深度学习-卷积神经网络应用

深度学习-卷积神经网络应用
深度学习-卷积神经网络应用

手写数字识别实验报告

实验目的

利用python和深度学习框架搭建手写数字识别的神经网络,并进行相关的仿真实验,尽可能的提高识别的准确度。

实验环境

python3.6、Pytorch1.4.0、torchvision、MNIST数据库。

环境介绍

Python

Python是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。Python的设计具有很强的可读性,相比其他语言经常使用英文关键字,其他语言的一些标点符号,它具有比其他语言更有特色语法结构。Python具有简单易学、明确优雅、开发速度快等特点,在人工智能、数据分析、云计算、网络爬虫等方面有着广泛的应用。

Pytorch

Pytorch是torch的python版本,是由Facebook开源的神经网络框架,专门针对GPU 加速的深度神经网络(DNN)编程。Torch是一个经典的对多维矩阵数据进行操作的张量(tensor)库,在机器学习和其他数学密集型应用有广泛应用。与TensorFlow的静态计算图不同,Pytorch的计算图是动态的,可以根据计算需要实时改变计算图。Pytorch的设计追求最少的封装,尽量避免重复造轮子。Pytorch的源码只有TensorFlow的十分之一左右,更少的抽象、更直观的设计使得Pytorch的源码十分易于阅读。同时Pytorch的灵活性不以速度为代价,在许多评测中,Pytorch的速度表现胜过TensorFlow和Keras等框架。Pytorch提供了完整的文档,循序渐进的指南。

MNIST数据库

MNIST是一个入门级的计算机视觉数据集,它包括6万张28x28的训练样本,1万张测试样本,可以说是CV里的“Hello Word”。它也包含每一张图片对应的标签,告诉我们这个是数字几。比如,图1的标签分别是5,0,4,1。

图1 MNIST图像图片

MNIST的每一张图片包含28×28个像素点。我们可以用一个数组来表示这张图片。如图2所示。

图2 MNIST的数组表示

我们把这个数组展开成一个向量,长度是28×287884。如何展开这个数组(数字间的顺序)不重要,只要保持各个图片采用相同的方式展开。从这个角度来看,MNIST数据集的图片就是在884维向量空间里面的点。

实验内容

实验方案

拟采用RNN网络的变体LSTM、以及全连接层来实现对手写体数字的识别。使用MNIST数据集的训练集对搭建的网络进行训练,损失函数则采用交叉熵函数,采用Adam优化算法对权值进行更新。完成之后使用MNIST数据集的测试集进行测试,查看正确率。

实验准备

数据准备

我们直接使用torchvision中自带的datasets,并使用Pytorch中的DataLoader

函数对训练数据和测试数据分别进行读取。代码如图3所示。

图3 数据准备代码

当然,如果下载过数据集,可以将datasets.MNIST的download参数设置为False即可。

网络构建

接下来对网络进行定义,只要在继承nn.Module的基础上,对相关网络进行构建即可。网络的构建代码如图4所示。其中def __init__()函数,定义了网络的初始化。def forward()函数,则定义了前向传播,后向传播则不需要用户进一步的定义。这也是选择Pytorch作为深度学习框架的原因。

图4 网络构建代码

图中涉及到两个函数,其中一个为torch.nn.LSTM(*args, **kwargs)。函数的各个参数以及意义如表一所示。

表一函数参数及意义

参数意义

input_size输入序列中每一个组成成员的数据大小

hidden_size LSTM输出的隐藏层的数据大小

num_layers LSTM的叠加层数

bias是否偏置

batch_first设为True,则输入输出格式发生改变,batch_size提前

dropout叠加LSTM时,除了最后一层,其他层的输出进行dropout操作bidirectional是否是双向LSTM

函数的输入参数为:input,h_0,c_0。输出参数为output,h_n,c_n。

其中input的格式为(seq_len, batch, input_size),h_0和c_0的格式为(num_layers * num_directions, batch, hidden_size),其中num_directions的值和bidirectional有关。output的格式为(seq_len, batch, num_directions * hidden_size),代表着h_t,h_ n和c_n的格式为(num_layers * num_directions, batch, hidden_size)。

