫⎬⎭L L 是2([,])L ππ-中的正交基, 因此°()0f t =, a.e. [,]t ππ∈-,即有()0f t =, a.e. [0,]t π∈.因此{}1()n n t ϕ∞=是2([0,])L π中的正交基.(3) 注意到nt ⎫⎪⎬⎪⎭在2([,])L ππ-中不是完备的, 例如对于恒等于常数1的函数2()1([,])f t L ππ≡∈-是非零元, 但对于1,2,n =L ,,1sin 0n f ntdt ππϕ-=⋅=⎰.因此, nt ⎫⎪⎬⎪⎭虽然是2([,])L ππ-的正交集, 但不是正交基.24. 试给出1([,])C a b 中列紧集的判别条件. 证:设子集1([,])A C a b ⊂且0x 是[,]a b 中一个数. 记{()|()}A f x f x A ''=∈及0{()|()}B f x f x A =∈.则A 是1([,])C a b 中的列紧集的充分必要条件是 (i) A '在([,])C a b 中有界; (ii) B 是R 中的有界集;(iii) A '是([,])C a b 中等度连续的集合.[充分性] 设1([,])A C a b ⊂满足条件(i), (ii)和(iii). 根据1([,])C a b 中范数的定义: 对于1([,])f C a b ∈,1([,])[,][,]:max |()|max |()|C a b x a b x a b ff x f x ∈∈'=+,容易看出,1([,])([,])C a b C a b k k f f f f −−−−→⇔−−−−→且([,])C a b k f f ''−−−−→ 因此只需证明A 和A '分别是([,])C a b 中的列紧集即可, 根据Arzela-Ascoli 定理, 这也只需证明A 和A '分别在([,])C a b 中有界且等度连续即可. 事实上, A '在([,])C a b 中有界性和等度连续已由所给条件得到保证(即(i)和(iii)). 还需证明A 在([,])C a b 中的有界性和等度连续性. 记A '在([,])C a b 中的一个界为A M ',B 作为R 中的有界集, 一个界纪为B M .对于任意的[,]x a b ∈, 利用中值定理, 有0000|()||()()||()||()()||()|().A B f x f x f x f x f x x f x M b a M ξ'≤-+'=-+≤-+ 此即表明[,]max |()|()A B x a b f x M b a M '∈≤-+, 所以A 在([,])C a b 中有界,且界为()A B M b a M '-+. 进而对于,[,]x y a b ∈|()()||()()|||.A f x f y f x y M x y ξ''-=-≤-由此易知A 具有等度连续性.[必要性] 设A 是1([,])C a b 中的列紧集, 即对于A 的任何点列1{()}n n f x ∞=, 1{()}n n f x ∞=在1([,])C a b 中的范数(距离)1([,])[,][,]:max |()|max |()|C a b x a b x a b ff x f x ∈∈'=+意义下都有收敛的子列1{()}k n k f x ∞=. 因此,1{()}n n f x ∞=和1{()}n n f x ∞='分别在([,])C a b 中有收敛的子列的1{()}k n k f x ∞=和1{()}k n k f x ∞='. 这表明, 根据Arzela- Ascoli 定理, A 和A '均是([,])C a b 中的列紧集, 因此A 和A '均在([,])C a b 中有界且等度连续, 因此得到(i)和(iii). 由A 的有界性, 可以知道集合0{()|()}B f x f x A =∈对于任意的0x [,]a b ∈都是R 中的有界集, 因此得到(ii). 26. 设(,)X ρ是紧距离空间,映射:f X X →满足1212((),())(,)f x f x x x ρρ<. (12x x ≠)则(1) f 是否有唯一的不动点? (2) f 是否为压缩映射?解答: (1) f 存在唯一的不动点, 证明如下: (存在性) 定义映射:h X →R 为()(,())h x x f x ρ=.由所给条件知此映射是连续的, 而X 是紧空间表明此映射能在X 中取得上下确界. 因此存在y X ∈, 使得()(,())inf ()x Xh y y f y h x ρ∈==.断言()inf ()0x Xh y h x ∈==,则y 是f 的不动点:()y f y =. 若不然, ()0h y >, 则在所给的条件中取()x f y =有(())((),(()))(,())()h f y f y f f y y f y h y ρρ=<=,此与y 达到()h x 的下确界相矛盾.(唯一性) 若还有z X ∈使得()z f z =但z y ≠. 仍由所给的条件, 有0(,)((),())(,)z y f z f y z y ρρρ<=<.这是个矛盾. 故必有z y =.(2) f 可以不是压缩映射. 反例如下:[反例1] 记[0,1]X =, 其中距离定义为两点之间的Euclid 距离: ,x y X ∀∈,(,):||x y x y ρ=-.因为X 是R 的闭子集, 因此是完备的, 显然也是紧的. 定义映射:T X X →为: 对于x X ∈,():1x T x x=+. 显然T 是自映射, 且有唯一的不动点0.对于任意的,x y X ∈, 设x y ≠, 则,x y 中至少有一个不为零, 由此容易得到||(,)11(1)(1)x y x y Tx Ty x y x y ρ-=-=++++ ||x y <-(,)x y ρ=.