高中数学知识点总结(第九章 平面解析几何 第九节 曲线与方程)

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九节 曲线与方程

一、基础知识

1.曲线与方程

一般地,在平面直角坐标系中,如果某曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下关系:

(1)曲线上点的坐标都是这个方程的解.

(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线

2.求动点轨迹方程的一般步骤

(1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合P ={M |p (M )}; (3)用坐标表示条件p (M ),列出方程f (x ,y )=0; (4)化方程f (x ,y )=0为最简形式;

(5)说明化简后的方程的解为坐标的点都在曲线上.

(1)如果曲线C 的方程是f (x ,y )=0, 那么点P 0(x 0,y 0)在曲线C 上的充要条件是f (x 0,y 0)=0.

(2)“曲线C 是方程f (x ,y )=0的曲线”是“曲线C 上的点的坐标都是方程f (x ,y )=0的解”的充分不必要条件.

坐标系建立的不同,同一曲线在不同坐标系中的方程也不同,但它们始终表示同一曲线. 有时此过程可根据实际情况省略,直接列出曲线方程.

考点一 直接法求轨迹方程

1.已知点F (0,1),直线l :y =-1,P 为平面上的动点,过点P 作直线l 的垂线,垂足为Q ,且Q P ―→·Q F ―→=FP ―→·F Q ―→

,则动点P 的轨迹C 的方程为( )

A .x 2=4y

B .y 2=3x

C .x 2=2y

D .y 2=4x

解析:选A 设点P (x ,y ),则Q(x ,-1). ∵Q P ―→·Q F ―→=FP ―→·F Q ―→,

∴(0,y +1)·(-x,2)=(x ,y -1)·(x ,-2), 即2(y +1)=x 2-2(y -1),整理得x 2=4y ,

∴动点P 的轨迹C 的方程为x 2=4y .

2.在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于-1

3

.则动点P 的轨迹方程为________________.

解析:因为点B 与点A (-1,1)关于原点O 对称, 所以点B 的坐标为(1,-1).

设点P 的坐标为(x ,y ),由题意得y -1x +1·y +1x -1=-1

3,

化简得x 2+3y 2=4(x ≠±1).

故动点P 的轨迹方程为x 2+3y 2=4(x ≠±1). 答案:x 2+3y 2=4(x ≠±1)

3.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为____________________.

解析:设A (x ,y ),由题意可知D ⎝⎛⎭⎫

x 2,y 2. ∵|CD |=3,∴⎝⎛⎭⎫x 2-52+⎝⎛⎭⎫y

22=9, 即(x -10)2+y 2=36, 由于A ,B ,C 三点不共线, ∴点A 不能落在x 轴上,即y ≠0,

∴点A 的轨迹方程为(x -10)2+y 2=36(y ≠0). 答案:(x -10)2+y 2=36(y ≠0)

考点二 定义法求轨迹方程

[典例精析]

已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .求C 的方程.

[解] 由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .

因为圆P 与圆M 外切并且与圆N 内切,

所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4>|MN |=2.

由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x 24+y 2

3

=1(x ≠-2).

[解题技法]

定义法求曲线方程的2种策略

(1)运用圆锥曲线的定义求轨迹方程,可从曲线定义出发直接写出方程,或从曲线定义出发建立关系式,从而求出方程.

(2)定义法和待定系数法适用于已知曲线的轨迹类型,利用条件把待定系数求出来,使问题得解.

[题组训练]

如图,已知△ABC 的两顶点坐标A (-1,0),B (1,0),圆E 是△ABC 的内切圆,在边AC ,BC ,AB 上的切点分别为P ,Q ,R ,|CP |=1(从圆外一点到圆的两条切线段长相等),动点C 的轨迹为曲线M ,求曲线M 的方程.

解:由题知|CA |+|CB |=|CP |+|C Q|+|AP |+|B Q|=2|CP |+|AB |=4>|AB |, 所以曲线M 是以A ,B 为焦点,长轴长为4的椭圆(挖去与x 轴的交点). 设曲线M :x 2a 2+y 2

b 2=1(a >b >0,y ≠0),

则a 2=4,b 2=a 2-⎝⎛⎭⎫|AB |22

=3, 所以曲线M 的方程为x 24+y 2

3=1(y ≠0).

考点三 代入法(相关点)求轨迹方程

[典例精析]

如图所示,抛物线E :y 2=2px (p >0)与圆O :x 2+y 2=8相交于A ,B 两点,且点A 的横坐标为2.过劣弧AB 上动点P (x 0,y 0)作圆O 的切线交抛物线E 于C ,D 两点,分别以C ,D 为切点作抛物线E 的切线l 1,l 2,l 1与l 2相交于点M .

(1)求p 的值;

(2)求动点M 的轨迹方程.

[解] (1)由点A 的横坐标为2,可得点A 的坐标为(2,2),代入y 2=2px ,解得p =1. (2)由(1)知抛物线E :y 2=2x ,

设C ⎝⎛⎭⎫y 2

12,y 1,D ⎝⎛⎭⎫y 2

22,y 2,y 1≠0,y 2≠0.切线l 1的斜率为k ,则切线l 1:y -y 1=k ⎝⎛⎭⎫x -y 2

1

2, 代入y 2=2x ,得ky 2-2y +2y 1-ky 21=0, 由Δ=0,解得k =1y 1,∴l 1的方程为y =1y 1x +y 1

2,

同理l 2的方程为y =1y 2x +y 2

2

.

相关文档
最新文档