616G3安川变频器驱动电路图说

合集下载

安川V1000变频器详细图解

安川V1000变频器详细图解

安川V1000变频器详细图解赵慧钢whqs200@S1正转指令S2反转指令S3外部故障S4故障复位S5多段速指令1S6多段速指令2S7点动指令SC输入指令公共端S1开关(V电压给定,I电流给定)速度给定电流或电压信号选择S3开关选择输入指令为共发射极或共集电极控制方式1、S3开关为SINK时,控制指令使用变频器内部+24V电源2、S3开关为SOURCE时,控制指令使用变频器外部+24V电源1、S1开关设为I时,将参数H3-09设定为2(4-20mA)或3(0-20mA)2、S1开关设为V时,将参数H3-09设定为0-10V(有下极限)或0-10V(无下极限)正反向光电耦合器S3开关选择输入指令为共发射极或共集电极控制方式1、S3开关为SINK时,控制指令使用变频器内部+24V电源2、S3开关为SOURCE时,控制指令使用变频器外部+24V电源给定调速方式1+10.5V电源0-10V4-20mA或(0-10V)给定调速方式2公共端给定调速方式3给定调速方式1:RP和AC端子,脉冲速度给定调速给定调速方式2:+V、A1和AC端子给定电位器手动调速给定调速方式3:A2和AC端子给定,可由外部计算机或电子秤仪表进行0-+10V 或4-20mA给定信号进行调速,电压或电流调速信号选择由S1拨动开关进行选择主要使用调速方式3,调速方式2为操作箱上2KΩ电位器手动调速S1开关(V电压给定,I电流给定)速度给定电流或电压信号选择1、S1开关设为I时,将参数H3-09设定为2(4-20mA)或3(0-20mA)2、S1开关设为V时,将参数H3-09设定为0-10V(有下极限)或0-10V(无下极限)电压给定输入接线图,将S1开关拨到V,将参数H3-09设定为0-10V(有下极限)或0-10V(无下极限)电流给定输入接线图,将S1开关拨到I,将参数H3-09设定为2(4-20mA)或3(0-20mA)外部输入4-20mA或0-10V给定信号外部急停开关或HC、H1直接短接变频器故障信号输出接点变频器运行状态信号输出光电耦合器接外部速度表或频率表使用接点输出、光电耦合器输出时的接线方式接外部速度表或频率表变频器运行状态信号输出接点变频器运行状态信号输出光电耦合器S2开关,接终端通信电阻S2开关,接终端通信电阻,出厂设定为OFF三相电源电动机接制动电阻接DC电抗器短接带参数备份功能端子板可拆卸插头可拔接地插头S1 S2S3S2开关,接终端通信电阻,出厂设定为OFFS1开关(V电压给定,I电流给定)速度给定电流或电压信号选择S3开关选择输入指令为共发射极或共集电极控制方式端子排固定销,向下按下更换变频器时将可拔接地线拔掉,将固定销按下,然后沿箭头方向拔下电路板。

变频器电路图整流、滤波、电源及电压检测电路

变频器电路图整流、滤波、电源及电压检测电路

变频器电路图-整流、滤波、电源及电压检测电路以下仅仅对变频器电路图-整流、滤波、电源及电压检测电路的分析,好象论坛上发不了图纸.1. 整流滤波部分电路三相220V电压由端子J3的T、S、R引入,加至整流模块D55(SKD25-08)的交流输入端,在输出端得到直流电压,RV1是压敏电阻,当整流电压超过额定电压385V时,压敏电阻呈短路状态,短路的大电流会引起前级空开跳闸,从而保护后级电路不受高压损坏。

整流后的电压通过负温度系数热敏电阻RT5、RT6给滤波电容C133、C163充电。

负温度系数热敏电阻的特点是:自身温度超高,阻值赿低,因为这个特点,变频器刚上电瞬间,RT5、RT6处于冷态,阻值相对较大,限制了初始充电电流大小,从而避免了大电流对电路的冲击。