所以T 满足所需的条件, 但T 不是压缩映射, 因为,[0,1],[0,1](,)1supsup 1(,)(1)(1)x y x y x yx yTx Ty x y x y ρρ∈∈≠≠==++.因此不存在常数[0,1)α∈, 使得对于所有的,x y X ∈,(,)(,)Tx Ty x y ραρ≤.[反例2] 记1{0}1,2,X n n ⎧⎫=⋃=⎨⎬⎩⎭L , 其中距离定义为两点之间的Euclid 距离: ,x y X ∀∈, (,):||x y x y ρ=-.因为X 是R 的闭子集, 因此是完备的, 显然也是紧的. 定义映射:T X X →为: 对于x X ∈,11,,():10,0,x T x n n x ⎧=⎪=+⎨⎪=⎩显然T 是自映射, 且有唯一的不动点0.对于任意的,x y X ∈, 设x y ≠, 如果,\{0}x y X ∈, 则有正整数,m n , m n ≠, 使得11,x y n m==,且11||(,)11(1)(1)m n Tx Ty n m n m ρ-=-=++++ ||m n nm-<11(,)x y n m ρ=-=; 如果,x y 中有一个为零, 例如0x =, 也有11(,)011Tx Ty m m ρ=-=++1m<(,)x y ρ=. 所以T 满足所需的条件, 但T 不是压缩映射, 因为例如对于 11,x y n m==, 当,m n →∞时, 成立11(,)11111(,)(1)(1)Tx Ty mnn m x y n m n mρρ-++==→++-,即不存在[0,1)α∈, 使得(,)(,)Tx Ty x y ραρ≤..补充题. 设二元函数(,)([,][,])g x y C a b a b ∈⨯,A 是([,])C a b 中的一个有界集, 记():(,)()()ba A F x g x y f y dy f x A ⎧⎫⎪⎪==∈⎨⎬⎪⎪⎩⎭⎰%. (i) 证明A%是([,])C a b 中的列紧集; (ii) 问当A 还是([,])C a b 中的闭集时, A%是不是紧集? 证:(i) 因为(,)([,][,])g x y C a b a b ∈⨯, 不难得知A⊆% ([,])C a b . 根据Arzela-Ascoli 定理, 只需再证明A%在([,])C a b 中有界且等度连续即可. (a) A%在([,])C a b 中有界, 即A %作为由连续函数组成的集合是一致有界的. 事实上, 如果记A 的一个界为M , |(,)|g x y 在[,][,]a b a b ⨯上的最大值为K , 则对于任意取定的()F x A∈%, 有某个()f x A ∈, 使得 ()(,)()baF x g x y f y dy =⎰, 由此得知|()|(,)()baF x g x y f y dy =⎰|(,)()|bag x y f y dy ≤⎰max |(,)|max |()|ba x ba y ba a y bg x y f y dy ≤≤≤≤≤≤≤⎰[,]||||bC a b af Kdy =⎰[,]||||()C a b f K b a ≤-()KM b a ≤-.因此A%是([,])C a b 中有界集, 且A %的一个界为()KM b a -. (b) A%在([,])C a b 中等度连续. 对于()F x A ∈%,有某个()f x A ∈, 使得()(,)()baF x g x y f y dy =⎰. 因为(,)([,][,])g x y C a b a b ∈⨯, 因此在[,][,]a b a b ⨯上一致连续, 故对于任意的0ε>,存在0δ>, 当,[,]x x a b '∈且||x x δ'-<时, 有|(,)(,)|g x y g x y ε'-< ([,]y a b ∀∈),由此可以得到|()()|(,)()(,)()bbaaF x F x g x y f y dy g x y f y dy ''-=-⎰⎰[(,)(,)]()bag x y g x y f y dy '=-⎰|(,)(,)||()|ba g x y g x y f y dy '≤-⎰max |()||(,)(,)|ba y ba f y g x y g x y dy ≤≤'≤-⎰[,]|||||(,)(,)|bC a b af g x y g x y dy '=-⎰()M b a ε≤-.由此易知A%具有等度连续性. (ii) 当A 还是([,])C a b 中的闭集时, A%未必是紧集! 反例可以构造如下: 考虑([0,1])C 中的集合{|1,2,}k A x k ==L ,显然A 是([0,1])C 中的有界集, 一个界可以取为1.可以断言A 是([0,1])C 中的闭集, 因为对于任意的,klx x A ∈, 不妨设l k >, 则[0,1][0,1]max ||k l k l C x x x x x ∈-=-1k l k l kl kl kk k k k l l l l ---⎛⎫⎛⎫⎛⎫⎡⎤=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 对于任意固定的k , 当l 趋于无穷大时, 右端项趋向于1, 由此容易知道, 作为([0,1])C 中的子点列, 集合A 不是Cauchy 列, 因此不可能在([0,1])C 中有收敛的子列, 故集合A 没有聚点, 因此是([0,1])C 中的闭集.定义(,)1K x y =,显然(,)([0,1][0,1])K x y C ∈⨯. 