格点与面积
四年级上册数学几何专题讲义(共6讲)-第1讲 格点与面积 全国通用(含答案)

知识要点第四讲格点与面积1、如图a 所示,在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点。
在方格网中,以格点为顶点画出的直线型多边形叫做格点多边形。
用N 表示多边形内部格点数,L 表示多边形周界上的格点数,S 表示多边形面积,我们能发现如下规律:12LS N =+-,这个规律就是毕克定理(Pick's Theorem )。
图a2、如图b 所示,在一张纸上,先画出一些水平直线和一些与水平直线夹角为60的直线,并使任意两条相邻的平行线的距离都相等,这样在纸上就形成了一个正三角形网(通常规定每个小正三角形的面积为1),其中的每个交点就叫做一个格点。
在正三角形网中,以格点为顶点画出的直线型多边形叫做格点多边形。
用N 表示多边形内部格点,L 表示多边形周界上的格点,S 表示多边形面积,与比克定理类似的有:22S N L =+-。
图b方格网【例 1】 下列5个图中,哪些是格点多边形?图1 图2 图3 图4 图5 【分析】根据格点多边形的定义,格点多边形必须符合2个条件:(1)图形必须是多边形,即图形的边必须是直线;(2)图形的顶点必须在格点上。
图3、图4的顶点不在格点上,图5有条线不是直线;所以图1、图2是格点多边形。
【例 2】 计算下图中各个格点多边形的面积,并填写表格。
(小正方形的面积为1单位面积)图1 图2 图3 图4 图5 图6图 图形内的格点数(N )边界上的格点数(L )12LN +- 面积(S )图1 图2 图3 图4 图5 图6【分析】本题的图形都是规则图形,它们的面积运用公式直接可求,只要判断出相应的有关数据就行了。
图1是正方形,边长是5,所以面积S 正方形2525==面积单位;图2是长方形,长是7、宽是4,所以面积S 长方形7428=⨯=面积单位;图3是三角形,底是5,高是4,所以面积S 三角形54102⨯==面积单位; 图4是平行四边形,底是5,高是5,所以面积S 平行四边形5525=⨯=面积单位; 图5是直角梯形,上底是3,下底是7,高是5,所以面积S 梯形(37)5252+⨯==面积单位; 图6是梯形,上底是2,下底是5,高是5,所以面积S 梯形(25)517.52+⨯==面积单位。
苏教版初一数学下学期期末专题《三角形格点与面积》

三角形格点与面积1.如图,在10×10的正方形网格中,每个小正方形的边长为1个单位长度.△ABC的顶点都在正方形网格的格点上,且通过两次平移(沿网格线方向作上下或左右平移)后得到△A'B'C',点C的对应点是直线上的格点C'.(1)画出△A'B'C';(2)在BC上找一点P,使AP平分△ABC的面积;(3)试在直线l上画出所有的格点Q,使得由点A'、B'、C'、Q四点围成的四边形的面积为9.2.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段之间的关系是.(3)作直线MN,将△ABC分成两个面积相等的三角形.3.如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格).(1)画出△ABC中BC边上的高AH和BC边上的中线AD.(2)画出将△ABC向右平移5格又向上平移3格后的△A′B′C′.(3)△ABC的面积为.(4)若连接AA′,CC′,则这两条线段之间的关系是.4.正方形网格中的每个小正方形的边长均为1个单位长度,△ABC各顶点的位置如图所示.将△ABC平移,使点A移到点D,点E、F分别是B、C的对应点.(1)画出平移后的△DEF;(2)在AB上找一点P,使得线段CP平分△ABC的面积;(3)利用网格画△ABC的高BH;(4)连接AD、CF,AD与CF的关系是.5.如图,三角形ABC的顶点A,B,C都在格点(正方形网格线的交点)上,将三角形ABC向左平移2格,再向上平移3格,得到三角形A'BC“(设点A、B、C分别平移到A′、B′、C′)(1)请在图中画出平移后的三角形A'B′C′;(2)若连接BB′、CC′,则这两条线段的位置关系是.数量关系是(3)若BB'与AC相交于点P,则∠A'B'P,∠B'PA与∠PAB三个角之间的数量关系为A.∠A'B'P+∠B'PA+∠PAB=180°B.∠A'B'P+∠B'PA+∠PAB=360°C.∠A'B'P+∠B'PA﹣∠PAB=180°D.∠A'B'P+∠B'PA﹣∠PAB=360°6.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点C变换为点D,点A、B的对应点分别是点E、F.(1)在图中请画出△ABC平移后得到的△EFD;(2)在图中画出△ABC的AB边上的高CH;(3)若点P在格点上,且S△PBC=S△ABC(点P与点A不重合),满足这样条件的P点有个.7.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC向右平移4个单位后得到的△A1B1C1;(2)画出△ABC中AB边上的中线CM;(3)图中△ABC的面积是.8.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和直尺画图:(1)补全△A′B′C′;(2)作出△ABC的中线CD;(3)画出BC边上的高线AF;(4)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有个.(注:格点指网格线的交点)9.画图(只能借助于网格)并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移4格,再向上平移1格,请在图中画出平移后的△A′B′C′;(2)△A′B′C′的面积为;(3)利用网格在图中画出△ABC的中线AD,高线AE;(4)在右图中能使S△PBC=S△ABC的格点p的个数有个(点P异于A).10.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD和BC边上的高线AE;(3)线段AA′与线段BB′的关系是:;(4)求四边形ACBB′的面积.11.如图,在边长为1个单位的正方形网格中,△ABC经过平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和无刻度的直尺画图并解答相关的问题(保留画图痕迹):(1)画出△A′B′C′;(2)画出△ABC的高BD;(3)连接AA′、CC′,那么AA′与CC′的关系是,线段AC扫过的图形的面积为.12.