刘鸿文版材料力学课件全套(12)

合集下载

材料力学课件全套刘鸿文版—很重要共101页文档

材料力学课件全套刘鸿文版—很重要共101页文档

谢谢!
材料力学课件全套刘鸿 文版—很重要
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应而不冲 动,乐 观而不 盲目。 ——马 克思
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿

材料力学刘鸿文版全套课件

材料力学刘鸿文版全套课件

M (x)
M (x)
N ( x)
N ( x)
T (x)
T (x)
V

L
FN 2 (x)dx 2EA

L
M 2 (x)dx 2EI

L
T 2 (x)dx 2GIP
所有的广义力均以静力方式,按一定比例由O增加至最终值。任一广义位移 与
整个力系有关,但与其i 相应的广义力 呈线性关系。
Fi
产生位移1 , 2 ,, i ,
变形能的增加量:
V

1 2
Fi

i
F11 F2 2
Fi i

略去二阶小量,则:
V F11 F2 2 Fi i
如果把原有诸力看成第一组力,把 Fi 看作第二组力,根据互等
F F 功的互等定理:
1 12
2 21
若F1 F2,则得
位移互等定理:
12 21
例:求图示简支梁C截面的挠度。
F
B2
wC1
解:由功的互等定理 F wC1 M B2
得:F

wC1

M
Fl 2 16EI
由此得:wC1

Ml2 16E I
例:求图示悬臂梁中点C处的铅垂位移C 。
有效应力集中因数 理论应力集中因数
K


1
d

1
K

K


1
d
1 K
K
max n
目录
2.零件尺寸的影响——尺寸因数
( 1)d 1
查看表11.1
( 1 )d 光滑零件的疲劳极限

材料力学刘鸿文主编(第4版) 高等教育出版社课件

材料力学刘鸿文主编(第4版) 高等教育出版社课件
在外力作用下,一切固体都将发生变形, 故称为变形固体。在材料力学中,对变形固体 作如下假设: 1、连续性假设: 认为整个物体体积内毫无空隙地充满物质 灰口铸铁的显微组织 球墨铸铁的显微组织
目录
§1.2 变形固体的基本假设
2、均匀性假设: 认为物体内的任何部分,其力学性能相同 普通钢材的显微组织 优质钢材的显微组织
拉压变形
剪切变形
目录
§1.6 杆件变形的基本形式
扭转变形
弯曲变形
目录
第二章 拉伸、压缩与剪切(1)
目录
第二章 拉伸、压缩与剪切
§2.1 轴向拉伸与压缩的概念和实例 §2.2 轴向拉伸或压缩时横截面上的内力和应力 §2.3 直杆轴向拉伸或压缩时斜截面上的应力 §2.4 材料拉伸时的力学性能 §2.5 材料压缩时的力学性能 §2.7 失效、安全因数和强度计算 §2.8 轴向拉伸或压缩时的变形 §2.9 轴向拉伸或压缩的应变能 §2.10 拉伸、压缩超静定问题 §2.11 温度应力和装配应力 §2.12 应力集中的概念 §2.13 剪切和挤压的实用计算
目录
§2.1 轴向拉伸与压缩的概念和实例
目录
§2.1 轴向拉伸与压缩的概念和实例
目录
§2.1 轴向拉伸与压缩的概念和实例
受力特点与变形特点:
作用在杆件上的外力合力的作用线与 杆件轴线重合,杆件变形是沿轴线方向的伸 长或缩短。
拉(压)杆的受力简图
拉伸
F
FF
压缩
F
目录
§2.1 轴向拉伸与压缩的概念和实例
FmaxA
W
由三角形ABC求出
sin BC 0.8 0.388
AB 0.82 1.92
Fmax
W
sin

刘鸿文版材料力学(第五版全套356页)

刘鸿文版材料力学(第五版全套356页)

2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新

材料力学(刘鸿文版)全套课件 PPT

材料力学(刘鸿文版)全套课件 PPT

850 750 650 550
104
105
106
107
108
N
从图可以得出三点结论:
(1)对于疲劳,决定寿命的 最重要因素是应力幅 。
(2)材料的疲劳寿命N 随应力幅 的增大而减小。
(3)存在这样一个应力幅,低于该应力幅,疲劳破坏不会发生,该应力幅
称为疲劳极限,记为 -1 。
目录
对于铝合金等有色金属,其S-N曲线没有明显的水平部分,一般规定
Δ
max
m in
O t
目录
通常用以下参数描述循环应力的特征
(1)应力比 r
r min max
r = -1 :对称循环 ; r = 0 :脉动循环 。
r < 0 :拉压循环 ; r > 0 :拉拉循环 或压压循环。
(2)应力幅
max min
(3)平均应力 m
B L
解: ⑴ 弯矩方程
F
A
M (x) M e Fx
Me
⑵ 变形能
V