对于上述的集合A , 不难计算{}101()|1,2,|1,2,1k A F x x dx k k k ⎧⎫=====⎨⎬+⎩⎭⎰%L L显然, A%是([0,1])C 中列紧集,唯一的聚点是零函数,但零函数不在A %中,因此不是闭集. 补充题. 设A 是([,])C a b 中的一个有界集, 记():()()xa B F x f t dt f x A ⎧⎫⎪⎪==∈⎨⎬⎪⎪⎩⎭⎰.证明B 是([,])C a b 中的列紧集.证:根据Arzela-Ascoli 定理, 需证明B 在([,])C a b 中有界且等度连续即可.(i) B 在([,])C a b 中有界, 即B 作为由函数组成的集合是一致有界的. 事实上, 如果记A 的界为M ,则对于任意取定的()F xB ∈, 有某个()f t A ∈, 使得()()xaF x f t dt =⎰, 由此得知|()|()|()|xxaaF x f t dt f t dt =≤⎰⎰[,]max |()|||||x xC a b a t baaf t dt f dt ≤≤≤=⎰⎰[,]||||()()C a b f b a M b a ≤-≤-.因此B 是([,])C a b 中有界集, 且B 的界为()M b a -.(ii) B 在([,])C a b 中等度连续. 对于()F x B ∈,有某个()f t A ∈, 使得()()xaF x f t dt =⎰.对于,[,]x x a b ∈%|()()|()()xxaaF x F x f t dt f t dt -=-⎰⎰%%()|()|xxxxf t dt f t dt =≤⎰⎰%%[,]max |()|||||xxC a b a t bxxf t dt f dt ≤≤≤=⎰⎰%%||M x x ≤-%.由此易知B 具有等度连续性.补充题.证明课本20页定理8:对于距离空间(,)X ρ中的任何集合G , G '与G 均是闭集. 证:(i) 根据闭集的定义, 仅需证明()G G '''⊆.事实上, 设()y G ''∈, 则对于任意的0ε>((,)\{})S y y G ε'⋂≠∅.设((,)\{})x S y y G ε'∈⋂, 根据极限点的定义, 对于min{(,),(,)}0x y x y δρερ=->,有((,)\{})S x x G δ⋂≠∅.又(,)(,)S x S y δε⊆,因此有((,)\{})((,)\{})S y y G S x x G εδ⋂⊇⋂≠∅.注意到0ε>的任意性, 即可得到y G '∈. 因此G '是闭集. (ii) 需证明的是G G '⊆. 因为G G G '=⋃, 又()A B A B '''⋃⊆⋃,(*)故由(i)中已经证明了的结果, 有()G G G G G G G '''''''=⋃⊆⋃⊆⊆,因此G 是闭集.如下证明(*): 设y A B ''∉⋃, 则y A '∉, 且 y B '∉.由前者知存在某个00ε>, 使得0((,)\{})S y y A ε⋂=∅;由后者知存在某个10ε>, 使得1((,)\{})S y y B ε⋂=∅.取001min{,}δεε=, 则00δ>, 且0((,)\{})()S y y A B δ⋂⋃=∅,所以()y A B '∉⋃, 即(*)得证.补充题. 判断集合2121(,,,,)||,1,2,m m A y y y y l y m m ⎧⎫==∈≤=⎨⎬⎩⎭L L L是否为2l 中的列紧集?答:A 是2l 中的列紧集, 证明如下.因为211(1,,,,)2l m ∈L L ,即级数211m m∞=∑收敛,因此,对于任意的0ε>,存在某个0m ,使得0211m m mε∞=+<∑. 考虑集合:{}001212(,,,,0,)(,,,,)m m m A y y y y y y y A ==∈L L L L容易知道0m A 是A 的ε-网,且如果视其为0mR 空间中的子集,0m A 是有界集(一个界是,因此列紧,在2l 中仍然是列紧的. 进而知道2l 是完备的,因此根据前面补充题的结论(A 是列紧集的充分必要条件是对于任意的0ε>,A 有列紧的ε-网),可以得到A 是2l 中的列紧集.补充题. 设(,)X ρ是完备的距离空间, A X ⊂. 证明:A 是列紧集的充分必要条件是对于任意的0ε>,A 有列紧的ε-网.证明:[必要性] 设A 是列紧集, 因此A 是完全有界集, 即对于任意的0ε>,A 存在有限ε-网B ,12{,,,}n B x x x =L .又有限集一定是列紧集, 因此B 是A 的列紧的ε-网.[充分性] 设条件成立, 即对于任意的0ε>, A 有列紧的/2ε-网B . 因为B 列紧, 因此全有界, 即存在有限的/2ε-网C . 不难证明C 是A 的有限ε-网. 由此可以得知, A 是全有界集, 又(,)X ρ是完备的距离空间,因此A 是列紧集.。
泛函分析第五章习题答案

泛函分析第五章习题答案
《泛函分析第五章习题答案》
在泛函分析的学习过程中,习题是检验自己对知识掌握程度的重要方法。
第五章是泛函分析中的重要章节,涉及到诸多基本概念和定理。
通过做习题,我们可以更加深入地理解和掌握这些知识点。
下面我们就来看一下第五章习题的答案。
1. 习题1
答:略
2. 习题2
答:略
3. 习题3
答:略
4. 习题4
答:略
5. 习题5
答:略
通过以上习题答案的简要总结,我们可以看出在第五章的学习中,我们需要掌握的知识点包括……(接着展开对第五章知识点的总结和归纳)。
在学习过程中,我们可能会遇到一些困难和疑惑,但通过认真思考和练习,我们一定可以克服这些困难,掌握好泛函分析的知识。
希望大家在学习泛函分析的过程中能够勤奋钻研,不断提高自己的理解和应用能力。
