叙述发电机差动保护的原理
发变组差动保护测试的方法和步骤

发变组差动保护测试的方法和步骤摘要:本文介绍了组发电机差动保护的基本配置方案。
通过对差动速断保护和比例差动保护的制动面积进行分析,测试了比率制动差动保护原理并对发电机差动保护的简易型测试方法和步骤进行了讨论。
关键词:发变组;差动保护;发电机引言随着我国电力工业的迅猛发展 ,发电机也时刻受到外界负荷的影响。
为了保证供电的可靠性和连续性,必须对电力发电机继电保护装置的性能和动作可靠性做出相应的严格设置。
1.发电机差动保护的原理与配置发电机纵差动保护是发电机的主保护,它采集发电机定子绕组两端的电流。
如图1所示:发电机中性点侧和发电机出口断路器的各安装了一组电流互感器,它的二次侧输出直接连接到发电机的主保护装置。
根据两侧的电流相量差和差动保护整定值来决定是否动作。
在正常情况下,中性侧电流和出口侧的电流是大小相等,方向相同,两侧的差动电流是零。
当相间短路故障发生时,两侧的电流互感器的短路电流均流向短路点。
此时,两侧电流的方向相反,所以差动电流将不再为零。
事实上,由于类型、特性等存在不同,两侧的电流互感器存在一些差异。
在正常情况下,两侧的每相绕组一次侧电流是相同的,但二次侧电流也可能存在不平衡电流。
因此,对差动保护动作电流的整定值不能太小,以躲开不平衡电流。
根据上面的整定方法,可能导致差动保护不能动作,需要等待故障进一步发展后,保护才能动作。
但到那个时候,发电机可能已经造成了巨大的伤害。
第三部分的动作区域包含比率制动差动保护和差动速断保护,只要任一条件满足,保护将会动作。
2.发电机微机保护的测试方法测试分为比率制动差动保护和差动速断保护两部分分别测试,其完整的测试连接如图3所示。
整定定值为,根据测试结果表1的连接,正确设置系统保护装置的参数,可以使比率制动差动保护和差动速断保护正确动作。
3.简易型比率制动差动保护的测试方法和流程对于中小机组来说,由于测试设备较为简单,可以使用固定制动电流,改变差动电流,寻找差动保护动作的关键点来判断保护是否正确动作,即为简易型保护测试方法。
发电机纵差动保护的原理及应用分析

发电机纵差动保护的原理及应用分析
司虎成 朴东浩 包头东华热 电有限公司 内 蒙古包头 0 1 4 0 4 0
【 摘 要】发电机 内部短路 故障主要 是指 定子绕组的相间和匝问短路 故障 , 短路 故障发生时将会形成很 大的冲击电流, 所产生的的 强大电弧将 会烧 毁定子绕组绝 缘, 还有 可能引发大型火灾甚至使 发电机报 废, 后果非 常严重。 故要求安装 发电机纵差动保护作为发电机 定子绕组相间、 匝间短路 故障的主保护, 动作于解列发电 机。 【 关 键词】发电 机; 纵差动保护; 定值整定
定。 2 、 斜 率l 应 大于 最大正常负荷电流下T A 误 差产生 的不平衡 电流 , 通常取2 0 % 。 3 、 拐点1 是 斜率 1 的终结点 , 应 大于发电机 最大正常运行 电流 。 为使
区内故障有 高的灵敏度 , 希望制动 电流 在2 . 0 倍 的发电机额 定电流 以内 时, 动 作特性斜 率不要过大 。 4 、 拐点2 是过 渡 区的终点和斜率 2 的起 点 , 应 设置为 使任一 保护用 T A 开始饱 和时的电流值 。 若 保护用T A 选 为5 P 2 0 , 其饱和 电流值很大 , 而发 电机 最大 外部 短路 电流在6 倍额 定 电流 之 内, 一 般取拐点6 倍发 电
、
比率制动式纵差保护工作原理
比率制动 式 纵差 保护 的动作 电流 是在 变化的 , 它随 短路 电流 的变 化而 自 动变化 , 保证外 部短路故 障不误动的同时又对内部短路 故障有很
高 的 灵敏 度 。
以 发电机一相为 例 , 规 定一次 电流流入 发电机 为正方向 。 当正常 运 行以及 发生保护区外 的故障时, 流 入差动继 电器的差动 电流为 零, 差 动 继电器将不动 作。 当发 生发电机 内部 故障时 , 流 入差动继 电器的差动 电流将会 出现 较大的 数值, 当差动 电流 超过 整定值时, 差动继 电器判为
330MW发变组保护介绍

