主成分分析法的原理应用与计算步骤
主成分分析原理介绍PPT课件

➢问题的提出
有n个地理样本,每个样本共有p个变量, 构成一个n×p阶的地理数据矩阵
x11 x12 x1 p
X
x
21
x22
x2
p
x
n1
xn2
x np
当p较大时,在p维空间中考察问题比较麻烦。
1. 主成分分析的基本原理
为了克服这一困难,就需要进行降维处 理,即用较少的几个综合指标来代替原来的 指标,而且使这些综合指标能尽量多地反映 原来指标所表示的信息,同时他们之间又是 彼此独立的。
z1 l11x1 l12x2 l1p xp
z2 l21x1 l22x2 l2p xp
zm lm1x1 lm2 x2 lmpxp
z1,z2,…,zm分别称为原变量指标x1,x2,…, xP的第一,第二,…,第m主成分。
➢推广到p维空间:
由此可见,主成分分析的主要任务就是确定 原变量xj(j=1,2,…,p)在诸主成分zi(i=1, 2,...,m)上的系数lij。
必须考虑许多指标,这些指标能从不同的侧面反 映所研究的对象的特征,但指标过多,会增加分 析的复杂性,原始变量能不能减少为有代表性的 少数几个新变量,用它来代表原来的指标?
1. 主成分分析的基本原理
主成分分析就是寻找用较少的新变量代替 原来较多的旧变量,而且使新变量尽可能多 地保留原来较多信息的方法。
zz1 2csoisn cso insxx1 2Ux
U是正交矩阵,即有
UU1,UUE
zl,z2除了可以对包含在xl,x2中的信息起着 浓缩作用之外,还具有不相关的性质,这就使得 在研究复杂的问题时避免了信息重叠所带来的虚 假性。二维平面上的各点的方差大部分都归结在 zl轴上,而z2轴上的方差很小。zl和z2称为原始变 量x1和x2的综合变量。
主成分分析的原理与方法

主成分分析的原理与方法主成分分析(Principal Component Analysis, PCA)是一种常用的降维技术,用于数据的降维和特征提取。
它通过线性变换将原始数据映射到新的特征空间,使映射后的数据在新的特征空间中具有最大的方差。
一、主成分分析的原理主成分分析的核心思想是将高维数据映射到低维空间,同时保留最重要的信息。
具体而言,将原始数据映射到新的特征空间后,希望得到的新特征具有以下特性:1. 最大化方差:在新的特征空间中,希望找到使数据方差最大化的方向。
这样做的目的是将数据的主要变化方向保留下来,有利于更好地区分不同的样本。
2. 无相关性:希望得到的新特征之间是相互独立的,即它们之间没有任何相关性。
这样可以减少数据中的冗余信息,提取出更具代表性的特征。
二、主成分分析的方法主成分分析通常分为以下几个步骤:1. 标准化数据:由于主成分分析是基于数据的协方差矩阵进行计算的,所以首先需要将数据进行标准化处理,使各个维度的数据具有相同的尺度。
2. 计算协方差矩阵:通过计算标准化后的数据的协方差矩阵,可以得到各个维度之间的相关性。
3. 计算特征值和特征向量:对协方差矩阵进行特征值分解,可以得到特征值和对应的特征向量,其中特征值表示对应特征向量方向上的方差。
4. 选择主成分:根据特征值的大小,选择方差解释最大的前k个特征向量作为主成分。
5. 数据映射:将原始数据映射到选择的主成分上,得到降维后的数据。
三、主成分分析的应用主成分分析在数据分析和特征工程中有广泛的应用,可以用于数据降维、数据可视化和去除数据冗余等方面。
1. 数据降维:主成分分析可以将高维数据映射到低维空间,减少数据的维度,降低计算复杂度,并且保留了大部分的数据信息。
2. 数据可视化:通过将数据映射到二维或三维空间,可以将高维数据可视化,更好地观察数据的分布和结构。
3. 特征提取:主成分分析可以提取出数据中最具代表性的特征,对于后续的模型建立和训练有重要的意义。
主成分分析

一、主成分分析基本原理概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。
从数学角度来看,这是一种降维处理技术。
思路:一个研究对象,往往是多要素的复杂系统。
变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。
原理:假定有 n 个样本,每个样本共有p 个变量,构成一个n ×p 阶的数据矩阵,x11x12 x1px21 x22 x2p Xxn 1xn2xnp记原变量指标为x1,x2,,,xp ,设它们降维处理后的综合指标,即新变量为 z1,z2,z3,,,zm(m ≤p),则z 1l11x 1 l 12x 2l1p xpz 2 l 21x1 l22x2l2p xp ............ z mlm1x 1 l m2x 2lmp xp系数lij 的确定原则:①zi 与zj (i ≠j ;i ,j=1,2,,,m )相互无关;②z 是x 1 ,x ,,,x 的一切线性组合中方差最大者,z 是与z 不相关的x ,x ,,,1 2P2 1 1 2 xP 的所有线性组合中方差最大者;zm 是与z1,z2,,,, zm -1都不相关的x1,x ,,x P ,的所有线性组合中方差最大者。