最后,希望大家都能在学习中取得好成绩,为自己的未来铺平道路。
泛函分析答案(压缩版)

10.4.证明 Banach 空间 X 自反的充要条件是 X’自反。
证明:若 X 是 Banach 空间,则存在一个从 X 到 X’’的自然的等距同构映射 J : X X '' , J (X ) 若 x x 这样定义的,若 x X , 同构映射 为d xn , xN MX ', 则称 X 是自反的, 其中Jx 是an 1 n因此 xn 是有界点列。
an supx x'df X ' , J ( x)( f ) f ( x) 为方便起见,记 X 到 X’’的自然的等距7.18.设 X 为完备度量空间,A 是 X 到 X 中映射,记 射 A 有唯一不动点。
证明:因n A x, A x an d x, x ,若 n1 ,则映n n ' 'J1 ( X ') X ''' ,若 J o ( X ) X '' ,对任意 F X ''' ,定义 f X ' :若 x X , f ( x) F ( J o ( x)) , 对 任 意 x X , ( J1 ( f ))( J o ( x)) J o ( x)( f ) f ( x) F ( J o ( x)) 因'' ,因此 J则存在 F X ''' , F 在 J ( X ) 上恒为零, F 1 , J (X ) X ' 使 而 但 ' ( X ) X '' , 1 o 有1J o ,X’到 X’’’的自然的等距同构映射为 J 1 ,我们要证明 J o ( x) X '' 的充要条件(f)F, ,这就证明了d A x, A x a N d x , xn ', 则 必 有 N , 使 aN 1 , 这 样 对 任 意 一'x, x ' XJo ( X ) X而J 必oJ1 ( X ') X,''' ,反之,若 J对 任1( X ') Xx X 这样由压缩映射原理, AN 有不动点 x* ,即 Ax AN x* ,x1是 A 的任意不动点,即,若 *x x' , 则''' ,, , 由于AN Ax* AAN x* Ax* , Ax* 也是 AN 的不动点, AN 的不动点是唯一的,因此*f X 'o使J1 ( f ) F1意x* Ax* 即 xx* x1是 A 的不动点。
张恭庆++泛函分析上册答案

课后习题解答与辅导
张
秀
洲
二 0 0 九 年 三 月 一 十 日
-1-
—数 计 院—张 秀 洲 张恭庆泛函分析题 张恭庆泛函分析题—
-2-
—数 计 院—张 秀 洲 张恭庆泛函分析题 张恭庆泛函分析题—
1.1.5
-3-
—数 计 院—张 秀 洲 张恭庆泛函分析题 张恭庆泛函分析题—
1.4.9
1.4.11
1.4.12
- 16 -
—数 计 院—张 秀 洲 张恭庆泛函分析题 张恭庆泛函分析题—
1.4.13
1.4.14
- 17 -
—数 计 院—张 秀 洲 张恭庆泛函分析题 张恭庆泛函分析题—
1.4.15
1.4.17
- 18 -
—数 计 院—张 秀 洲 张恭庆泛函分析题 张恭庆泛函分析题—
- 19 -
—数 计 院—张 秀 洲 张恭庆泛函分析题 张恭庆泛函分析题—
1.5.1 证明:(1) (��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
泛函分析 第六章习题答案

第六章习题第一部分01-171. 设M 是线性赋范空间X 的闭子空间,若对任意的f ∈ X *,f (M ) = 0蕴涵f ( X ) = 0,则M = X .[证明] 若不然M 是X 的真闭子空间,由Hann-Banach 定理,存在f ∈X *,使f (M ) = 0,并且|| f || = 1,这与题目的假设相矛盾.2. 设X 是线性赋范空间,M 是X 的子集,x 0 ∈X ,且x 0 ≠ θ.证明x 0∈cl(span M )的充分必要条件为:对任意的f ∈ X *,f (M ) = 0蕴涵f (x 0) = 0.[证明] (必要性) 对任意的f ∈ X *,由f (M ) = 0及f 是线性的,可推出f (span M ) = 0;而f 又是连续的,所以又可进一步得到f (cl(span M )) = 0; 所以对x 0 ∈ cl(span M ),有f (x 0) = 0.(充分性)若x 0 ∉ cl(span M ),由Hann-Banach 定理,存在f ∈ X *,使得f (cl(span M )) = 0,但f (x 0) = || x 0 || ≠ 0,这与题目的假设相矛盾.3. 设X 是线性赋范空间,x 1, x 2, ..., x n 是X 中n 个线性无关的元素,a 1, a 2, ..., a n是n 个数,M > 0.证明:存在满足条件:f (x k ) = a k ,k = 1, 2, ..., n ,且|| f || ≤ M 的有界线性泛函f 的充要条件为:对于任意的n 个数c 1, c 2, ..., c n 都有||||||11∑∑==≤n k k k n k k k x c M c a .[证明] (⇒) 对于任意的n 个数c 1, c 2, ..., c n ,令∑==nk k k x c x 1.由于| f (x )| ≤ M || x ||,以及f (x k ) = a k ,k = 1, 2, ..., n ,得到||||||11∑∑==≤nk k k n k k k x c M c a .(⇐) 考虑X 的线性子空间S = Span{ x 1, x 2, ..., x n },对于任意的n 个数c 1, c 2, ..., c n ,在S 上定义∑∑===nk k k n k k k c a x c g 11)(.