2. 直流电压检测部分电路电阻R81、R65、R51、R77、R71、R52、R62、R39、R40组成串联分压电路,从电阻上分得的电压分别加到U15(TL084)的三个运放组成的射极跟随器的同向输入端,在各自的输出端得到跟输入端相同的电压(输出电压的驱动能力得到加强)。

U13(LM339)是4个比较器芯片,因为是集电集开路输出形式,所以输出端都接有上接电阻,这几组比较器的比较参考电压由Q1(TL431)组成的高精度稳压电路提供,调整电位器R9可以调节参考电压的大小,此电路中参考电压是6.74V。

如果直流母线上的电压变化,势必使比较器的输入电压变化,当其变化到超过6.74V的比较值时,则各比较器输出电平翻转,母线电压过低则驱动光耦U1(TLP181)输出低电平,CPU接收这个信号后报电压低故障。

母线电压过高则U10(TL082)的第7脚输出高电平,通过模拟开关U73(DG418)从其第8脚输出高电平,从而驱动刹车电路,同时LED DS7点亮指示刹车电路动作。

由整流二极管D5、D6、D7、D18、D19、D20组成的整流电路输出脉动直流电,其后级的检测电路可对交流电压过低的情况进行实时检测,检测报警信号也通过光耦U1输出。

变频器基本控制图

变频器基本控制图



启动端子
手动/自动 2#酸泵变频运行 至变频器


启动端子
设计 制图 校对 审核 审定
数量
阶段 比例 施工图
共 页第 页
气原理图(三)(图号
)。
、本图中括号的内容指的是 、 酸泵电气系统。
、图中电流变送器电源 、 见 、 、 、 酸泵电气原理图(二)(图号
)。
设计 制图 校对 审核 审定
至 (运行电流)
电流变送器
电流变送器

酸泵 ( 酸泵


酸泵 ( 酸泵

至 (运行电流)
数量
阶段 比例 施工图
共 页第 页
自动 停 手动
、工频运行:
、将

拨向工频电源位置,即
闭合,
断开。
、将 拨向手动位置, 、 、 拨向停的位置。
、合上 。
、由工艺通知电气运行人员在柜面或现场开机及停机,同时监视 、 酸泵动力柜电流表、电
压表及相应的信号灯。
、检修:
、变频器故障,将电机 揭工作在工频运行,配合拉开

进行检修。
、其他视故障情况进行。
手动/自动 1#酸泵变频运行 至变频器
、自动变频运行:
、将

拨向变频电源位置,即
闭合,
断开。
、将 拨向自动位置, 拨向自动调节即电流调节, 、 、 拨向停的位置。
、合上 ,按动 ,启动变频控制电源以及合上 。
、由工艺通知控制室开机及停机进行自动调节运行,电气运行人员在开关室监视 、 酸泵
动力柜及变频柜柜面的电流表、电压表、频率表及相应的信号灯。
干 (干 )
干 (干 )

变频器电源电路图

变频器电源电路图

频器电路-电源电路1变频器的电源电路主要有三种:(1)串联稳压电源;(2)分立元件开关电源;(3)集成电路开关电源;第一种串联稳压电源是将220V或380V交流电压通过变压器变成各种所需的低压交流电,通过整流,滤波,稳压后输出稳定的直流电源。

早期的变频器有些是用这种电源,现在已经很少使用了,比如赫力,森兰。

下面主要介绍开关电源。

分立元件开关电源1.台安N2-2P5开关电源电路这个开关电源提供了4路电压:+12V,+15V,两路+5V。

2.安川G5A4015开关电源电路T1是高频变压器,Q1是开关管,R22,R24-R27是启动电阻,给开关管提供启动电压,开关管导通,反馈绕组产生的反馈电压经过R14,C7,D14到开关管,光耦PS2和Q2,D2,R4构成稳压电路。