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为.(5)点F为方格纸上的格点(异于点B),若S△ACB=S△ACF,则图中这样的格点F共有个.13.如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC向左平移2格,再向上平移3格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2)若连接BB′,CC′,则这两条线段的关系是;(3)△ABC在整个平移过程中线段AB扫过的面积为.14.利用直尺画图(1)利用图(1)中的网格,过P点画直线AB的平行线和垂线.(2)把图(2)网格中的三条线段通过平移使三条线段AB、CD、EF首尾顺次相接组成一个三角形.(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于.15.如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格).(1)分别画出△ABC中BC边上的高AH、中线AG.(2)画出先将△ABC向右平移6格,再向上平移3格后的△DEF.(3)画一个锐角△MNP(要求各顶点在格点上),使其面积等于△ABC的面积的2倍.16.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′,并求△A′B′C′的面积=;(2)请在AB上找一点P,使得线段CP平分△ABC的面积,在图上作出线段CP;(3)请在图中画出过点C且平行于AB的直线CM.17.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF;(2)若连接AD、CF,则这两条线段之间的关系是;(3)在图中找出所有满足S△ABC=S△QBC的格点Q(异于点A),并用Q1、Q2表示.18.画图并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移8格,再向下平移1格.请在图中画出平移后的△A′B′C′;(2)利用网格在图中画出△ABC的中线CD,高线AE;(3)△A′B′C′的面积为.(4)在平移过程中线段BC所扫过的面积为.(5)在右图中能使S△PBC=S△ABC的格点P的个数有个(点P异于A).19.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A平移到点D,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF,并求△DEF的面积=;(2)在AB上找一点M,使CM平分△ABC的面积;(3)在网格中找格点P,使S△ABC=S△BCP,这样的格点P有个.20.如图,在方格纸内将△ABC经过一次平移后得到△A′B′C,图中标出了点B的对应点B′.根据下列条件,利用网格点和三角板画图:(1)补全△A′B′C;(2)画出AB边上的中线CD;(3)画出AC边上的高线BE;(4)平移过程中,线段AB扫过的面积为.21.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′,并求△A′B′C′的面积;(2)在图中找出格点D,使△ACD的面积与△ABC的面积相等.22.如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC向左平移2格,再向上平移3格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2)画出平移后的△A′B′C′的中线B′D′(3)若连接BB′,CC′,则这两条线段的关系是(4)△ABC在整个平移过程中线段AB扫过的面积为(5)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有个(注:格点指网格线的交点)23.如图所示,在8×8的网格中,△ABC是格点三角形(顶点是网格的交点),若点A坐标为(﹣1,3),按要求回答下列问题:(1)建立符合条件的平面直角坐标系,并写出点B和点C的坐标;(2)将△ABC先向下平移2个单位长度,再向右平移3个单位长度,得到△DEF,请在图中画出△DEF,并求出线段AC在平移过程中扫过的面积.24.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和三角板画图:(1)补全△A′B′C′(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为.25.如图,△ABC的顶点都在方格纸的格点上,将△ABC向左平移1格,再向上平移3格,其中每个格子的边长为1个长度单位.(1)在图中画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段的关系是;(3)作直线l,将△ABC分成两个面积相等的三角形.【分析】(1)作出A、B、C的对应点A′、B′、C′即可;(2)根据平移的性质可知,线段AA′,CC′这两条线段之间的关系是相等且平行;(3)构造平行四边形ABCD,对角线BD所在的直线即为所求的直线MN.【解答】解:(1)平移后的△A′B′C′如图所示.(2)根据平移的性质可知,线段AA′,CC′这两条线段之间的关系是相等且平行,故答案为相等且平行.(3)构造平行四边形ABCD,对角线BD所在的直线即为所求的直线MN.【点评】本题考查平移变换、平移变换的性质、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格).(1)画出△ABC中BC边上的高AH和BC边上的中线AD.(2)画出将△ABC向右平移5格又向上平移3格后的△A′B′C′.(3)△ABC的面积为3.(4)若连接AA′,CC′,则这两条线段之间的关系是AA′=CC′且AA′∥CC′.【分析】(1)根据三角形的中线和高的定义作图即可得;(2)根据平移变换的定义作出变换后的对应点,再顺次连接即可得;(3)直接利用三角形的面积公式计算可得;故答案为:AD=CF,AD∥CF.【点评】本题考查平移变换,三角形的中线,高等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.如图,三角形ABC的顶点A,B,C都在格点(正方形网格线的交点)上,将三角形ABC向左平移2格,再向上平移3格,得到三角形A'BC“(设点A、B、C分别平移到A′、B′、C′)(1)请在图中画出平移后的三角形A'B′C′;(2)若连接BB′、CC′,则这两条线段的位置关系是BB′∥CC′.