则g 是S 上的有界线性泛函,满足条件g (x k ) = a k ,k = 1, 2, ..., n ,且|| g || ≤ M . 由Hann-Banach 定理,存在X 上的有界线性泛函f 使f |S = g ,且|| f || = || g ||. 事实上,此f 即为满足条件的泛函.[第4题到第9题只需要直接验证,它们应该是“集合论”而非“泛函分析”中的题目.此处略去]10. 设X 是Banach 空间.证明X 自反的充要条件为X *自反.[证明] 必要性:设X 自反,即X 上的典则映射J : X → X **,满足J (X ) = X **. 为证明X *自反,我们要证明X *上的典则映射J * : X * → X ***为满射.∀x ***∈X ***,令x * = x *** ◦ J .容易看出x * : X → 是X 上的线性泛函. 由于| x *(x ) | = | x *** (J (x )) | ≤ || x *** || · || J || · || x ||,所以x *∈ X *.注意到J (X ) = X **,故∀x **∈X **,存在x ∈X 使得J (x ) = x **.则(J * x *) x ** = x **( x *) = x * ( x ) = (x *** ◦ J ) ( x ) = x *** ( J ( x )) = x *** (x **), 所以J * x * = x ***,即J *为满射,故X *自反.充分性:设X *自反,即X *上的典则映射J * : X * → X ***满足J * (X *) = X ***. 假若X 不自反,即J (X ) ≠ X **.则由于X 是Banach 空间,且X 上的典则映射J : X → X **是保范的线性单射, 容易看出J (X )是X **的真闭子空间.由Hann-Banach 定理,存在x ***∈X ***,使得x ***( J (X )) = 0,|| x *** || = 1. 由于J * (X *) = X ***,存在x *∈ X *,使得J * x * = x ***.显然对∀x ∈X 有x * ( x ) = (J (x )) x * = x ***(J (x )) = 0,所以x * = θ,这与|| x * || = || J * x * || = || x *** || = 1相矛盾.11. 设X 为线性赋范空间,X *可分.证明X 可分.[证明] 由于X *可分,不妨设X *\{θ }中子集F = { f 1, f 2, ...}在X *中稠密, 令g i = f i /|| f i ||,用S *表示X *中的单位球面.对∀f ∈ S *,∀ε > 0,存在某f i ∈F ,使得|| f i - f || < min {ε /4, 1/2}.则| (|| f i || - 1) | = | (|| f i || - || f ||) | ≤ || f i - f || < 1/2,故|| f i || > 1/2.对应的g i 满足 || g i - f || = || ( f i /|| f i || - f ) || ≤ || ( f i /|| f i || - f /|| f i ||) || + || ( f /|| f i || - f ) ||= || f i - f || /|| f i || + | 1/|| f i || - 1 | · || f || = || f i - f || /|| f i || + | 1/|| f i || - 1 |= || f i - f || /|| f i || + | (1 - 1/|| f i ||) | / || f i || ≤ 2 || f i - f || /|| f i || < 4 || f i - f || < ε.所以S *中的可数集G = { g 1, g 2, ...}在S *中稠密.对任意i ,由于|| g i || = sup{ | g i (x ) | | || x || = 1 },故存在X 的单位球面S 中的点x i ,使得| g i (x i ) | > 1/2.记A = { x 1, x 2, ...}.注意到A 是可数的,故它的所有的有限的有理系数线性组合构成的集合也是可数的,并把这个可数集合记为B ,容易看出B 在span(A )中稠密,因而B 也在cl(span(A ))中稠密.下面证明cl(span(A )) = X .若不然,存在x ∈X \ cl(span(A )).则由Hann-Banach 定理知存在f ∈ S *,使得f (cl(span(A ))) = 0.而G = { g 1, g 2, ...}在S *中稠密,故存在g i ∈ S *,使|| g i - f || < 1/2.这就得到下面的矛盾:1/2 < | g i (x i ) | = | g i (x i ) - f (x i ) | ≤ || g i - f || · || x i || = || g i - f || < 1/2.故cl(span(A )) = X .因此X 有可数稠子集B ,所以X 可分.12. 设H 为复Hilbert 空间,)(,,21H T T T B ∈.证明:**)(T T αα=,T T =**)(,*2*1*21)(T T T T +=+,*1*2*21)(T T T T =,,||||||||*T T =.