R28,D16,C13是开关管截止时反向电压吸收电路,保护开关管。

开关管QM5HL-24可以用2SD2579替代。

这个开关电源提供了11路电压和一路欠压检测信号:上桥供电电压3路,下桥供电电压一路,+5V,+15V,-15V,+12V,+20V,两路24V变频器 ( Wed, 29 Jul 2009 18:21:39 +0800 )Description:变频器原理图变频器主要由模块,CPU控制板,电源驱动板组成,见上图.L1为进线电抗器,一般需外接,L2为直流电抗器,大部份变频器需要外接,象施耐德,丹佛斯变频器都内置了直流电抗器。

PM1为整流模块,PM2为逆变模块,一般小功率变频器是将整流和逆变整合在一起,大功率变频器整流和逆变都是分开的,功率越大电流越大,因为单一的整流和逆变的电流有限,所以整流和逆变可以并联使用。

PM3是制动晶体,15KW以下的变频器都内置制动晶体,外接一个制动电阻就能做能耗制动。

C1,C2是滤波电容,变频器功率越大,电容的容量就越大,滤波电容的耐压一般是450V,因为380V级的变频器整流滤流后的电压是600V,所以可以将两个耐压为450V的滤波电容串联使用,总的耐压就可以达到900V。

变频器原理及接线图 (1) 共38页

变频器原理及接线图 (1) 共38页

变频恒压供水系统原理图
电源
变频器不仅可以用于恒压供水,供油、送风同 样适用。化工厂、化纤厂、冶金厂、铸造厂、印染 厂、纺织、制药厂、塑料厂、水泥厂、矿井,各行 各业的工厂,根据它们工艺要求,会派上不同的用 场。提升机、皮带传送、送风机,引风机,给料系 统,注塑机,挤塑机,油田磕头机,可以说每一个 行业的每一个生产工艺中,都能用上变频器。 不论 机关、院校、工厂,变频器都很适用,生活、消防 也都需要。
三、变频器的安装方法
1、变频器应垂直安装,在正前方能看到 FRENIC5000G11S或FRENIC5000P11S。
2、变频器运行时要产生热量,为确保冷却空 气的通路,在设计时要在变频器的各个方向 留有一定的空间。
3、变频器运行时,散热板的温度能达到接近 90摄氏度,所以,变频器背面的安装面必须 要用能耐受较高温度的材质。
具体连线方法如 右图所示:
FWD
变 频REV 器 CM
具体连线:
2、连接电位器 端子11(黄线)、12(绿线)、13(红线)接电位器的
三个端子,其中,12(绿线)接电位器的中间的端子。 注:此线组为软线;变频器在正常工作过程中,电位器两端 有10V的电压。(已经接好,请同学们确认) 3、连接电源
主电路电源端子L1/R、L2/S、L3/T与电源连接。(已接好) 4、连接电动机
电工实训
接 受 生 活 挑 战






变频器简介
主要内容
一、变频器简介 二、变频器的用途 三、变频器的安装方法 四、变频器外部线路的连接 五、变频器的主要功能操作键说明 六、变频器的参数设定
一、变频器简介
变频器是利用电力半导体器件的通断作用 将工频电源变换为另一频率的电能控制装置。

变频器直流母线电路示意图分析

变频器直流母线电路示意图分析

变频器直流母线电路示意图分析有关变频器直流母线电路的示意图,P、N直流母线电路示意图,变频器直流母线电路短路故障的现象与处理方法,整流和逆变电路中元件损坏造成的短路故障等。