2新变量指标z1,z2,,,zm 分别称为原变量指标x1,x2,,,xP 的第1,第2,,,第m 主成分。
从以上的分析可以看出,主成分分析的实质就是确定原来变量xj (j=1,2 ,,,p )在诸主成分zi (i=1,2,,,m )上的荷载lij (i=1,2,,,m ;j=1,2,,,p )。
从数学上可以证明,它们分别是相关矩阵m个较大的特征值所对应的特征向量。
二、主成分分析的计算步骤1、计算相关系数矩阵r11 r12 r1 pr21 r22 r2 pRrp1 rp2 rpprij(i,j=1,2,,,p)为原变量xi与xj的相关系数,rij=rji,其计算公式为n(x ki x i)(x kj x j)r ijk1n n(x ki2(x kj x j)2 x i)k1k12、计算特征值与特征向量解特征方程I R0,常用雅可比法(Jacobi)求出特征值,并使其按大小顺序排列1 2 p0;p 分别求出对应于特征值i的特征向量e i(i1,2,L,p),要求ei=1,即e ij21j1其中e ij表示向量e i的第j 个分量。
主成分分析法原理及应用

主成分分析法原理及应用主成分分析的基本思想是将高维数据转化为一个新的低维坐标系,新的坐标系由特征向量构成。
特征向量是通过对数据矩阵进行特征值分解得到的,每一个特征向量都代表数据的一个主成分,同时也代表了原始数据在该主成分上的投影。
通过选择前N个主成分,可以将原始数据的维度从D维降低到N维。
1.对原始数据进行标准化处理,即将每个维度上的数据减去其均值并除以标准差;2.构建数据的协方差矩阵;3.对协方差矩阵进行特征值分解,得到特征向量和特征值;4.将特征值按降序排列,选择前N个特征向量作为主成分。
1.数据降维:主成分分析可以将高维数据降低到低维空间中,从而减少数据的维度。
这对于处理高维数据而言非常重要,可以减少计算复杂度,并且有助于解决维度灾难问题。
2.特征提取:主成分分析可以通过选择前N个主成分来提取最具代表性的特征。
这对于处理大规模数据集、挖掘数据的基本模式和结构非常有用。
3.数据可视化:主成分分析可以将多维数据映射到二维或三维的空间中。
这样做可以简化数据的可视化和分析过程,帮助人们更好地理解数据的结构和关系。
4.噪声过滤:主成分分析可以通过去除数据的主成分中的低方差部分来剔除数据中的噪声。
这对于提高数据质量和预测性能非常有帮助。
5.数据预处理:主成分分析可以用于数据的预处理,比如去除冗余特征、去除缺失值等。
通过去除无关和缺失的特征,可以提高后续分析的准确性和效率。
总之,主成分分析是一种非常实用的数据分析技术。
它可以帮助人们更好地理解数据的结构和关系,并从中提取有用的信息。
在实际应用中,人们可以根据具体的需求和问题选择适当的主成分数目,以获得最佳的结果。
《主成分分析》课件

投资组合优化
通过主成分分析,找到不同投 资标的之间的关系,优化投资 组合的效益。
主成分分析在市场调研中的应用
1
偏好分析
通过主成分分析,找到消费者的特征
产品定位
2
和偏好,精准制定相应的市场策略。
通过主成分分析,找到消费者对产品
的不同评价因素,合理确定产品的定
位。
3
竞品分析
通过主成分分析,评估竞争对手的优 势和劣势,为企业提供相应的决策依 据。
慕课在线学习行业民调
通过主成分分析,找到影响学 习者的因素,比如课程质量、 师资水平、学习难度等方面。
降水量分析和气候变化
通过主成分分析和时间序列分 析,找到影响气象预测和气候 变化的主要原因和特征。
食品市场调查分析
通过主成分分析,找到影响消 费者购买健康食品的因素,制 定相应的市场营销策略。
标准化数据
通过Z-score标准化数据,去除不同变 量的量纲影响。
提取主成分
根据协方差矩阵的特征值和特征向量, 提取主成分。
如何选择主成分数量
特征值
根据特征值大于1的原则,选择主成分的数量。
累计贡献率
当累计贡献率到达一定阈值后,选择主成分数量。
图形分析
通过屏幕图和贡献率图来选择主成分数量。
主成分分析的优点和缺点
应用
主成分分析适用于变量之间没有明确因果关系 的情况下,提取它们的主成分;而因子分析需 要基于理论或先验知识,对变量进行选择和定 量,发现变量间的潜在因子。
主成分分析在金融分析中的应用
股票指数分析
通过主成分分析,找到影响整 个股票市场的因素,快速判断 股票市场的健康状况。
信用卡违约风险评估
通过主成分分析,找到导致信 用卡违约的因素,提高信用卡 贷款的质量。
主成分分析法介绍

主成分分析方法我们进行系统分析评估或医学上因子分析等时,多变量问题是经常会遇到的。