另一个函数为nn.Linear(in_features,out_features,bias7True),Pytorch的nn.Linear()是用于设置网络中的全连接层的,需要注意的是全连接层的输入与输出都是二维张量,一般形状为[batch_size, size],不同于卷积层要求输入输出是四维张量。in_features指的是输入的二维张量的大小,即输入的[batch_size, size]中的size。out_features指的是输出的二维张量的大小,即输出的二维张量的形状为[batch_size,output_size],当然,它也代表了该全连接层的神经元个数。从输入输出的张量的shape角度来理解,相当于一个输入为[batch_size, in_features]的张量变换成了[batch_size, out_features]的输出张量。

损失函数、优化

网络的反向传播主要取决于损失函数以及网络的优化策略,损失函数使用的是交叉熵函数,而优化策略则使用的是Adam优化算法。交叉熵损失函数如式1-1所示。

L=?[ylogy?+(1?y)log(1?y?)](1-1)

Adam优化算法的步骤基本如下:

(1)计算目标函数关于当前参数的梯度,可以记为g t。

(2)根据历史的梯度计算一阶动量和二阶动量,分别记为m t、V t。

其中,一阶动量即为,每个时刻梯度方向的指数移动平均值。二阶动量即为,迄今为止所有梯度值的平方和。而在Adam优化算法中有:

m t=β1?m t?1+(1?β1)?g t

V t=β2?V t?1+(1?β2)?g t2

(3)计算当前时刻的下降梯度,记为δt。计算公式为:δt=α?m t/√V t

(4)根据下降梯度对梯度进行更新。ωt+1=ωt?δt

以上操作的代码实现如图5所示。

图5 损失函数、优化器代码

其中,torch.nn.CrossEntropyLoss()函数的参数,和参数意义如表二所示。

表二函数参数与参数意义

参数意义

weight输入为C的张量,表示权重

ignore_index指定一个目标值,该目标值将被忽略

reduction'mean'和'none'和'sum'三种模式

实验过程

在准备好相关数据之后,实例化网络,并进行训练,设置epoch为20,即使用训练集训练网络20次,batch的大小为100,学习率为1e-3,每训练完一次网络之后,使用网络对测试集进行测试,确定网络的分类能力情况。具体代码如下所示。

model 7 Rnn(28, 128, 2, 10) # 图片大小是28x28

model 7 model.cuda()

criterion 7 nn.CrossEntropyLoss()

optimizer 7 optim.Adam(model.parameters(), lr7learning_rate)

# 开始训练

for epoch in range(num_epoches):

model.train()

print('-' * 15, 'Epoch %d' % (epoch+1), '-' * 15)

running_loss 7 0.0

running_acc 7 0.0

for i, (img, label) in enumerate(train_loader):

b, c, h, w 7 img.size()

assert c 77 1, 'channel must be 1'

img 7 img.squeeze(1).cuda()

label 7 label.cuda()

# 向前传播

out 7 model(img)

loss 7 criterion(out, label)

running_loss +7 loss.item() * label.size(0)

_, pred 7 torch.max(out, 1)

num_correct 7 (pred 77 label).sum()

running_acc +7 num_correct.item()

# 向后传播

optimizer.zero_grad()

loss.backward()

optimizer.step()

if (i+1) % 300 77 0:

print('[{}/{}] Loss: {:.6f}, Acc: {:.6f}'.format(

epoch + 1, num_epoches, running_loss / (batch_size * i),

running_acc / (batch_size * i)))

print('Finish {} epoch, Loss: {:.6f}, Acc: {:.6f}'.format(

epoch + 1, running_loss / (len(train_dataset)), running_acc / (len(

train_dataset))))

model.eval()

eval_loss 7 0.

eval_acc 7 0.