[证明] 对任意的H y x ∈,,>>=<>=<<>=<>=>=<<y T x y T x y T x y Tx y x T y T x )(,,,,,)()(,****αααααα. ><+>>=<<+>>=<+>=<+<y T x y T x y x T y x T y x T T y T T x *2*12121*21,,,,,)()(, >+>=<+=<y T T x y T y T x )(,,*2*1*2*1.>>=<>=<>=<>=<<)(,,),(,)()(,*1*2*122121*21x T T x x T x T y x T T y x T T y T T x >=<x T T x )(,*1*2 . >=<><=><>=>=<<Ty x x Ty x T y y x T y T x ,,,,)(,****.因为||||||||||||||||||)(||),(,||||*****2*x x T T x x T T x x T T x T x T x T ⋅⋅≤⋅>≤>=<=<,故||||||||||||*x T x T ⋅≤,所以||||||||*T T ≤.因为||||||||||||||)(||||||)(,,||||***2Tx T x Tx T x Tx T x Tx Tx Tx ⋅⋅≤⋅>≤>=<=<,故||||||||||||*x T Tx ⋅≤,所以||||||||*T T ≤.13. 设H 为Hilbert 空间,A , B 为H 上的两个线性算子,对于任意的x , y ∈H 有< Ax , y > = < x , By >.证明:A 为有界线性算子.[证明] 对∀x ∈S = { x ∈H | || x || = 1 },考虑f x : H → ,f x (y ) = < By , x >. 由于| f x (y ) | = | < By , x > | = | <y , Ax > | ≤ || y || · || Ax ||,故f x 为H 上的有界线性泛函,且|| f x || ≤ || Ax ||.因f x (y ) = < By , x > = <y , Ax >,故f x (Ax ) = < Ax , Ax > = || Ax ||2.所以,|| Ax ||2 = | f x (Ax ) | ≤ || f x || · || Ax ||,故|| Ax || ≤ || f x ||.所以|| f x || = || Ax ||.有界线性泛函族{ f x | x ∈S }在H 的每一点y 处,| f x (y ) | = | < By , x > | ≤ || By || · || x || = || By ||,由共鸣定理知存在M > 0,使得∀x ∈S 有|| f x || ≤ M .即∀x ∈S 有|| Ax || ≤ M .所以A 为有界线性算子.14. 设T 为2l 上的有界线性算子,对于2}{l x k ∈=∀ξ,2}{l y Tx k ∈==η,其中∑∞==1j j kj k a ξη, ,2,1=k .又设}{***k y y x T ==,而∑∞==1**j j kj k a y ξ.证明:jk kj a a =*.[证明] ∑∑∑∑∑∞=∞=∞=∞=∞=⋅⋅=⋅>=>=<<11111)()(}{},{,k k k j kj j k j j kj k j j kj a a a y Tx ηξηξηξ>⋅>=<⋅=<⋅⋅=∑∑∑∑∞=∞=∞=∞=}{,}{,)(1111j j jk k k kj j k k kj j a x a x a ηηηξ,而>>=<<∑∞=}{,,1**j j kj a x y T x η,故∑∑∞=∞==11*j j jk j j kja a ηη, ,2,1=∀k ,2l y ∈∀ 所以jk kj a a =*, ,2,1,=∀j k .15. 设X 为Banach 空间,Y 为线性赋范空间,T n ∈ B (X , Y ),n = 1, 2, ...,且sup {|| T n || } = +∞.证明:存在x 0 ∈X 使得sup {|| T n x 0 || } = +∞.[证明] 这只是共鸣定理的逆否命题.16. 举例说明:在共鸣定理中,X 的完备性是不可缺少的.[例] 考虑m 空间的子空间X = { x = (ξ i ) | 只有有限个ξ i 不为0}.T n : X → ,T n (x ) = n ξ n ,∀x = (ξ i )∈X .显然T n 是线性算子,可以证明T n 有界,且|| T n || = n .显然{|| T n || }无界,但对∀x = (ξ i )∈X ,{ T n (x ) }有界.17. 设S : ℓ2 → ℓ2为S (ξ1, ξ2, ... ) = (ξ3, ξ4, ... ),T n = S n .求sup { || T n x || },|| T n ||,以及sup { || T n || }.[解] 显然T n (ξ1, ξ2, ... ) = (ξ2n +1, ξ2n +2, ... ),故sup {|| T n x || } = sup {|| (ξ2n+1, ξ2n+2, ... ) || } = || x ||.因|| T n x || = || (ξ2n+1, ξ2n+2, ... ) || ≤ || x ||.故|| T n || ≤ 1.若取x使得其第2n+1个坐标为1而其余皆为0,则|| x || = 1,且|| T n x || = 1,故|| T n || ≥ 1.所以|| T n || = 1.sup {|| T n || } = 1.。
泛函分析 答案(张恭庆)1[1].3
1
C
,当
t1, t2
|x t1
x t2 |
C t1, t2 注 .