数量关系是BB′=CC′(3)若BB'与AC相交于点P,则∠A'B'P,∠B'PA与∠PAB三个角之间的数量关系为CA.∠A'B'P+∠B'PA+∠PAB=180°B.∠A'B'P+∠B'PA+∠PAB=360°C.∠A'B'P+∠B'PA﹣∠PAB=180°D.∠A'B'P+∠B'PA﹣∠PAB=360°【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A′、B′、C′即可;(2)根据平移的性质求解;(3)根据平行线的性质和三角形外角性质解答.【解答】解:(1)如图所示:△A'B'C'即为所求:(2)根据平移的性质可得:BB′∥CC′,BB′=CC′;故答案为4【点评】本题考查作图﹣平移变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC向右平移4个单位后得到的△A1B1C1;(2)画出△ABC中AB边上的中线CM;(3)图中△ABC的面积是8.【分析】(1)根据平移的定义作出变换后的对应点,再顺次连接即可得;(2)根据中线的概念作图可得;(3)利用割补法求解可得.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,CM即为所求;(3)△ABC的面积是×5×7﹣×2×6﹣×(2+5)×1=8,故答案为:8.【点评】本题考查了利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.8.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和直尺画图:(1)补全△A′B′C′;(2)作出△ABC的中线CD;(3)画出BC边上的高线AF;(4)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有6个.(注:格点指网格线的交点)【分析】(1)由点B及其对应点B′的位置得出平移方向和距离,据此将点A、C按照相同方式平移得到对应点,再顺次连接即可得;(2)根据中线的概念作图可得;(3)根据高线的概念求解可得;(4)根据共底等高及平行线间的距离处处相等作图可得.【解答】解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,CD即为所求;(3)如图所示,AF即为所求;(4)如图所示,中满足条件且异于点C的格点E共有6个,故答案为:6.【点评】本题主要考查作图﹣轴对称变换,解题的关键是掌握轴对称变换的定义和性质及中线、高线的概念、平行线间的距离处处相等.9.画图(只能借助于网格)并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移4格,再向上平移1格,请在图中画出平移后的△A′B′C′;(2)△A′B′C′的面积为4;(3)利用网格在图中画出△ABC的中线AD,高线AE;(4)在右图中能使S△PBC=S△ABC的格点p的个数有7个(点P异于A).【分析】(1)根据图形平移的性质画出△A′B′C′即可;(2)取线段AB的中点D,连接CD,过点A作AE⊥BC的延长线与点E即可;(3)根据图形平移的性质可直接得出结论;(4)根据S四边形ACBB′=S梯形AFGB+S△ABC﹣S△BGB′﹣S△AFB′即可得出结论.【解答】解:(1)如图所示;(2)如图所示;(3)由图形平移的性质可知,AA′∥BB′,AA′=BB′.故答案为:平行且相等;(4)S四边形ACBB′=S梯形AFGB+S△ABC﹣S△BGB′﹣S△AFB′=(7+3)×6+×4×4﹣×1×7﹣×3×5=30+8﹣﹣=27.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.11.如图,在边长为1个单位的正方形网格中,△ABC经过平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和无刻度的直尺画图并解答相关的问题(保留画图痕迹):(1)画出△A′B′C′;(2)画出△ABC的高BD;(3)连接AA′、CC′,那么AA′与CC′的关系是平行且相等,线段AC扫过的图形的面积为10.【分析】(1)根据平移的定义和性质作出点A、C平移后的对应点,顺次连接即可得;(2)根据三角形高的定义作图即可得;(3)根据平移变换的性质可得,再利用割补法求出平行四边形的面积.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)如图所示,BD即为所求;(3)如图所示,AA′与CC′的关系是平行且相等,线段AC扫过的图形的面积为10×2﹣2××4×1﹣2××6×1=10,故答案为:平行且相等、10.【点评】此题主要考查了平移变换以及平行四边形面积求法等知识,根据题意正确把握平移的性质是解题关键.12.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为8.(5)点F为方格纸上的格点(异于点B),若S△ACB=S△ACF,则图中这样的格点F共有7个.【分析】(1)利用网格特点和平移的性质分别画出点A、B、C的对应点A′、B′、C′即可得到△A′B′C′;(2)根据平移的性质求解;(3)由于线段AB扫过的部分为平行四边形,则根据平行四边形的面积公式可求解.【解答】解:(1)如图,△A′B′C′为所作;(2)BB′∥CC′,BB′=CC′;(3)线段AB扫过的面积=4×3=12.故答案为平行且相等;12.【点评】本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.14.利用直尺画图(1)利用图(1)中的网格,过P点画直线AB的平行线和垂线.(2)把图(2)网格中的三条线段通过平移使三条线段AB、CD、EF首尾顺次相接组成一个三角形.(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于 3.5.【分析】(1)根据网格结构的特点,利用直线与网格的夹角的关系找出与AB平行的格点以及垂直的格点作出即可;(2)根据网格结构的特点,过点E找出与AB、CD位置相同的线段,过点F找出与AB、CD位置相同的线段,作出即可;(3)根据S△=S正方形﹣三个角上的三角形的面积即可得出结论.【解答】解:(1)、(2)如图所示;(3)S△EFH=3×3﹣×1×2﹣×2×3﹣×1×3=9﹣1﹣3﹣=3.5.