变频器直流母线电路示意图变频器主电路的所有部件,都是直接并联(或者说是“挂在”)直流母线上的,如图1。

常规小功率机型,大致有A~E等6部分电路并接于P、N直流母线,中、大功率机型,只有直流制动电路,需在变频器外部接入。

A~E等6部分电路中的任一部分出现短路故障时,都会直接造成P、N端点的电阻变化。

同理,当测量其它无故障电路时,也会因故障电路的“牵连”,使正常电路(被无辜)表现出“短路”的故障现象。

因而在故障检修过程中,遇有这种现象,要沉思一下再动手,避免对无辜元件的大拆大卸——如对一体化功率模块的拆卸,有可能造成器件的损坏!图1 P、N直流母线电路示意图当开关电源电路中的开关管出现短路故障时,因开关变压器初级线圈的直流电阻值近于零,和电流采样电阻一般小于1Ω的原因,开关管的漏、源极相当于并联于P、N端,1、若此时用万用表的电阻挡直接检测P、N两点,会得到P、N之间存在直流短路的故障判断;2、检测整流管D1~D6的正、反向电阻值,是相等的,有可能得出整流模块不良的误判;3、检测U、V、W输出端与P、N端之间的正、反向电阻值,发现其正、反向电阻值也是相等的,都与正向电阻值接近,也易得出逆变模块损坏的误判;4、此时若凑巧是检测C1、C2电容的两端,则易得出C1~C5电容元件可能短路的误判。

曾有检修人员,接手变频器后,先下手检测U、V、W输出端与P、N端之间的正、反向电阻值,发现皆为较小的电阻值,且无正、反向特性,贸然拆下一体化模块化,才后悔莫及,一体化模块是好,原来仅为故障仅为开关管VT01短路,由此造成较大的经济损失。

这种低级错误,一时头脑发热,也是可能干得出来的。

如果细心一点,对挂于P、N直流母线的各部分电路,能有个大概认识,并细心分析检测结果,结合故障概率分析,当不难得出准确判断。

变频器图纸

11J-6
12
11J-6
13
11J-4
14
11J-4
3层#3角动力回路
BP11-R
1
11K-1
BP11-S
2
11K-2
BP11-T
3
11K-3
G(地)
4
G(地)
BP11-U
5
BP11-U
BP11-V
6
BP11-V
BP11-W
7
BP11-W
3层#2角控制
32F-E1
1
32F-E2
2
BP10-7
32F-E3
4
BP9-7
5
5I/V-3
3C13-
6
5I/V-4
31S1
7
9V/I-5
31S2
8
9V/I-6
31F-11
9
9J-5
31F-12
10
9J-1
9J-2
11
9J-2
9J-6
12
9J-6
13
9J-3
9J-4
14
9J-4
3层#1角动力回路
BP9-R
1
9K-1
BP9-S
2
9K-2
BP9-T
3
9K-3
G(地)
4
2层#1角动力回路BP5-R15-1BP5-S2
5K-2
BP5-T
3
5K-3
G(地)
4
G(地)
BP5-U
5
BP5-U
BP5-V
6
BP5-V
BP5-W
7
BP5-W
2层#3角控制
23F-E1
1

变频器工作原理图(维修用)

变频器维修工作原理要想做好变频器维修,了解变频器基础知识当然是相当重要的,但是对于变频器维修,仅了解以上基本电路还远远不够的,还须深刻了解主回路电路,主回路主要由整流电路、限流电路、滤波电路、制动电路、逆变电路和检测取样电路部分组成。

下图是它的结构图。

图1.1变频器基本电路图分析目前,通用型变频器绝大多数是交—直—交型变频器,通常尤以电压器变频器为通用,其主回路图(见图1.1),它是变频器的核心电路,由整流回路(交—直交换),直流滤波电路(能耗电路)及逆变电路(直—交变换)组成,当然还包括有限流电路、制动电路、控制电路等组成部分。

图1.21)整流电路如图1.2所示,通用变频器的整流电路是由三相桥式整流桥组成。

它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。

三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。

网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。

当电源电压为三相380V时,整流器件的最大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。

2)滤波电路逆变器的负载属感性负载的异步电动机,无论异步电动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元件来缓冲。