L
M 2 (x) dx 2EI
L
1 2EI
(M
e
Fx)2 dx

M
2 e
L

M e FL2

F 2 L2
2EI 2EI 6EI
B L
F
⑶ 当F和M0分别作用时
A M0
V 1

MeL 2EI
F 2 L3 V 2 6EI
例:试求图示悬臂梁的应变能,并利用功
能原理求自由端B的挠度。
F
解:
l
x
M (x) F x
V

刘鸿文材料力学第五版课件

刘鸿文材料力学第五版课件

Fl 2 2 Fl 2 5Fl 2 = + = 2 EI EI 2 EI
(顺时针) 顺时针)
北京交通大学工程力学研究所
柯燎亮
§6-3 用叠加法求弯曲变形-例4 用叠加法求弯曲变形由叠加原理求图示弯曲刚度为EI的外伸梁 截面的挠度和转角以 由叠加原理求图示弯曲刚度为 的外伸梁C截面的挠度和转角以 的外伸梁 截面的挠度。 及D截面的挠度。 截面的挠度
qa(2a ) qa(2a ) wD1 = θ B1 = − 48EI 16 EI 截面的挠度和B截面右端的转角为 图d中D截面的挠度和 截面右端的转角为: 中 截面的挠度和 截面右端的转角为:
3 2
wD 2
2qa =− 16 EI
4
θ B2
qa 3 = 3EI
柯燎亮
北京交通大学工程力学研究所
§6-3 用叠加法求弯曲变形-例4 用叠加法求弯曲变形将相应的位移进行叠加,即得: 将相应的位移进行叠加,即得:
q B
(θ B )q
θ A = (θ A)q + (θ A)Me
Mel ql =( + ) ( 24EI 3EI
3
(wC )q
l
) Me
B
(θ B ) M e
θB = (θB)q + (θB)Me A (c) (θ A ) C (wC )M ql 3 Mel ( ) = − + l 24EI 6EI 北京交通大学工程力学研究所 柯燎亮
qa 4 wCq = 8EI
θ Cq
qa 3 = 6 EI
柯燎亮
北京交通大学工程力学研究所
§6-3 用叠加法求弯曲变形-例4 用叠加法求弯曲变形原外伸梁C端的挠度和转角也可按叠加原理求得, 原外伸梁 端的挠度和转角也可按叠加原理求得,即: 端的挠度和转角也可按叠加原理求得

[工学]材料力学课件第四版刘鸿文_OK

B 例 6--9 求中点C的挠度。
分析:本题有二种解法
12
q A
c L qdx A c x L dx
q
A c L
一、将qdx看成集中力作用在距原点为x
B
处。用p190(9)式。
l
2 qx(3l 2 4x2 )dx
fl
2
0
48EJ
B
q 48EJ
3l 2 x2 (
2
x4)
l
2 0
BA +
ql 4 3 1 1 5ql 4
m ml
EJ
pl pl
2
fb
fd
d
l 4
fbd
48
fbd
p ( l )3 24 3EJ
pl 3
384EJ
d
c
cd
0
pl 2 2EJ2
ml EJ2
3 pl 2
12816EJ
fd
fc
c
l 4
fcd
0 0 l ml2 4 2EJ 2
pl3 3EJ 2
pl ( l )2 p ( l )3 8 4 2 4
8
(
)
1 3k
k1
k
3ql
as k k1 , k1 0 Rb 8
k as k k1 , k1 Rb 0 Reactions at point B can not exceed the range
通常结构的刚度介于二者之间,因此B点反力不能超过这个范围
Compare internal force and deformation
Equivalent force system
x
a
x a