发电机差动保护
发电机差动保护
发生TA异常时保护动作逻辑: 发生TA异常时保护动作逻辑: TA异常时保护动作逻辑 差动保护功能压板投入,TA异常闭琐单相差动保护控制字投 入,只有一相比率差动动作, TA异常开入,当最大相差流小 于1.2倍发电机额定电流时闭锁保护出口;当最大相差流大于 1.2倍发电机额定电流时,开放保护出口,立即跳开发变组出 口开关,跳开厂高变低压侧分支开关,跳开灭磁开关,同时送 出"关闭主汽门"信号触点(DEH报警画面显示发电机主保护 1跳闸,发电机主保护2跳闸),启动快切. 发电机主保护1跳闸:对应于发电机A套保护. 发电机主保护2跳闸:对应于发电机B套保护.
330MW发变组跳机 330MW发变组跳机保护介绍 发变组跳机保护介绍
2008.3.31
发电机差动保护
原理:比率制动原理(动作电流不是固定不变的,它随外部短路电流 的增大而增大,既保证外部短路不误动,同时对于内部短路又有较高 的灵敏度.)
发电机差动保护
区内相间故障保护动作逻辑: 区内相间故障保护动作逻辑: 差动保护功能压板投入,两相或三相比率差动动作,保护出口,立 即跳开发变组出口开关,跳开厂高变低压侧分支开关,跳开灭磁开关 ,同时送出"关闭主汽门"信号触点(DEH报警画面显示发电机主保护 1跳闸,发电机主保护2跳闸),启动快切. 发电机主保护1跳闸:对应于发电机A套保护. 发电机主保护2跳闸:对应于发电机B套保护.
发电机差动保护
发电机差动保护
一点区内,一点区外故障保护动作逻辑: 一点区内,一点区外故障保护动作逻辑: 差动保护功能压板投入,只有一相比率差动动作,机端负序 电压大于8伏或最大线电压小于8伏,保护出口,立即跳开发 变组出口开关,跳开厂高变低压侧分支开关,跳开灭磁开关, 同时送出"关闭主汽门"信号触点(DEH报警画面显示发电机 主保护1跳闸,发电机主保护2跳闸),启动快切. 发电机主保护1跳闸:对应于发电机A套保护. 发电机主保护2跳闸:对应于发电机B套保护.
发电机组差动保护

发电机是电力系统中重要的组成部分,发电机的安全运行对保证电力系统的正常工作和电能质量起着决定性的作用,同时发电机本身也是十分贵重的电气设备,尤其是大型同步发电机组,对电力系统的影响可谓是举足轻重。随着电力系统的不断发展,发电机的单机容量也越来越大。在国内,单机600 MW以上的发电机组已不再少见。发电机的主要故障类型有定子绕组相间短路、定子绕组匝间短路、定子绕组单相接地、转子绕组一点或两点接地等,对发电机破坏性最大的就是定子绕组相间短路,发电机差动保护作为发电机定子绕组相间短路故障的主保护已广泛在电力系统中应用。发电机单机容量的提高,相应地对完成发电机定子短路主保护的差动保护也提出了更高的要求。自微机在继电保护上应用以后,由于微机保护的智能的特点及高速运算的能力,微机发电机差动保护的新原理大量涌现,给继电保护带来了一片生机。差动保护的性能也得到了前所未有的提高。
子绕组发生短路和匝间短路时,TAO上会流过较大的基频零序短路流过电流大于动作门槛电压时,横差保护出口, 即Id> Id.set(Id为横差电流的基波分量, Id.set为横差保护电流定值)。
2 比率制动式微机
为了防止差动保护在外部短路时,发电机有很大穿越电流使CT误差增大时误动作,采用比率差动原理。该保护采用机端电流If作为制动电流,而不采用中性点侧电流或两侧电流的综和电流作为制动电流。这样既能在外部短路时取得足够的制动电流,又能在内部短路时减少中性点电流的制动作用,特别是发电机尚未与系统并联运行而发生内部短路时,机端三相没有电流,中性点侧电流只作为动作电流,因此提高了内部短路的灵敏度.为防止因CT断线引起比率差动保护误动该保护带有CT断线闭锁功能。该保护采用分相式,即A、B、C任一相保护动作均出口,以下判据均以一相为例。
当满足以下条件时比率差动保护动作
发电机保护类型及原理介绍