同时,三相整流桥输出的电压和电流属直流脉冲电压和电流。

为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。

通用变频器直流滤波电路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。

另外,因为电解电容器容量有较大的离散性,这将使它们随的电压不相等。

因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。

3)逆变电路逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。

变频器电路全图及说明

《康沃CVF-G-5.5kW变频器》主电路图《康沃CVF-G-5.5kW变频器》主电路图说这台5.5kW康沃变频器的主电路,就是一个模块加上四只电容器呀。

除了模块和电容,没有其它东西了。

在维修界,流行着这样的说法:宁修三台大的,不修一台小的;小机器风险大,大机器风险小。

小功率变频器结构紧凑,有时候检查电路都伸不进表笔去,只有引出线来测量,确实麻烦。

此其一;小功率变频器,主电路就一个模块,整流和逆变都在里面了。

内部坏了一只IGBT管子,一般情况下只有将整个模块换新,投入的成本高,利润空间小。

而且万一出现意外情况,换上的模块再坏一次,那就是赔钱买卖了。

要高了价,用户不修了,要低的价,有一定的修理风险。

如同鸡肋,食之无味,弃之可惜。

修理风险也大。

大机器空间大,在检修上方便,无论是整流电路还是逆变电路,采用分立式模块,坏一只换一只,维修成本偏偏低下来了。

而大功率变频器的维修收费上,相应空间也大呀。

修一台大功率机器,比修小的三台,都合算啊。

因变频器直流电路的储能电容器容量较大,且电压值较高,整流电路对电容器的直接充电,有可能会造成整流模块损坏和前级电源开关跳闸。

其实这种强Y充电,对电容器的电极引线,也是一个大的冲击,也有可能造成电容器的损坏。

故一般在整流电路和储能电容器之间接有充电电阻和充电继电器(接触器)。

变频器在上电初期,由充电电阻限流给电容器充电,在电容器上建立起一定电压后,充电继电器闭合,整流电路才与储能电容器连为一体,变频器可以运行。

充电电阻起了一个缓冲作用,实施了一个安全充电的过程。

当负载转速超过变频器的输出转速,由U、V、W输出端子向直流电路馈回再生能量时,若不能及时将此能量耗散掉,异常升高的直流电压会危及储能电容和逆模块的安全。

BSM15GP120模块内置制动单元,机器内部内置制动电阻RXG28-60。

虽有内置制动电阻,但机器也有P1、PB外接制动电阻端子,当内置电阻不能完全消耗再行能量时,可由端子并接外部制动电阻,完成对电机发电的再生能量的耗散。

【干货】图文详解变频器接线!

【干货】图文详解变频器接线!变频器是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。

变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。

变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的。

一、变频器工作原理变频器可分为电压型和电流型两种变频器:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。