续的.
注 C t1, t2
t1, t2
t1, t2
1
C
1, c 0, 取
0 ,求
时, 所以 E 是等度连
C
6
2
集,求证
x1 其中
F1, x2
F 2 , 使得 F 1, F 2
x1, x2 ,
F1, F2
def inf
x F1,y F2
x, y .
证明 记 d
F1, F2 ,
x
F1, y
F2.
n
N, xn
F1, yn
F2,
d
xn, yn
d
1 n
设 xnk
x1
F 1, 相应的 ynk
ynk 未必收敛,
F 2, 序列
列
m
A 可以取出收敛子序列
mk
. 因为
S 中的收敛与按坐标收敛等价, 所以点列
m 中的每一
m
个点 ( 固定 m ) 的坐标序列 n
n 1, 2,
也可以从其任意无穷子集中取出收敛子
序列 , 而坐标序列构成数集,要从其任意无穷子集中取出收
敛子序列显然应该要求它们有界.
为了证明充分性, 根据习题 1.3.1, 只要构造 A 的列紧的
t
a, b
|F x |
x f t dt
a
b a
|f
t
|dt
M0 b a
F E . 即 E 一致有界.
|F x2 F x1 | 0,
x2 f t dt
x1
M0 ,
泛函分析习题答案第十章习题答案
则 由 xnk ynk Aznk y * z知 :xnk 收 敛 , 记y * z x *,
因 为xnk M,M为 闭 集 , 故x* M, 现 在I A是 连 续 的 ,
故
(I
A)x* lim(I k
A) xnk
lim
k
ynk
y *,
所 以y* (I A)(M ), 故(I A)(M )是 闭 集.
结 合 上 述 的 结 果 即 知 : ( A) [0,1].
17. 设A:复C[0,2 ] 复C[0,2 ] : ( Ax)(t) eit x(t)证明: ( A) { | 1}
首 先 证 明A没 有 特 征 值.
若Ax x, 则eit x(t ) x(t ), 于 是 : (eit )x(t ) 0, 当eit 时 ,x(t ) 0, 因 为x(t )连 续 , 故x(t ) 0, 所 以不 是A的 t 1
) x
(t
)
max
a t b
(t
) x
(t
)
由 (0, 1 )的 任 意 性 , 即 知 上 式 与(1)矛 盾 , 所 以是A的 谱 点.
2
16.
再 证 当 [0,1]时 ,是A的 正 则 值 , 因 为不 是A的 特 征 值 , 故 只 须 证 明 :A I : C[0,1] C[0,1]是 满 映 射.
K ( x, y) f ( y)dy
f ( x) L2( , )
问A是 否L2( , )上 的 全 连 续 线 性 算 子.
记I n
[n, n], 令Kn ( x,
y)
K ( x,
0
y)
(x, y) In In (x, y) In In
泛函分析习题及参考答案
∑
∞
ξi( n ) < ε p 对任何自然数 n 成立。
1 p
p
p⎞ ⎛ ∞ (n) (n) 证明:必要性证明,由 d ( xn , x) = ⎜ ∑ ξi − ξi ⎟ → 0 可知, ξi → ξi , i = 1, 2, ⎝ i =1 ⎠
。
由 x = (ξ1 ,
∞
, ξi , ) ∈ l p 可知, ∀ε > 0 ,存在 N1 > 0 ,使得
1 3
1 3
1 1 1 ⎧ ⎫ O( x, ) ∩ O( y, ) = Φ ,从而 ⎨O( x, ) x ∈ M ⎬ 是一族互不相交的球,其总数是不可数的。 3 3 3 ⎩ ⎭
(或:由 ∪O 因此 {y n }至少也有不可数个,这与 {y n }是可数的相矛盾。 (yn , ) ⊃l ⊃M 以
∞
1 3
p p
En
∫x
n
பைடு நூலகம்
− x dt +
p
Fn
∫x
n
− x dt 。此时,
p
1 1 ⎡ ⎤ p p p p p p x x dt ( x dt ) ( x dt ) − ≤ + ⎢ ⎥ , ∫ x n − x dt < (b − a ) ⋅ ε 。 n n ∫ ∫ ∫ ⎢ En ⎥ Fn En En ⎣ ⎦
依测度收敛于 x(t ) 。
, 令n → ∞, 可得 m( E ( x n − x ≥ σ ) → 0 。 即 x n (t )
由 x(t ) 的积分绝对连续性可知,对任何 ε > 0 ,存在 δ 1 > 0 ,使得 e ⊂ E ,me < δ 1 时,
( ∫ x(t ) dt ) <
泛函分析答案 第四章习题第一部分(1-18)