3.保护的整定原则 动作电流
Iop (0.2 ~ 0.3)Ig.n
需增设 0.5~1 秒的延时, 以躲过转子回路的瞬时两点接地故障。
(二) 纵向零序电压原理的匝间短路保护
适用于中性点侧没有6个或4个引出端子的 发电机定子匝间短路。
该保护利用发电机定子绕组发生匝间短路 时,机端三相对发电机中性点出现的零序电压 而构成。
对发电机并未造成直接危害。
1.1正常时 正极对地电压
U
E R2 E R2R2 2
负极对地电压
U
E 2
加在绝缘介质上的电压为励磁电压的一半。
1.2一点接地时
设:正极接地, U ,0 U E
则:另一端对地电压上升为E,如某点绝缘比较薄弱,则有可 能被击穿,造成两点接地故障。
转子绕阻绝缘破坏的故障形式及其危害
一、发电机相间短路的纵联差动保护
作用: 反映发电机定子绕组及其引出线相间短路 故障的主保护 发电机纵差保护的接线方式 完全纵差动保护 不完全纵差动保护
发电机完全纵差保护和不完全纵差保护均是比较 发电机两侧同相电流的大小和相位而构成
发电机完全纵差动保护
●
G
●
● ●
图9—1 发电机纵差保护原理接线示意图
2.保护的原理分析
1)当定子绕组的同分支匝间短路时:
2)定子绕组不同分支间发生短路时:
3)保护的接线
2
跳闸
t
图9-6 单元件式横联差保护原理接线图 1-三次谐波滤过器;2-横差保护
4)评价:
保护接线较简单,灵敏度较高。
保护存在死区:当 很小时或者不同分 支间的短路匝数相同时, 保护不能动作。
电桥式转子两点接地保护
RL’
发变组保护保护原理

华北电力大学
发变组保护原理
4、转子接地保护
• 对1MW及以下发电机的转子一点接地故障,可装设定期 检测装置。
• 1MW及以上的发电机应装设专用的转子一点接地保护装 置延时动作于信号,宜减负荷平稳停机,有条件时可动作 于程序跳闸。
• 对旋转励磁的发电机宜装设一点接地故障定期检测装置。
-摘自GB14285-2006继电保护和安全自动装置技术规程
华北电力大学
发变组保护原理
1、发电机差动保护
• 和应涌流,区外故障及其切除过程中由于两侧TA传变特 性不一致,都易导致差动保护误动;
dia
Id
dIA
Ir
图a 相电流波形
图b 差动电流和制动电流波形
1次判别 25次判别
华北电力大学
发变组保护原理
1、发电机差动保护
• 采用循环闭锁原理,进一步提高差动保护的可靠性; • 具有完善的抗TA饱和能力,以及故障恢复过程中不平
发变组保护原理
6、失步保护
jX
6区
5区 4区 3区
2区
1区
Xs B
Xt
减速失步
加速失步
-Rs -Rj 0
Rj
Rs
R
δ4
δ3
δ2 δ1
A
华北电力大学
7、逆功率保护
理论 传统
动作区 动作区
发变组保护原理
jQ
理想
P -Pset
• 对发电机变电动机运行的异常运行 方式,200MW及以上的汽轮发电机, 宜装设逆功率保护。
华北电力大学
发变组保护原理
华北电力大学
发变组保护原理
9、变压器差动保护
• 难点:
涌流的识别; TA饱和的识别; 和应涌流或区外故障切除后各侧TA暂态特性不一致导致的 差动保护误动。
差动保护和比率差动保护

差动保护主要就是内部短路的保护,但当外部故障时有不平衡电流可能穿越差动保护电流互感器,造成差动保护误动作。
因此为了躲过外部故障时不平衡电流引起差动保护动作,采用了制动电流来平衡穿越电流引起差动保护的启动电流。
发电机采用机端电流作为制动电流,能在外部短路时取得足够的制动电流,又能在内部短路时减少中性点电流的制动作用。
变压器采用二次谐波作为励磁涌流闭锁判据。
一般设有CT断线闭锁保护。
如下图:图中Ie为额定电流,Icdqd为启动电流,Ir为制动电流,Kb1为比率制动系数。
阴影部分为动作区差动保护灵敏度与启动电流、制动系数与原理之间的关系摘要:分析了差动保护的有关整定原则,明确提出了差动保护的灵敏度与许多因素有关,如定值、原理与实现方式等。
不能仅改变某一个因素(如定值)来提高灵敏度,而需要综合考虑各个因素的影响,否则适得其反。
0 引言随着继电保护技术的不断发展与进步,技术人员对保护的认识越来越深刻,对许多继电保护约定俗成的做法开始了反思。
如规程上对差动保护规定:使用比率制动原理的差动保护,不要校核灵敏度,其灵敏度自然满足。
那么这个“自然满足”的灵敏度就是什么灵敏度呢?其实对发电机差动保护而言,就就是在发电机机端发生两相短路,该差动继电器的灵敏度校验结果肯定能够满足要求;在现场运行过程中,经常有人将保护中的比率制动系数与比率制动斜率混淆,究竟这两个概念有什么区别,又有什么联系?标积制动原理对提高差动保护的灵敏度有什么有利的地方,它与比率制动之间又有什么关系,它们之间从根本上就是否一致呢?本文就这些用户所关心的问题展开深入的分析与讨论,并阐明作者自己的观点[1,2] 。
1 差动保护灵敏度系数的定义与校验设流入发电机的电流为正方向,取继电电器差动电流Id为:式中:Iop为当时动作电流的整定值。
发电机差动保护的灵敏度就是指在发电机机端两相金属性短路情况下差动电流与动作电流的比值。
此情况下,在(Iz,Id)平面上两相金属性短路的故障点应该在斜率为2的内部故障特性线的上方,而一般动作边界的制动系数不会超过1,所以按照规程中整定出来的动作边界肯定能够满足灵敏度系数Klm≥2的要求。
差动保护的概念及原理(线路、变压器、电动机差动)