电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。

是整流器,整流器,逆变器。

而变频器的主电路由整流器、平波回路和逆变器三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路。

上图是一副变频器接线图。

在变频器的安装中,有一些问题是需要注意的。

例如变频器本身有较强的电磁干扰,会干扰一些设备的工作,因此我们可以在变频器的输出电缆上加上电缆套。

又或变频器或控制柜内的控制线距离动力电缆至少100mm等等。

二、主电路的接线1电源应接到变频器输入端R、S、T接线端子上,一定不能接到变频器输出端(U、V、W)上,否则将损坏变频器。

接线后,零碎线头必须清除干净,零碎线头可能造成异常,失灵和故障,必须始终保持变频器清洁。

在控制台上打孔时,要注意不要使碎片粉末等进入变频器中。

2在端子+,PR间,不要连接除建议的制动电阻器选件以外的东西,或绝对不要短路。

3电磁波干扰,变频器输入/输出(主回路)包含有谐波成分,可能干扰变频器附近的通讯设备。

因此,安装选件无线电噪音滤波器FR-BIF或FRBSF01或FR-BLF线路噪音滤波器,使干扰降到最小。

4长距离布线时,由于受到布线的寄生电容充电电流的影响,会使快速响应电流限制功能降低,接于二次侧的仪器误动作而产生故障。

因此,最大布线长度要小于规定值。

不得已布线长度超过时,要把Pr.156设为1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 《616G3-55kW安川变频器》主电路 uuuTA15600u400Vx6500uH150AHI-35E2T2CU-U/70AKM0220W1RRM100DZ-24x3RSTr/R60W10RMS1250D225POR6L-150S12AA1-024x6GR40WCTA2ECECR5.1kx2EGECMS1250D225NMS1250D225POR6L-150TA3GRCECECREGECMS1250D225NMS1250D225POR6L-150GRCECECR

EGE

C

MS1250D225N

UVW

FU1/ATM53CN/4N1M1C7KA11KA116CN17CN4FAN散热风扇DM1KM01CN4CN/210CNP1uFANx4200V60W10R60W10R60W10R60W10R60W10R200V200V380V400/415V440V460V400V/S1CNM1M1M1

XY

2CN5CN1234M23风扇故障检测端子2.3开路时跳FAN故障123KM0\状态检测开路时跳FU故障5CN

KM0RC

已短接开路时跳OH故障14CN/15CN外接热传感器开路时跳OH故障

PN2uF

2uF 2

《616G3-55kW安川变频器》主电路图说

所有变频器主电路的结构都是相似的,乃至于是相同的。而安川变频器的主电路和台湾东元变频器的主电路更是如出一辙。稍后我观察到两机的控制面板是一样的,控制面板和参数的设置也是相似的。发现两种从硬件到软件都相似甚至于是相同的机器,给安装调试与维修,都会带来很多的方便。只要手头有一种技术资料参考,就可以调试和维修二种设备了。 打开这两种大功率变频器的外壳,检查主电路时,安装于逆变模块上方(与模块并联的)的六只长方形盒体状的大东西,首先会引起我们的兴趣——与每相上臂IGBT管子并联的是型号为MS1250D225P,与下臂IGBT管子并联的型号为MS1250D225N。用句网络上的话说:这究竟是个什么东东?安装于此处意欲何为呢? 大凡并联在IGBT管子上的东西,或电容或阻容网络,均是为保护IGBT管子而设置的。即当该管子截止时,快速消耗掉反向电压所形成的能量,提供一个反向电流的通路,以保护IGBT管子不承受(实质上是使其承受得少一点罢了)反压的冲击。众所周知,无论是双极型或是场效应器件,在承受正向电压上往往有一定的富裕量,但对于反向电压的耐受能力却是极其脆弱的。所以在IGBT管子上并联的一嘟喽一嘟喽的东西,可以说都是完成此一消耗反压任务的。 需要说明的是:MS1250D225P和MS1250D225N的内部电路,笔者并未打开实物进行验证,模块损坏后,这两种器件往往都是完好的,所以也不便将其破坏后拆解。上图的内部电路是据测量揣摩画出的,仅为读者朋友提供一个参考。我查找了大量资料和在网络上进行了搜寻,均未找到此元件的资料。从揣测电路的基础上进行原理上的分析,显然容易产生误导。故暂时省略对其原理的解析。 但在模块上并联了此类元件后,将在检修上给我们带来新的体验。见下述。 按照常规的检修方法,我们在更换损坏的模块后,进行通电试验前,须将上图中的P点切断,串入两只25W(或40W)灯泡,再行上电,这样万一逆变模块回路或驱动电路异常,造成上、下臂两只IGBT管子共通对直流电源的短路时,因灯泡的限流作用,使昂贵的IGBT模块免遭损坏。其它品牌的变频器,在管子两端并联皮法级的小容量电容,在通电或变频器启动后,只要U、V、W输出端子空载,灯泡是不会亮的。但安川变频器在检修中的表现就有所不同了。在P点串入灯泡,上电,灯泡不亮,是对的,我松了一口气;按操作面板启动变频器,灯泡变为雪亮!坏了,输出模块有短路现象!这是我的第一判断。停电检查模块和驱动电路,均无异常。回头查看电路结构,在拆除掉MS1250D225P和MS1250D225N后,启动变频器后灯泡不亮了。测空载输出三相电压正常。这两只元件与外接10Ω80W电阻,提供了约百毫安的电流通路,使25W灯泡变为雪亮。以几十瓦的功耗的牺牲换来IGBT管子更高的安全性,这是安川变频器的模块保护电路的特色。 变频器空载启动后,由于MS1250D225P和MS1250D225N等元件的关系,逆变电路自身形成了一定的电路通路,并非为逆变模块不良造成。该机是一个特例。有了电路通路,也并一定是模块已经损坏了,观察一下,是哪些元件提供了此电流的通路?当新鲜的经验固化成思维定式,对故障的误判就在所难免了。