for data in test_loader:

img, label 7 data

b, c, h, w 7 img.size()

assert c 77 1, 'channel must be 1'

img 7 img.squeeze(1).cuda()

label 7 label.cuda()

out 7 model(img)

loss 7 criterion(out, label)

eval_loss +7 loss.item() * label.size(0)

_, pred 7 torch.max(out, 1)

num_correct 7 (pred 77 label).sum()

eval_acc +7 num_correct.item()

print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len(

test_dataset)), eval_acc / (len(test_dataset))))

# 保存模型

torch.save(model.state_dict(),

r'F:\Pytorch\RNN_Learning\First_RNN_Model\Model\rnn_mnist.pth')

实验结果

经过一段时间的网络训练,可以得出的测试结果。可以从实验结果看出,所构建的RNN网络可以较好地对手写数字进行识别,且准确度能够达到98.9%。具体的实验结果如图6所示。

图6 实验结果图

实验总结

利用python和Pytorch框架搭建手写数字识别的神经网络,能够准确地识别手写数字,且准确度能够达到98.9%,基本满足要求。

基于深度卷积神经网络的图像分类

SHANGHAI JIAO TONG UNIVERSITY 论文题目:基于卷积神经网络的自然图像分类技术研究 姓名: 高小宁 专业:控制科学与工程

基于卷积神经网络的自然图像分类技术研究 摘要:卷积神经网络已在图像分类领域取得了很好的效果,但其网络结构及参数的选择对图像分类的效果和效率有较大的影响。为改善卷积网络的图像分类性能,本文对卷积神经网络模型进行了详细的理论分析,并通过大量的对比实验,得出了影响卷积网络性能的因素。结合理论分析及对比实验,本文设计了一个卷积层数为8层的深度卷积网络,并结合Batch Normalization、dropout等方法,在CIFAR-10数据集上取得了%的分类精度,有效地提高了卷积神经网络的分类效果。 关键词:卷积神经网络,图像分类,Batch Normalization,Dropout Research on Natural Image Classification Based on Convolution Neural Network Abstract: Convolution neural network has achieved very good results in image classification, but its network structure and the choice of parameters have a greater impact on image classification efficiency and efficiency. In order to improve the image classification performance of the convolution network, a convolutional neural network model is analyzed in detail, and a large number of contrastive experiments are conducted to get the factors that influence the performance of the convolution network. Combining the theory analysis and contrast experiment, a convolution layer depth convolution network with 8 layers is designed. Combined with Batch Normalization and dropout, % classification accuracy is achieved on CIFAR-10 dataset. Which improves the classification effect of convolution neural network. Key Words: Convolution neural network(CNN), image classification, Batch Normalization, Dropout

(完整版)深度神经网络及目标检测学习笔记(2)

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(Deep Neural Network,NN)实现了对图片的识别,包 括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术 的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来“这是苹在父母一遍遍的重复中学习训练的过程就好像是刚出生的婴儿,设置。.果”、“那是汽车”。有人说,人工智能很傻嘛,到现在还不如三岁小孩。其实可以换个角度想:刚出生婴儿就好像是一个裸机,这是经过几十万年的进化才形成的,然后经过几年的学习,就会认识图片和文字了;而深度学习这个“裸机”用了几十年就被设计出来,并且经过几个小时的“学习”,就可以达到这个水平了。 1.2 BP算法 神经网络的训练就是它的参数不断变化收敛的过程。像父母教婴儿识图认字一样,给神经网络看一张图并告诉它这是苹果,它就把所有参数做一些调整,使得它的计算结果比之前更接近“苹果”这个结果。经过上百万张图片的训练,它就可以达到和人差不多的识别能力,可以认出一定种类的物体。这个过程是通过反向传播(Back Propagation,BP)算法来实现的。 建议仔细看一下BP算法的计算原理,以及跟踪一个简单的神经网络来体会训练的过程。