故答案为:3.5.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.15.如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格).(1)分别画出△ABC中BC边上的高AH、中线AG.(2)画出先将△ABC向右平移6格,再向上平移3格后的△DEF.(3)画一个锐角△MNP(要求各顶点在格点上),使其面积等于△ABC的面积的2倍.【分析】(1)根据三角形的高和中线的定义结合网格作图可得;(2)根据平移变换的定义和性质作图可得;【点评】本题考查了平移变换的作图、三角形的面积、平分三角形的面积、平行线,知道三角形的中线平分三角形的面积,并会根据一个对应点的平移规律进行作图.17.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF;(2)若连接AD、CF,则这两条线段之间的关系是AD=CF,AD∥CF;(3)在图中找出所有满足S△ABC=S△QBC的格点Q(异于点A),并用Q1、Q2表示.【分析】(1)将三角形的三顶点分别向右平移6格、向下平移1格得到三顶点,再顺次连接可得;(2)根据平移变换的性质可得答案;(3)过点A作线段BC的平行线,平行线经过的网格点即为点Q1、Q2.【解答】解:(1)如图所示,△DEF即为所求.(2)根据平移变换的性质知,AD=CF,AD∥CF,故答案为:AD=CF,AD∥CF;(3)过点A作线段BC的平行线,平行线经过的网格点即为点Q1、Q2.【点评】本题考查了利用平移变换作图,平移的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.(1)请画出平移后的△DEF,并求△DEF的面积=7;(2)在AB上找一点M,使CM平分△ABC的面积;(3)在网格中找格点P,使S△ABC=S△BCP,这样的格点P有4个.【分析】(1)根据平移的性质画出图象,再利用三角形的面积公式计算即可;(2)根据中线的定义画出中线即可平分三角形面积;(3)在过点A平行BC的直线上有4个格点,所以满足条件的△PCB有4个.【解答】解:(1)如图所示:△DEF即为所求,△DEF的面积为:4×4﹣×2×4﹣×2×3﹣×1×4=7;故答案为:7;(2)如图所示:点M即为所求;(3)使S△ABC=S△BCP,这样的格点P有4个.故答案为:4.【点评】本题考查平移变换、三角形的面积、三角形的中线等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.如图,在方格纸内将△ABC经过一次平移后得到△A′B′C,图中标出了点B的对应点B′.根据下列条件,利用网格点和三角板画图:(1)补全△A′B′C;(2)画出AB边上的中线CD;(3)画出AC边上的高线BE;(4)平移过程中,线段AB扫过的面积为8.S△A′B′C′=3×3﹣×2×1﹣×3×1﹣×2×3=9﹣1﹣﹣3=3.5;(2)如图,点D1,D2即为所求.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.22.如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC向左平移2格,再向上平移3格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2)画出平移后的△A′B′C′的中线B′D′(3)若连接BB′,CC′,则这两条线段的关系是BB′∥CC′,BB′=CC′(4)△ABC在整个平移过程中线段AB扫过的面积为12(5)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有10个(注:格点指网格线的交点)【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A′、B′、C′即可;(2)利用网格特点找出A′C′的中点D′,然后连接B′D′即可;(3)根据平移的性质求解;(4)利用平移的性质和平行四边形的面积公式求解;(5)过点C作AB的平行线,然后找出此平行线上的格点即可.【解答】解:(1)如图,△A′B′C′为所作;(2)如图,中线B′D′为所作;(3)BB′∥CC′,BB′=CC′;(4)△ABC在整个平移过程中线段AB扫过的面积=4×3=12;(5)满足条件且异于点C的格点E共有10个.线段AC在平移过程中扫过的面积=×2×1+2×3=7.【点评】本题主要考查作图﹣平移变换,解题的关键是熟练掌握平移变换的定义和性质及割补法求四边形的面积.24.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和三角板画图:(1)补全△A′B′C′(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为8.【分析】(1)直接利用平移的性质得出各点位置即可;(2)利用中线的定义得出D点的位置;(3)利用高线的定义得出E点的位置(4)直接利用三角形面积求法得出答案.【解答】解:(1)(2)(3)题如图所示.(4)△A′B′C′的面积为:×4×4=8.故答案为:8.【点评】此题主要考查了平移变换以及三角形面积求法,正确得出平移后对应点位置是解题关键.25.如图,△ABC的顶点都在方格纸的格点上,将△ABC向左平移1格,再向上平移3格,其中每个格子的边长为1个长度单位.(1)在图中画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段的关系是AA′∥CC′,AA′=CC′;(3)作直线l,将△ABC分成两个面积相等的三角形.【分析】(1)根据图形平移不变性的性质画出△A′B′C′即可;(2)根据图形平移的性质即可得出结论;(3)过三角形的顶点与对边的中点作直线即可.【解答】解:(1)如图所示;(2)∵△A′B′C′由△ABC平移而成,∴AA′∥CC′,AA′=CC′.故答案为:AA′∥CC′,AA′=CC′;(3)如图所示.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.。
5.1 格点面积

例3
图形编号
一周格点数
8
12
中间格点数
2
3
面积(平方厘米)
5
8
格点数与面积之间的关系 面积=一周格点数÷2+1 面积=一周格点数÷2+2
例4
猜想中间有4个点的格点图形面积怎样计算?5 个点呢?你能用一个完整的公式表示中间有任意 个点(n个点)的格点多边形的面积吗?