整机控制电源是由图下方一只多抽头变压器来取得的。插座3CN和4CN的短

接线不同,可调整输入电压的级别,以保证次级绕组AC220V电压的精确度。散热风机是采用AC220V电源的,此电源又经整滤波做为开关电源的输入。单独检修驱动板时,须将风扇端子的2、3;接触器端子的3、4;14CN,15CN,16CN的端子均短接,人为消除欠压(FU/LU)、过热(OH)、风扇坏(FAN)等故障信号,才能使CPU输出六路脉冲信号,便于对驱动电路进行检查。 3

《616G3-55kW安川变频器》驱动/保护电路 1CNQ2R13A144475RC1Q3R3IN1C36943kPWMR5TLP2501 Nc25VU29.5V470u1.5kD5T1C7D1116V680uC82 IN+3 IN-4 NcVcc 8OUT 7OUT 6GND 5

R10 5R3WR203kR243kR12.2kR22kPR113.3kR123kD3D4

D1

D2VssQ3VccC2GGF/OCTLP7501 NcU12 IN+3 IN-4 NcVcc 8Nc 7OUT 6GND 5R4

1.2k

2CNQ8R43A144475RC1Q9R31IN2C36943kPWMR45TLP2501 Nc25VU79.5V470u1.5kD15T1C21D2116V680uC222 IN+3 IN-4 NcVcc 8OUT 7OUT 6GND 5

R40 5R3WR363kR473kR292.2kR302kR413.3kR423kD13D14

D9

D12VssQ7VccC18GF/OCTLP2501 NcU42 IN+3 IN-4 NcVcc 8Nc 7OUT 6GND 5R44

1.2k

E

GE

3CNQ16R70A144475RC30Q17R60IN3C36943kPWMR62TLP2501 Nc25VU99.5V470u1.5kD30T1C35D3516V680uC362 IN+3 IN-4 NcVcc 8OUT 7OUT 6GND 5

R67 5R3WR633kR743kR582.2kR592kPR683.3kR693kD28D29

D26

D27VssQ15VccC33GGF/OCTLP7501 NcU82 IN+3 IN-4 NcVcc 8Nc 7OUT 6GND 5R61

1.2k

Q22R91A144475RC42Q23R84IN2C36943kPWMR45TLP2501 Nc25VU119.5V470u1.5kD15T1C21D2116V680uC222 IN+3 IN-4 NcVcc 8OUT 7OUT 6GND 5R88 5R3WR963kR822.2kR832kR893.3kR903kD39D40D32D38VssQ21VccC45GF/OCTLP2501 NcU102 IN+3 IN-4 NcVcc 8Nc 7OUT 6GND 5R921.2kE4CNG