(完整版)深度神经网络全面概述

深度神经网络全面概述从基本概念到实际模型和硬件基础 深度神经网络(DNN)所代表的人工智能技术被认为是这一次技术变革的基石(之一)。近日,由IEEE Fellow Joel Emer 领导的一个团队发布了一篇题为《深度神经网络的有效处理:教程和调研(Efficient Processing of Deep Neural Networks: A Tutorial and Survey)》的综述论文,从算法、模型、硬件和架构等多个角度对深度神经网络进行了较为全面的梳理和总结。鉴于该论文的篇幅较长,机器之心在此文中提炼了原论文的主干和部分重要内容。 目前,包括计算机视觉、语音识别和机器人在内的诸多人工智能应用已广泛使用了深度神经网络(deep neural networks,DNN)。DNN 在很多人工智能任务之中表现出了当前最佳的准确度,但同时也存在着计算复杂度高的问题。因此,那些能帮助DNN 高效处理并提升效率和吞吐量,同时又无损于表现准确度或不会增加硬件成本的技术是在人工智能系统之中广泛部署DNN 的关键。 论文地址:https://https://www.360docs.net/doc/de5356554.html,/pdf/1703.09039.pdf 本文旨在提供一个关于实现DNN 的有效处理(efficient processing)的目标的最新进展的全面性教程和调查。特别地,本文还给出了一个DNN 综述——讨论了支持DNN 的多种平台和架构,并强调了最新的有效处理的技术的关键趋势,这些技术或者只是通过改善硬件设计或者同时改善硬件设计和网络算法以降低DNN 计算成本。本文也会对帮助研究者和从业者快速上手DNN 设计的开发资源做一个总结,并凸显重要的基准指标和设计考量以评估数量快速增长的DNN 硬件设计,还包括学界和产业界共同推荐的算法联合设计。 读者将从本文中了解到以下概念:理解DNN 的关键设计考量;通过基准和对比指标评估不同的DNN 硬件实现;理解不同架构和平台之间的权衡;评估不同DNN 有效处理技术的设计有效性;理解最新的实现趋势和机遇。 一、导语 深度神经网络(DNN)目前是许多人工智能应用的基础[1]。由于DNN 在语音识别[2] 和图像识别[3] 上的突破性应用,使用DNN 的应用量有了爆炸性的增长。这些DNN 被部署到了从自动驾驶汽车[4]、癌症检测[5] 到复杂游戏[6] 等各种应用中。在这许多领域中,DNN 能够超越人类的准确率。而DNN 的出众表现源于它能使用统计学习方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。这与之前使用手动提取特征或专家设计规则的方法不同。 然而DNN 获得出众准确率的代价是高计算复杂性成本。虽然通用计算引擎(尤其是GPU),已经成为许多DNN 处理的砥柱,但提供对DNN 计算更专门化的加速方法也越来越热门。本文的目标是提供对DNN、理解DNN 行为的各种工具、有效加速计算的各项技术的概述。 该论文的结构如下:

基于深度卷积神经网络的人脸识别研究

基于深度卷积神经网络的人脸识别研究 深度卷积神经网络主要应用包括语音识别、图像处理、自然语言处理等。本文就当前大环境下研究了卷积神经网络模型在静态环境下人脸识别领域的应用。卷积神经网络模型需要设计一个可行的网络模型,将大量的人脸训练数据集加载到网络模型中,然后进行自动训练,这样就可以得到很好的识别率。把训练好的模型保存下来,那么这个模型就是一个端到端的人脸特征提取器。该方法虽然操作简单,但是需要根据训练数据集设计合理的网络结构,而且最难的关键点是超参数的调整和优化算法的设计。因此本文结合残差网络和融合网络构建了两个与计算资源和数据资源相匹配的网络模型,并通过反复调整超参数和调试优化器使其在训练集上能够收敛,最终还取得较好的识别率。 本文的主要研宄内容和创新点如下: 1.介绍了卷积神经网络的基础理论知识。先从传统人工神经网络的模型结构、前向和反向传播算法进行了详细的分析;然后过渡到卷积神经网络的相关理论,对其重要组成部分如卷积层、激励层、池化层和全连接层进行了具体的阐述;最后对卷积神经网络训练时的一些注意事项进行了说明。 人工神经元是构成人工神经网络的基本计算单元,单个神经元的模型结构如下图所示。