变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。
因此,我们就会很自然地想到,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息事实上,这种想法是可以实现的,本节拟介绍的主成分分析方法就是综合处理这种问题的一种强有力的方法。
第一节 主成分分析方法的原理主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。
假定有n 样本,每个样本共有p 个变量描述,这样就构成了一个n×p 阶的数据矩阵:111212122212.....................p p n n np x x x x x x X x x x ⎛⎫⎪⎪= ⎪ ⎪⎪⎝⎭ (1)如何从这么多变量的数据中抓住事物的内在规律性呢要解决这一问题,自然要在p 维空间中加以考察,这是比较麻烦的。
为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又是彼此独立的。
那么,这些综合指标(即新变量)应如何选取呢显然,其最简单的形式就是取原来变量指标的线性组合,适当调整组合系数,使新的变量指标之间相互独立且代表性最好。
如果记原来的变量指标为p x x x ,,21 ,它们的综合指标——新变量指标为 21,z z ,m z (m≤p)。
则)2.........(..........22112222121212121111⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=p mp m m m pp pp x l x l x l z x l x l x l z x l x l x l z在(2)式中,系数l ij 由下列原则来决定: (1)z i 与z j (i≠j ;i ,j=1,2,…,m)相互无关; (2)z 1是x 1,x 2,…,x p 的一切线性组合中方差最大者;z 2是与z 1不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者;……;z m 是与z 1,z 2,……z m-1都不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者。
(完整版)主成分分析法的步骤和原理.doc

(一)主成分分析法的基本思想主成分分析( Principal Component Analysis )是利用降 的思想,将多个 量 化 少数几个 合 量(即主成分) ,其中每个主成分都是原始 量的 性 合,各主成分之 互不相关, 从而 些主成分能 反映始 量的 大部分信息,且所含的信息互不重叠。
[2]采用 种方法可以克服 一的 指 不能真 反映公司的 情况的缺点,引 多方面的 指 , 但又将复 因素 几个主成分, 使得复 得以 化,同 得到更 科学、准确的 信息。
(二)主成分分析法代数模型假 用 p 个 量来描述研究 象,分 用 X 1, X 2⋯X p 来表示, p 个 量构成的 p 随机向量 X=(X 1,X 2⋯X p )t 。
随机向量 X 的均 μ, 方差矩 Σ。
X 行 性 化,考 原始 量的 性 合:Z 1=μ11 X 1+μ12 X 2+⋯μ 1p X p Z 2=μ21 X 1+μ22 X 2+⋯μ 2p X p ⋯⋯ ⋯⋯ ⋯⋯Z p =μp1 X 1+μp2 X 2+⋯μ pp X p主成分是不相关的 性 合 Z 1,Z 2⋯⋯ Z p ,并且 Z 1 是 X 1,X 2 ⋯X p 的 性 合中方差最大者, Z 2 是与 Z 1 不相关的 性 合中方差最大者,⋯, Z p 是与 Z 1, Z 2 ⋯⋯ Z p-1 都不相关的 性 合中方差最大者。
(三)主成分分析法基本步第一步: 估 本数 n , 取的 指 数 p , 由估 本的原始数据可得矩 X=(x ij ) m ×p ,其中 x ij 表示第 i 家上市公司的第 j 指 数据。
第二步: 了消除各 指 之 在量 化和数量 上的差 , 指 数据 行 准化,得到 准化矩 (系 自 生成) 。
第三步:根据 准化数据矩 建立 方差矩 R ,是反映 准化后的数据之 相关关系密切程度的 指 , 越大, 明有必要 数据 行主成分分析。
(完整版)主成分分析法的步骤和原理

(一)主成分分析法的基本思想主成分分析(Principal Component Analysis )是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。
[2]采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。
(二)主成分分析法代数模型假设用p 个变量来描述研究对象,分别用X 1,X 2…X p 来表示,这p 个变量构成的p 维随机向量为X=(X 1,X 2…X p )t 。