E

R983k2-V-2-0V1-V-1-0V0.330.330.330.33W相上臂脉冲W相下臂脉冲V相上臂脉冲V相下臂脉冲9V9V9V9V

3V/14V 4

《616G3-55kW安川变频器》驱动电路/保护电路图说 驱动电路的种类也是大同小异的。我们见得最多的是用PC929、A316J等IC构成的驱动电路,模块故障检测电路(保护电路)也同时集成在内了。虽然可以找到有关A3316J等的电路资料,能看到内部的单元方框电路图和对电路原理的介绍,但对其保护电路的具体构成,总是感到一丝“触不到实处”的茫然——IC内部的保护电路,的确是看不到也摸不着的呀。恰巧本电路是用分立元件构成的检测与保护电路,更便于理解检测与保护动作过程。将上图中的一路脉冲与保护电路稍为改画,即可看出IGBT管压降检测电路是如何对模块实施保护动作的了:

1CNQ2R13A144475RC1Q3R3IN1C36943kPWMR5TLP2501 Nc25VU29.5V470u1.5kD5T1C7D1116V680uC82 IN+3 IN-4 NcVcc 8OUT 7OUT 6GND 5

R10 5R3WR203kR243kR12.2kR22kPR113.3kR123kD3D4D1D2VssQ3VccC2GGF/OCTLP7501 NcU12 IN+3 IN-4 NcVcc 8Nc 7OUT 6GND 5R41.2kE0.33W相上臂脉冲9V3V/14VGE

C

W

P

0V+15V

-9.5V 电路原理:由CPU引脚来的PWM脉冲信号,经U2光电耦合器隔离和放大后,送入模块保护电路。正常状态下,此脉冲信号再经Q2和Q3的推挽式功率放大电路放大,直接驱动IGBT模块。一般认为,IGBT模块为电压型驱动模块,此种观念有失偏颇。IGBT管子的输入栅-射结电容,恰恰需要瞬态的大涌入电流!这就是为什么会采用Q2、Q3来做功率放大的原因。驱动信号的引入电阻,也是5Ω8W的功率电阻。而从这个意义上来讲,从本质上来看,IGBT模块,仍为电流型驱动器件。这是笔者的看法,不知当否?当驱动电路的电流输出能力不足时,会使三相输出电流产生断续,电机振动,发出隆隆声。脉冲处理电路原理另见其它图说,此处重点是看保护电路如何动作的。 在变频器未接受启动信号时,U2的输出脚7、8为截止负电压,如以0V电源线做为参考点的话,此时7、8脚电压约-9.5V(忽略内部管子的饱合压降),此负压经R13、R3引入到Q2和Q3的基极。Q2因反偏压而截止,Q3因正偏压而导通,IGBT模块的栅偏压为负,处于截止状态。电阻R1、R2对+15V和负-9.5V分压得到3V的电平。D9为击穿电压值为9V的稳压管,R1与R2的分压值不足以使其击穿,故Q3无偏流,处于截止状态。光电耦合器U1无输入电流,故无GF(接地)和OC(过载、短路)等故障信号返回CPU。当CPU发送驱动脉冲的时候,U2的7、8脚变为峰值为15V的正脉冲电压,D1的正极此际便上升为+15V,此时便出现了两种情况:一种情况下是模块良好,IGBT管子在正激励脉冲驱动下迅即导通,可认为P、E两点之间瞬时短接了。D1的负端电位瞬即拉为0V,也将D2的负端电位拉为1V以下,因未达到D2的击穿值,使Q3仍无基极偏流而截止;一种情况下是模块已或因负载异常使运行电流过大,或因Q3等驱动电路本身不良使IGBT管子并未良好地导通,D1的负端为高电位而截止,+15V经R1使D2击穿,Q3得到偏流导通,将Q2基极的正脉冲电压拉为零电平,IGBT模块失去脉冲而截止。同时Q3的导通产生了U1的输入电流,U1将模块故障信号送入CPU。可见此电路是保护电路先切断了IGBT管子的驱动脉冲,同时送出了模块故障信号。保护是及时和快速的。

相关文档
最新文档