材料力学


Fn 0
dA ( xydAcos ) sin ( xdA cos )cos
( yxdA sin ) cos ( ydA sin ) sin 0
Ft 0
dA ( xydAcos ) cos ( xdA cos )sin
1 2 3
应力状态的分类
1.空间应力状态 :三个主应力1 ,2 ,3 均不等于零 2.平面应力状态: 三个主应力1 ,2 ,3 中有两个不等于零
3.单向应力状态: 三个主应力 1 ,2 ,3 中只有一个不等于零
2 1 3 2
3
1 1
2 1
1
2
对于球形容器受力具有对称性分布特点,所以
包含直径的任意截面上都无切应力,正应力都
应为
。省略半径方向的应力,则有
3 0
1 2
二向应力状态
例 3 (书例7.1) 已知:蒸汽锅炉, t=10mm, D=1m, p=3MPa 。 求:三个主应力。
解:
前面已得到
pD pD 150 MPa 75 MPa, 2t 4t 1 150 MPa, 2 75 MPa, 3 0
解:(1) 斜面上的应力 x y x y cos 2 xy sin 2
(2)主应力、主平面
y
xy

x y x y 2 2 max ( ) xy 2 2
68.3MPa
x x y ( x y ) 2 2 min xy 2 2
48.3MPa
1 68.3MPa, 2 0, 3 48.3MPa

材料力学课件第四版刘鸿文


材料在超过弹性限度后呈现出 塑性变形,应力与应变不再呈 线性关系。
材料的断裂行为
断裂机理
材料的断裂行为受多个因 素影响,包括应力集中、 缺陷和材料的强度等。
破裂韧性
破裂韧性是评价材料抗断 裂性能的指标,高破裂韧 性意味着材料更难破坏。
断裂表征
通过破裂表征参数,如断 口形貌和断面变形等,可 以了解材料的断裂特点。
发展历程
材料力学作为一门学科,经历了数百 年的发展和演变,与工程学、力学和 材料科学等学科有着密切的联系。
材料力学的基本原理
胡克定律
弹性材料在小应变范围内的应力与应变之间的线性关系,即胡克定律。
应力平衡原理
一个物体在静力平衡条件下,各部分受到的内力与外力之间必须满足力的平衡条件。
材料强度理论
根据材料的强度理论,可以预测材料在不同应力状态下的破坏行为。
材料力学课件第四版刘鸿 文
本课件介绍材料力学的定义、基本原理、应用领域、材料强度的计算方法、 材料的受力行为、应力与应变关系以及材料的断裂行为。
材料力学的定义
1
重要性
2
通过材料力学的研究,我们可以了解
材料的性能特点,为材料的设计、选
择和使用提供科学部的应力、应 变、变形和断裂等力学行为的学科。
材料力学的应用领域
桥梁工程
材料力学在桥梁工程中的应用 主要包括桥梁的设计、结构分 析和材料的选择。
航空航天
航空航天领域对材料性能有着 非常高的要求,材料力学在飞 机制造和航天器设计中扮演着 重要角色。
汽车工程
材料力学在汽车工程领域的应 用包括车身结构设计、碰撞安 全性评估和发动机材料选择。
材料强度的计算方法
1
变形理论

材料力学第五版(刘鸿文主编)课后习题答案课件


材料力学的基本单位
总结词
材料力学的基本单位包括长度单位、质量单 位、时间单位和力的单位。这些单位是国际 单位制中的基本单位,用于描述和度量材料 力学中的各种物理量。
详细描述
在材料力学中,需要用到各种物理量来描述 和度量材料的机械行为。因此,选择合适的 单位非常重要。长度单位通常采用米(m) ,质量单位采用千克(kg),时间单位采 用秒(s),力的单位采用牛顿(N)。这 些单位是国际单位制中的基本单位,具有通 用性和互换性,可以方便地用于描述和度量 材料力学中的各种物理量,如应变、应力、 弹性模量等。同时,这些单位的选择也符合 国际惯例,有利于学术交流和技术合作。
材料力学第五版(刘鸿文 主编)课后习题答案课件
• 材料力学基础概念 • 材料力学基本公式 • 课后习题答案解析 • 材料力学实际应用 • 材料力学的未来发展
01
材料力学基础概念
材料力学定义与性质
总结词
材料力学是研究材料在各种外力作用下 产生的应变、应力、强度、刚度和稳定 性等机械行为的科学。其性质包括材料 的弹性、塑性、脆性等,以及材料的强 度、刚度、稳定性等机械性能。
02
材料力学基本公式
拉伸与压缩
•·
应变公式: $epsilon = frac{Delta L}{L}$,其中 $epsilon$是应变,$Delta L$是长度变化量,$L$是
原始长度。
描述了材料在拉伸和压缩过程中的应力、应变 关系。
应力公式: $sigma = frac{F}{A}$,其中 $sigma$是应力,$F$是作用在物体上的力, $A$是受力面积。
习题二答案解析
问题2
说明应力分析和应变分析在材料力学中的重要性。
答案
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档