设随机向量X 的均值为μ,协方差矩阵为Σ。
对X 进行线性变化,考虑原始变量的线性组合: Z 1=μ11X 1+μ12X 2+…μ1p X pZ 2=μ21X 1+μ22X 2+…μ2p X p…… …… ……Z p =μp1X 1+μp2X 2+…μpp X p主成分是不相关的线性组合Z 1,Z 2……Z p ,并且Z 1是X 1,X 2…X p 的线性组合中方差最大者,Z 2是与Z 1不相关的线性组合中方差最大者,…,Z p 是与Z 1,Z 2 ……Z p-1都不相关的线性组合中方差最大者。
(三)主成分分析法基本步骤第一步:设估计样本数为n ,选取的财务指标数为p ,则由估计样本的原始数据可得矩阵X=(x ij )m ×p ,其中x ij 表示第i 家上市公司的第j 项财务指标数据。
第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。
第三步:根据标准化数据矩阵建立协方差矩阵R ,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。
其中,R ij (i ,j=1,2,…,p )为原始变量X i 与X j 的相关系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 11 一、概述 在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。 为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。主成分分析正是这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。 主成分分析以最少的信息丢失为前提,将众多的原有变量综合6210x较少几个综合指标,通常综合指标(主成分)有以下几个特点: 主成分个数远远少于原有变量的个数 原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。 主成分能够反映原有变量的绝大部分信息 因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。 主成分之间应该互不相关 通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。 主成分具有命名解释性 总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。
二、基本原理 主成分分析是数学上对数据降维的一种方法。其基本思想是设法将原来众多的具有一定相关性的指标X1,X2,…,XP(比如p个指标),重新组合成一组较少个数的互不相关的综合指标Fm来代替原来指标。那么综合指标应该如何去提取,使其既能最大程度的反映原变量Xp所代表的信息,又能保证新指标之间保持相互无关(信息不重叠)。 设F1表示原变量的第一个线性组合所形成的主成分指标,即
11112121...ppFaXaXaX,由数学知识可知,每一个主成分所提取的信息量可
用其方差来度量,其方差Var(F1)越大,表示F1包含的信息越多。常常希望第一主成分F1所含的信息量最大,因此在所有的线性组合中选取的F1应该是X1,X2,…,XP的所有线性组合中方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来p个指标的信息,再考虑选取第二个主成分指标F2,为有效地反映原信息,F1已有的信息就不需要再出现在F2中,即F2与F1要保持独立、不相关,用数学语言表达就是其协方差Cov(F1, F2)=0,所以F2是与F1不 2 / 11
相关的X1,X2,…,XP的所有线性组合中方差最大的,故称F2为第二主成分,依此类推构造出的F1、F2、……、Fm为原变量指标X1、X2……XP第一、第二、……、第m个主成分。
11111221221122221122...............pppp
mmmmpp
FaXaXaXFaXaXaXFaXaXaX
根据以上分析得知: (1) Fi与Fj互不相关,即Cov(Fi,Fj) = 0,并有Var(Fi)=ai’Σai,其中Σ为X的协方差阵 (2)F1是X1,X2,…,Xp的一切线性组合(系数满足上述要求)中方差最大的,……,即Fm是与F1,F2,……,Fm-1都不相关的X1,X2,…,XP的所有线性组合中方差最大者。
F1,F2,…,Fm(m≤p)为构造的新变量指标,即原变量指标的第一、第二、……、第m个主成分。 由以上分析可见,主成分分析法的主要任务有两点: (1)确定各主成分Fi(i=1,2,…,m)关于原变量Xj(j=1,2 ,…, p)的