例4
(中间0个点)图形面积=一周格点数÷2-1 (中间1个点)图形面积=一周格点数÷2 (中间2个点)图形面积=一周格点数÷2+1 (中间3个点)图形面积=一周格点数÷2+2 (中间4个点)图形面积=一周格点数÷2+3 (中间5个点)图形面积=一周格点数÷2+4 (中间n个点)图形面积=一周格点数÷2+n-1
例2
图形编号
④
一周格点数
4
6
8 10
Байду номын сангаас
中间格点数
1
1
1
1
面积(平方厘米)
2
3
4
5
你的发现和猜想(格点数与 面积之间的关系)
面积=一周格点数÷2
小结
格点数与面积之间的关系:
中间1个点的格点图形面积=一周格点数÷2
例3
验证: (1)中间有2个点的图形,用数格点求面积方
法是:面积=一周格点数÷2+1。 (2)中间有3个点的图形,用数格点求面积方
一周格点数
4
6
8
10
面积(平方厘米)
1
2
3
4
你的发现和猜想(格点数与 面积之间的关系)
面积=一周格点数÷2-1
格点与面积作业

8⨯的正方形,求正方形内四边形ABCD的面积。
(先用分割法,做一做2、下图是一个8
再用整点法)
做一做3、设每相邻两点间距离为1,利用格点面积公式计算下图中阴影部分面积。
做一做4、求下列格点多边形的面积(每相邻三个点“ ”或“∴”构成面积为1的等边三角形)。
做一做5、下图中有18个点,其中每相邻的三点“ ”或“∴”所形成的三角形都是面积为1平方厘米的等边三角形,试计算五边形ABCDE的面积。
做一做6、求下图中格点多边形的面积(每相邻四个点围成的小方格的面积为1平方厘米)。
练习:(A、B组)
2、下图中的每个正方形的面积都是1,那么图中这只狗所占的图形的面积是多少?
4、下图中每个小方格的面积为1平方厘米,阴影部分的面积为多少平方厘米?
6、如果每个小正方形的面积是1平方厘米,那么下图中五角星的面积是多少平方厘米?
7、如图,如果正三角形的面积是1平方厘米,那么四边形ABCD的面积是多少平方厘米?