第四章习题第一部分(1-18)1. 在 1中令ρ1(x , y ) = (x - y )2,ρ2(x , y ) = | x - y |1/2,,问ρ1, ρ2是否为 1上的距离? [解] 显然ρ1, ρ2满足距离空间定义中的非负性和对称性. 但ρ1不满足三角不等式:取点x = -1, y = 0, z = 1,则 ρ1(x , z ) = 4 > 2 = ρ1(x , y ) + ρ1(y , z ),所以ρ1不是 1上的距离。
而∀x , y , z ∈ 1,ρ2(x , y ) =||||2||||||||||y z z x y z z x y z z x y x -⋅-+-+-≤-+-≤-||||)||||(2y z z x y z z x -+-=-+-==ρ2(x , z ) + ρ2(z , y ); 所以ρ2是 1上的距离.2. 设(X , ρ)是距离空间,令ρ1(x , y ) =ny x ),(ρ,∀x , y ∈X .证明(X , ρ1)也是距离空间.[证明] 显然ρ1满足距离空间定义中的非负性和对称性, 故只需证明ρ1满足三角不等式即可. 实际上∀x , y , z ∈X ,nny z z x y x y x ),(),(),(),(1ρρρρ+≤=nnnn ny z z x n z y x M y z z x )),(),((),,,(),(),(ρρρρ+=++≤),(),(),(),(11y z z x y z z x n n ρρρρ+=+=.3. 设(X , ρ)是距离空间,证明| ρ(x , z ) - ρ(y , z ) | ≤ ρ(x , y ),∀x , y , z ∈X ;| ρ(x , y ) - ρ(z , w ) | ≤ ρ(x , z ) + ρ(y , w ),∀x , y , z , w ∈X .[证明] ∀x , y , z , w ∈X ,由三角不等式有- ρ(x , y ) ≤ ρ(x , z ) - ρ(y , z ) ≤ ρ(x , y ),故第一个不等式成立. 由第一个不等式可直接推出第二个不等式:| ρ(x , y ) - ρ(z , w ) | ≤ | ρ(x , y ) - ρ(y , z ) | + | ρ(y , z ) - ρ(z , w ) | ≤ ρ(x , z ) + ρ(y , w ).4. 用Cauchy 不等式证明(| ζ1 | + | ζ1 | + ... + | ζn | )2 ≤ n (| ζ1 |2 + | ζ1 |2 + ... + | ζn |2 ). [证明] 在P159中的Cauchy 不等式中令a i = | ζi |,b i = 1,∀i = 1, 2, ..., n 即可.5. 用图形表示C [a , b ]上的S (x 0, 1). [注] 我不明白此题意义,建议不做.6. 设(X , d )是距离空间,A ⊆ X ,int(A )表示A 的全体内点所组成的集合.证明int(A )是开集.[证明] 若A = ∅,则int(A ) = ∅,结论显然成立. 若A ≠ ∅,则∀x ∈ A ,∃r > 0使得S (x , r ) ⊆ A .对∀y ∈ S (x , r ),令s = r - d (x , y ),则s > 0,并且S (y , s ) ⊆ S (x , r ) ⊆ A ; 所以y ∈ int(A ).故S (x , r ) ⊆ int(A ),从而int(A )是开集.7. 设(X , d )是距离空间,A ⊆ X ,A ≠ ∅.证明:A 是开集当且仅当A 是开球的并. [证明] 若A 是开球的并,由于开球是开集,所以A 是开集.若A 是开集,∀x ∈A ,存在r (x ) > 0,使得S (x , r (x )) ⊆ A . 显然A = ⋂x ∈A S (x , r (x )).8. 举例说明对于一般的距离空间X ,并不是总有),(),(r x S r x S =,∀x ∈X ,r > 0. [例] 设X = {a , b },定义d : X ⨯ X → 为d (a , a ) = d (b , b ) = 0,d (a , b ) = 1. 则(X , d )是距离空间.当r = 1时,不论x 为a 还是b ,总有),(}{),(r x S X x r x S =≠=.9. 设(X , d )是距离空间,X B A ⊆,.证明:B A B A ⋃=⋃,B A B A ⋂⊆⋂. [证明] 由于A A ⊆,B B ⊆,故B A B A ⋃⊆⋃.由于A 和B 都是闭集,所以B A ⋃也是闭集,所以B A B A ⋃⊆⋃.另一方面,由B A B A ⋃⊆,,得B A B A ⋃⊆,,所以B A B A ⋃⊆⋃; 这样就证明了第一个等式.由B A B A ,⊆⋂得B A B A ,⊆⋂,所以B A B A ⋂⊆⋂。