表达式,即系数ija( i=1,2,…,m; j=1,2 ,…,p)。从数学上可以证明,原变量协方差矩阵的特征根是主成分的方差,所以前m个较大特征根就代表前m个较大的主成分方差值;原变量协方差矩阵前m个较大的特征值i(这样选取才能保证主成分的方差依次最大)所对应的特征向量就是相应主成分Fi表达式的系数ia,为了加以限制,系数ia启用的是i对应的单位化的特征向量,即有'aiai= 1。 (2)计算主成分载荷,主成分载荷是反映主成分Fi与原变量Xj之间的相互关
联程度: (,)(,1,2,,;1,2,,)kikkiPZxaipkm
三、主成分分析法的计算步骤 主成分分析的具体步骤如下: (1)计算协方差矩阵 计算样品数据的协方差矩阵:Σ=(sij)pp,其中
11()()1nijkiikjjksxxxxn
i,j=1,2,…,p
(2)求出Σ的特征值i及相应的正交化单位特征向量ia 3 / 11
Σ的前m个较大的特征值12…m>0,就是前m个主成分对应的方差,i对应的单位特征向量ia就是主成分Fi的关于原变量的系数,则原变量的第i个主成分Fi为: Fi ='iaX
主成分的方差(信息)贡献率用来反映信息量的大小,i为:
1/miiii (3)选择主成分 最终要选择几个主成分,即F1,F2,……,Fm中m的确定是通过方差(信息)累计贡献率G(m)来确定
11()/pmikikGm
当累积贡献率大于85%时,就认为能足够反映原来变量的信息了,对应的m就是抽取的前m个主成分。 (4)计算主成分载荷 主成分载荷是反映主成分Fi与原变量Xj之间的相互关联程度,原来变量Xj(j=1,2 ,…, p)在诸主成分Fi(i=1,2,…,m)上的荷载lij( i=1,2,…,m; j=1,2 ,…,p)。:
(,)(1,2,,;1,2,,)ijiijlZXaimjp 在SPSS软件中主成分分析后的分析结果中,“成分矩阵”反应的就是主成分载荷矩阵。
(5)计算主成分得分 计算样品在m个主成分上的得分:
1122...iiipipFaXaXaX i = 1,2,…,m 实际应用时,指标的量纲往往不同,所以在主成分计算之前应先消除量纲的影响。消除数据的量纲有很多方法,常用方法是将原始数据标准化,即做如下数据变换:
*1,2,...,;1,2,...,ijjijjxxxinjps
其中:11njijixxn,2211()1njijjisxxn 根据数学公式知道,①任何随机变量对其作标准化变换后,其协方差与其相关系数是一回事,即标准化后的变量协方差矩阵就是其相关系数矩阵。②另一方 4 / 11
面,根据协方差的公式可以推得标准化后的协方差就是原变量的相关系数,亦即,标准化后的变量的协方差矩阵就是原变量的相关系数矩阵。也就是说,在标准化前后变量的相关系数矩阵不变化。 根据以上论述,为消除量纲的影响,将变量标准化后再计算其协方差矩阵,就是直接计算原变量的相关系数矩阵,所以主成分分析的实际常用计算步骤是: ☆计算相关系数矩阵
☆求出相关系数矩阵的特征值i及相应的正交化单位特征向量ia ☆选择主成分 ☆计算主成分得分 总结:原指标相关系数矩阵相应的特征值i为主成分方差的贡献,方差的
贡献率为1/piiii,i越大,说明相应的主成分反映综合信息的能力越强,可根据i的大小来提取主成分。每一个主成分的组合系数(原变量在该主成分上的载荷)ia就是相应特征值i所对应的单位特征向量。
主成分分析法的计算步骤 1、原始指标数据的标准化采集p 维随机向量x = (x1,X2,...,Xp)T)n 个样品xi = (xi1,xi2,...,xip)T ,i=1,2,…,n, n>p,构造样本阵,对样本阵元进行如下标准化变换:
其中,得标准化阵Z。 2、对标准化阵Z 求相关系数矩阵
其中, 。 5 / 11
3、解样本相关矩阵R 的特征方程得p 个特征根,确定主成分 按 确定m 值,使信息的利用率达85%以上,对每个λj, j=1,2,...,m, 解方程组Rb = λ得单位特征向量 。 4、将标准化后的指标变量转换为主成分
U1称为第一主成分,U2 称为第二主成分,…,Up 称为第p 主成分。 5 、对m 个主成分进行综合评价 对m 个主成分进行加权求和,即得最终评价值,权数为每个主成分的方差贡献率。
一、主成分分析基本原理 概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。从数学角度来看,这是一种降维处理技术。 思路:一个研究对象,往往是多要素的复杂系统。变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。 原理:假定有n个样本,每个样本共有p个变量,构成一个n×p阶的数据矩阵,
记原变量指标为x1,x2,…,xp,设它们降维处理后的综合指标,即新变量为 z1,z2,z3,… ,zm(m≤p),则
npnnppxxxxxxxxxX
212222111211