8、如图,图中有21个点,其中每三点“ ”或“ ”所形成的三角形都是面积为1的等边三角形,试计算四边形DEFG的面积。
9、把等边三角形ABC每边六等分,组成如图的三角形网,若图中每个小三角形的面积均为1平方厘米,试求图中三角形DEF的面积。
10、把大正三角形每边八等分,组成如图所示的三角网。
如果每个小三角形的面积都是1,求图中粗线所围成的三角形的面积。
三角形格点面积求法

三角形格点面积求法在平面直角坐标系中,我们可以用格点来表示点的位置。
一个格点就是一个整数坐标点,例如(1,2)、(3,4)等等。
而一个三角形可以由三个不同的格点组成,我们可以通过这些格点来计算三角形的面积。
我们需要知道如何计算两个格点之间的距离。
假设有两个格点A(x1,y1)和B(x2,y2),它们之间的距离可以用勾股定理来计算:AB = √((x2-x1)² + (y2-y1)²)接下来,我们可以用海龙公式来计算三角形的面积。
假设三角形的三个顶点分别为A(x1,y1)、B(x2,y2)和C(x3,y3),则三角形的半周长可以用以下公式计算:s = (AB + AC + BC) / 2其中,AB、AC和BC分别为三角形的三条边的长度。
接下来,我们可以用以下公式来计算三角形的面积:S = √(s(s-AB)(s-AC)(s-BC))这个公式被称为海龙公式,它可以用来计算任意三角形的面积,不论是由格点组成的三角形还是由实数坐标点组成的三角形。
举个例子,假设有一个三角形,它的三个顶点分别为A(1,1)、B(3,2)和C(2,4)。
我们可以先计算出三条边的长度:AB = √((3-1)² + (2-1)²) = √5AC = √((2-1)² + (4-1)²) = √10BC = √((3-2)² + (2-4)²) = √5然后,我们可以计算出半周长:s = (AB + AC + BC) / 2 = (√5 + √10 + √5) / 2我们可以用海龙公式来计算三角形的面积:S = √(s(s-AB)(s-AC)(s-BC)) = √(s(s-AB)(s-AC)(s-BC)) = √(5/2 * 3/2 * 1/2 * 3/2) = 3/4因此,这个三角形的面积为3/4平方单位。
总结一下,我们可以用格点来表示三角形的顶点,然后用勾股定理来计算三角形的边长,最后用海龙公式来计算三角形的面积。
七年级下数学拓展课——数格点算面积

当我听别人讲解某些数学问题时,常觉得很难理 解,甚至不可能理解。这时便想,是否可以将问题化 简些呢﹖往往,在终于弄清楚之后,实际上,它只是 一个更简单的问题。
——希尔伯特
再见!
的格点数,那么有 S 2 N L 2
A
即:格点多边形面积等于图形内部所包含
格点数的2倍与周界上格点数的和减去2.
C
B
B
(a)
巩固:
1、求下列格点多边形的面积(每相邻三个点“∵”或“∴” 成面积为1的等边三角形).
⑴
⑵
⑶
⑷
2、把同一个三角形的三条边分别5等分、7等分(如图1,图2),然
后适当连接这些等分点,便得到了若干个面积相等的小三角形.已 知图1中阴影部分面积是294平方分米,那么图2中阴影部分的面积 是______平方分米.
D
添补法:把不规则图形周围添
补上规则的小图形转化一个规
则的大图形,使总面积便于计
算。
(1)求下列多边形的面积
(2)不妨设S---格点多边形的面积,N--多边形内部的格 点数,L--它的边上的格点数,那么S、N、L三者之间有没 有关系呢?
图形序号 S N L
① 104
② 2.5 1 5
③
42 6
S、N、L三者之间有 怎样的关系呢?
二、探究格点多边形的面积S与内部、边上格点数(N、 L)的关系
活动五 猜想N=4、5、…、10、…的格点多边形中S与L 之间的关系 活动六 归纳总结:格点多边形中S与L之间的关系
S N L 1 2
通过上面的探究,我们发现,这种格点多边形的面积计 算起来很方便,只要数一下图形边线上的格点的数目及图形 内部的格点的数目,就可用公式算出。
数格点_算面积
请把自己的 想法说给同 学听听。
Ⅰ Ⅳ ⅡⅢ
如右图将图形分割成
4块进行计算
解:把图形分割成如下图所示的四块:
图形Ⅰ的面积是:3;图形Ⅱ的面积是:3;
图形Ⅲ的面积是:3;图形Ⅳ的面积是:9。
∴图形ABCDE的面积为3+3+3+9=18。
试一试:
如下图,一个三角形的面积为1,计算ABCDE的面积多少?
O
如果第一步为“左”或“右”,那么转 A
B
化为第( 1)题,各有 6种路线。一共是
8+6×2=20(种)。
S ABCD
第二层:凹多边形
自主探索:
下图是一个 10×10的正方形,求正方形内的四
边形的面积是多少?
因为ABCD不是凸四边形,所以
请把自己的想 法说给同学听 听。
如在原题图上取格点E,则三角形BCE 及四边形AECD就都是凸的图形了。
②用拼割方法得:ABCD的面积=长方形的面积-四角上的四个
三角形的面积=96-(622+332+432+452)=54(6+4.5+6+10)=27.5
(面积单位)
H
B
G
A
E
D
F
2、下图中每个小正方形的面积都是 1,那么图中这只“狗” 多占的面积是几?