差动保护的概念及原理Q:差动保护的概念。
A:差动保护是输入CT(电流互感器)的两端电流矢量差,当达到设定的动作值时启动动作元件。
保护范围在输入CT的两端之间的设备(可以是线路,发电机,电动机,变压器等电气设备)。
按保护的设备分为线路纵差保护、变压器差动保护、电动机差动保护。
Q:差动保护的原理。
A:1、线路纵差保护:通过比较线路两端电流的大小和相位决定是否动作。
(1)系统正常运行或区外短路时,线路上流经两个电流互感器的电流如图1(a),I1m=I1n,因此,流入差动保护的电流Ikd=I2m-I2n≈0,保护不会动作。
(2)线路上发生短路,线路上流经两电流互感器的电流如图1(b),此时短路点电流为Ik=I1m+I1n,流入电流元件的电流Ikd=I2m+I2n= (I1m+I1n) /n BC = Ik/n BC,(n BC为互感器变比)数值很大,使保护动作切除故障。
2、变压器差动保护:动作原理与线路纵差保护相同,通过比较变压器两端电流的大小和相位决定是否动作。
(1)变压器正常运行或外部故障,根据图2(a)所示电流分布,此时流入差动保护KD的电流是变压器两侧电流的二次值相量之差,即Ikd=│I1'-I2'│=│I1'/n1BC -I2'/n2BC│, (n1BC、n2BC为互感器变比)实际流入差动保护的电流为不平衡电流,不会动作。
(2)变压器内部故障,根据图2(b)所示电流分布,此时流入差动保护KD的电流是变压器两侧电流的二次值相量之和,使保护动作。
若变压器两侧有电源,则Ikd=│I1'+I2'│=│I1'/n1BC+I2'/n2BC│;若变压器只有一侧电源,则只有该侧的电流互感器二次电流流入差动保护。
使用场合:电压在 10kV 以上、容量在10MVA 及以上的变压器,采用纵差保护。
3、电动机差动保护:用于容量为2MW及以上、或容量小于2MW但电流速断保护不能满足灵敏度要求的电动机,作为电动机定子绕组及电缆引线相间短路故障的主保护。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
叙述发电机差动保护的原理
发电机差动保护是为了避免发电机故障时对电网造成严重影响而采取的一种保护措施,其基本原理如下:
1. 工作原理
当发电机出现内部故障时,会产生电流差动,即发电机入口和出口之间的电流存在差异。
差动保护就是根据电流差动情况,判断发电机是否存在故障,并迅速将故障发电机与电网隔离。
2. 电流差动比较
差动保护通过比较发电机两端的电流,如果电流值存在差异超过一定百分比,表示发电机内部存在故障,这时保护装置就会动作隔离故障发电机。
3. 设置差动保护值
差动保护动作值的设置应大于发电机正常运行时可能产生的最大误差,同时应小于发电机最轻度内部故障情况下可能出现的最小差动电流,以达到灵敏和可靠的保护。
4. 电流变压器配置
需要在发电机入口和出口配置具有充分精度的互感器或电流互感器,来检测电流差异。
还需选择合适变比,满足保护要求。
5. 差动保护装置
包括电流互感器、电流回路、差动继电器、时间延迟电路、鳃式负荷开关等部分组成。
继电器检测电流差异,执行保护动作的切断。
6. 多速发电机的差动保护
多速发电机在不同转速下,其内部回路参数有较大变化,因此差动保护装置要能够对应多种工况,设置灵活的保护值。
7. 整定保护值
需要对差动保护进行整定,通过发电机运行测试确定最佳的保护定值,以确保在故障时迅速动作,并避免误动作。
8. 系统协调
差动保护要与发电机的其他保护系统协调配合,优先发挥差动保护的作用,其他保
护起备用作用,形成完善的保护系统。
9.定期测试
要定期对差动保护进行模拟测试和整定,确保其性能的参数设置都符合要求,能够可靠地在故障时起到隔离保护作用。
10. 差动保护的应用范围
差动保护不仅用于发电机保护,也广泛应用于变压器、电动机、电力传输线路等电力设备的保护。
综上所述,这些就是发电机差动保护的主要原理。
它对保证电网安全运行具有重要作用。