解:图形内部格点数 为59,图形周界上格 点数为 19。所以图形 的面积为: 59+19÷2-1=67.5( 面 积单位)。
(1)19 解:由三角形格点面积公式得, n=8,m=5。
A
E
解:因为不是凸四边形,所
以如在原题图上取格点,则
三角形及四边形都是凸的图
小升初奥数几何问题之格点与面积知识点
小升初奥数几何问题之格点与面积知识点【篇一】知识点:(一)正方形格点图面积在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定为1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点。
多边形的所有顶点都在格点上,在方格网中,像图(a)这样的多边形,以格点为顶点画出的多边形叫做格点多边形。
多边形的顶点至少有一个顶点格点上,比如A点,像图(b)这样的多边形虽然除A点之外所有顶点都是格点,但我们还不能把它称为格点多边形。
(二)三角形格点图的面积三角形格点多边形是指:每相邻三点成“∴”或“∵”,形成的三角形都是等边三角形,规定它的面积为1,以这样的点为顶点画出的多边形为三角形格点多边形。
【篇二】常见解题方法:求格点图面积常见的几种方法:数格子法、分割法、扩展法、毕克定理。
(一)数格子法对于格点图里面的规则图形,我们有时可以直接通过数图形所占的正方形方格或者三角形方格的个数得出规则图形的面积,或者由图形得出规则图形相应的面积公式需要的量,代入公式解出面积即可!【详解】本题所给的图形都是规则图形,它们的面积运用公式直接可求,只要判断出相应的有关数据就行了。
第(1)图是正方形,边长是4,所以面积是4×4=16(面积单位);第(2)图是矩形,长是5,宽是3,所以面积是5×3=15(面积单位);第(3)图是三角形,底是5,高是4,所以面积是5×4÷2=10(面积单位);第(4)图是平行四边形,底是5,高是3,所以面积是5×3=15(面积单位);第(5)图是直角梯形,上底是3,下底是5,高是3,所以面积是(3+5)×3÷2=12(面积单位);第(6)图是梯形,上底是3,下底是6,高是4,所以面积是(3+6)×4÷2=18(面积单位)。
下面几种方法主要针对的是格点图中的不规则图形,这也是本专题的重点!(二)分割法直接将格点图中的不规则图形分成若干个可求面积的规则图形,然后通过计算规则图形的面积来求原图形的面积。
九、格点与面积(B)
九、格点与面积(B)年级______班_____ 姓名 _____得分_____ 一、填空题:1.右图是用皮筋在钉板上围成的一个三角形,计算它的面积是多少.(每相邻两个小钉之间的距离都等于1个长度单位).2.右图是一根用皮筋在钉板上围成的一个四边形,计算它的面积是多少.(每相邻两个小钉之间的距离都等于1个长度单位).3.在一个9⨯6的长方形内,有一个凸四边形ABCD(如右图).用毕克定理先求出它的面积来,再用拼割方法计算它的面积,看两者是否一致.4.右图中每个小正方形的面积都是4平方厘米,求图中阴影部分的面积.5.右图是一个10⨯10的正方形,求正方形内的四边形ABCD的面积.6.右图是一个8⨯12面积单位的图形.求矩形内的箭形ABCDEFGH的面积.7.右图中每个小正方形的面积都是1,那么图中这只“狗”所占的面积是多少?8.右图是一个5⨯5的方格纸,小方格的面积是1平方厘米,小方格的顶点为格点.请你在图上选7个格点,要求其中任意3个格点都不在一条直线上,并且使这7个点用线段连结所围成的面积尽可能大,那么,所用图形的面积1是多少平方厘米?9.右图中每个小正方形的面积为1平方分米,那么阴影部分的面积是多少平方分米?10.右图中每个小平行四边形的面积是1个面积单位,求阴影部分的面积.二、解答题:1.右图中有21个点,其中每相邻的三点“∴”或“∵”所形成的三角形都是面积为1的等边三角形,试计算ABC∆的面积.2.右图中有21个点,其中每相邻的三点“∴”或“∵”所形成的三角形都是面积为1的等边三角形,试计算四边形DEFG的面积.3.把等边三角形ABC每边六等分,组成如右图的三角形网.若图中每个小三角形的面积均为12cm,试求图中三角形DEF的面积.4.把大正三角形每边八等份,组成如右图所示的三角形网.如果每个小三角形的面积都是1,求图中粗线所围成的三角形的面积.———————————————答案——————————————————————一、填空题:1. 5.5面积单位.分析:解答这类问题可直接套用毕克定理:格点面积=内部格点数+周界上格点数÷2-1.注意:一是毕克定理只对格点凸多边形适用,二是在数格点时要细心.解: 5+3÷2-1=5.5(面积单位).2. 5+5÷2-1=6.5(面积单位).3. 27.5面积单位.解: ①由毕克定理得:25+7÷2-1=27.5(面积单位).②用拼割方法得:ABCD的面积=长方形EFGH的面积-四角上的四个三角形的面积 =9⨯6-(6⨯2÷2+3⨯3÷2+4⨯3÷2+4⨯5÷2)=54-(6+4.5+6+10)=27.5(面积单位).4. 48平方厘米.解: ①内部格点数为: 9个;②周界上格点数为: 8个;③阴影部分的面积是: 4⨯(9+8÷2-1)=48(平方厘米).5. 30面积单位.解: 因为ABCD不是凸四边形,所以如在原题图上取格点E,则三角形BCE及四边形AECD都是凸的图形,故:S=(4+6÷2-1)+(21+8÷2-1)ABCD=6+24=30(面积单位).6. 46面积单位.解: 因为ABCDEFGH不是凸多边形,所以,连结GC、MN,则ABH∆、矩形GCNM、三角形MFE、EDN都是凸的图形.故箭形ABCDEFGH的面积=(8+10÷2-1)+4⨯8+(4÷2-1)⨯2=12+32+2=46(面积单位).7. 67.5面积单位.解: 图形内部格点数为59,图形周界上格点数为19.所以图形的面积为:59+19÷2-1=67.5(面积单位).8. 23.5(平方厘米).分析与解: 这是一个5⨯5的方格纸,共有25个格点.现在要围成一个面积最大的图形,根据格点面积公式,要使图形面积最大,必须使图形包含的内部格点数和周界上格点数尽可能多.由方格纸可知,内部格点数最多为4⨯4=16,周界上格点数最多为5⨯4=20.但是,当周界上格点数为最多时,不符合题中“任意3个格点不在一条直线上”的条件,因此,适当调整图上7个格点的位置,如右上图所示,就得到了面积最大的图形.所围成图形的最大面积为: 16+17÷2-1=23.5(平方厘米).9. 8.5平方分米.解:图形内部格点数为7,图形周界上格点数为 5.阴影部分的面积为:7+5÷2-1=8.5(平方分米).10. 18.5面积单位.解: 图形内部格点数为16,图形周界上格点数为7.图形的面积为: 16+7÷2-1=18.5(面积单位).二、解答题:1. 10面积单位.分析: 由“∵”和“∴”重合两点可拼为平行四边形 ,可以推出如下计算这类格点面积的公式:图形面积=(内部格点数+周界上格点数÷2-1)⨯2.解: 图形内部格点数为4,图形周界上格点数为4.ABC S ∆=(4+4÷2-1)⨯2=10(面积单位).2. 12面积单位.解: DEFG S 四边形=(5+4÷2-1)⨯2=12(面积单位).3. 11面积单位.解: 图形内部格点数为5,图形周界上格点数为3. DEF S ∆=(5+3÷2-1)⨯2=11(2cm ).4. 26面积单位.解: 图形内部格点数为12,图形周界上格点数为4. 图形的面积为: (12+4÷2-1)⨯2=26(面积单位).。
小学数学毕克定理格点与面积
第7站格点与面积(本讲例1-例3同2019年4年级春季尖子第2站)知识糖果屋1、求规则图形的面积(单位面积是1的小正方形格点);2、求简单不规则图形的面积(单位面积是1的小正方形格点);3、求复杂不规则图形的面积(单位面积是1的小正方形格点);4、求规则图形的面积(单位面积是1的小三角形格点)。
例题精品铺、习题游乐园例1、计算下列各个格点多边形的面积。
·······················································(1)(2)············································(3)(4)练习、计算下面格点多边形的面积。
····································例2、计算下面这个格点多边形的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级奥数 格点与面积 姓名_______________ 成绩______________
知识点:
在一张由水平线和垂直线组成的方格纸上,我们把水平线和垂直线相交的点
称为“格点”,水平线和垂直线围成的每个小正方形称为“面积单位”。借助小格
点,我们可以很快地比较和计算图形的面积大小。利用格点求图形的面积有两种
思路,一是直接将图形分成若干个面积单位,然后通过计算有多少个面积单位来
求图形的面积;二是将某些图形转化成长方形的面积来求。当然还可以将这两种
方法结合起来,求出某些较复杂图形的面积。
格点面积公式=中间格点数+图形一周的格点数÷2﹢1
回家作业:
1、计算下列各图的面积。
2、计算下列这个格点多边形的面积。
参考答案:
1、分析:先仔细观察图中的每个图形,选择方法,显然第一、三、五图可以直接数出包含
多少个面积单位,而二、四、六显然不适合用数单位面积的方法来求面积,可以采用虚线把
这些图形扩展或割补成长方形,通过求长方形的面积来求这些图形的面积。
解:(1)图中长方形的面积包括了3×2=6(个)面积单位,所以它的面积为6个面积单位。
(2)将图中的平行四边形割补成一个长方形,长方形的面积为3×2=6,而平行四边形的面积
等于长方形的面积,所以平行四边形的面积是3×2=6(个)面积单位。
(3)将图中三角形用虚线分成3块,它包含1个单位面积和2个单位面积的一半,合起来
有2个面积单位,所以它的面积是2个面积单位。
(4)图中三角形扩展成一个长方形,长方形的面积为3×2=6,而三角形面积为长方形面积
的一半,则三角形面积为3个面积单位。
(5)将图中梯形用虚线分成3块,它包含了有5个单位面积和2个单位面积的一半。合起
来有6个面积单位。所以它的面积为6个面积单位。
(6)将图中梯形互相平行的一组对边延长,补出一个与原来梯形方向颠倒,但面积一样的
梯形,形成一个大的长方形。长方形面积为(2+4)×3=18,而梯形的面积为长方形面积的
一半,所以梯形的面积是(2+4)×3÷2=9(个)面积单位。
2、
分析:这是一个不规则多边形,不能直接求出它的面积,可用长方形的面积减去4个直角三角形的面积,
如图1;另外还可以将该四边形分成几块,如图2.
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·