其中,b X W b x w Z T+ = + =∑1 1 1 ) ( ) ( , z f x h h w = x x x x x e e e e z z f e z z f - - - + - = = + = = ) tanh( ) ( 1 1 ) ( ) (σ 卷积神经网路的基本结构

简单的池化过程: 2.对深度学习框架TensorFlow的系统架构和编程模型作了一些说明,并对人脸数据进行预处理,包括人脸检测、数据增强、图像标准化和人脸中心损失。

卷积神经网络 论文版

卷积神经网络 摘要:卷积神经网络是近年来广泛应用于模式识别、图像处理等领域的一种高效识别算法,它具有结构简单、训练参数少和适应性强等特点。本文从卷积神经网络的发展历史开始,详细阐述了卷积神经网络的网络结构、神经元模型和训练算法。在此基础上以卷积神经网络在人脸检测和形状识别方面的应用为例,简单介绍了卷积神经网络在工程上的应用,并给出了设计思路和网络结构。 关键字:模型;结构;训练算法;人脸检测;形状识别 Convolution Neural Network Abstract:Convolution neural network is an efficient recognition algorithm which is widely used in pattern recognition, image processing and other fields recent years.It has a simple structure, few training parameters and good adaptability and other advantages. In this paper, begin with the history of convolutional neural networks,describes the structure of convolutional neural network,neuron models and training algorithms in detail. On this basis,uses the applications of convolutional neural network in face detection and shape recognition as examples, introduces the applications of convolution neural network in engineering, and gives design ideas and network structure. Keywords:Model; Training Algorithm; Advantage; Face detection; Shape recognition 0 引言 卷积神经网络是人工神经网络的一种已成为当前语音分析和图像识别领域的研究热点,它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。该优点在网络的输入是多维图像时表现的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程。卷积网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移、比例缩放、倾斜或者共他形式的变形具有高度不变性。 1 卷积神经网络的发展历史 1962年Hubel和Wiesel通过对猫视觉皮层细胞的研究,提出了感受野(receptive field)的概念,1984年日本学者Fukushima基于感受野概念提出的神经认知机(neocognitron)可以看作是卷积神经网络的第一个实现网络,也是感受野概念在人工神经网络领域的首次应用。神经认知机将一个视觉模式分解成许多子模式(特征),然后进入分层递阶式相连的特征平面进行处理,它试图将视觉系统模型化,使其能够在即使物体有位移或轻微变形的时候,也能完成识别。神经认知机能够利用位移恒定能力从激励模式中学习,并且可识别这些模式的变化形,在其后的应用研究中,Fukushima将神经认知机主要用于手写数字的识别。随后,国内外的研究人员提出多种卷积神经网络形式,在邮政编码识别和人脸识别方面得到了大规模的应用。 通常神经认知机包含两类神经元,即承担特征抽取的S-元和抗变形的C-元。S-元中涉及两个重要参数,即感受野与阈值参数,前者确定输入连接的数目,后者则控制对特征子模式的反应程度。许多学者一直致力于提高神经认知机的性能的研究:在传统的神经认知机中,每个S-元的感光区中由C-元带来的视觉模糊量呈正态分布。如果感光区的边缘所产生的模糊效果要比中央来得大,S-元将会接受这种非正态模糊所导致的更大的变形容忍性。我们希望得到的是,训练模式与变形刺激模式在感受野的边缘与其中心所产生的效果之间的差异变得越来越大。为了有效地形成这种非正态模糊,Fukushima提出了带双C-元层的改进型神经

基于深度卷积神经网络的图像分类

Equation Chapter 1 Section 1 令狐采学 SHANGHAI JIAO TONG UNIVERSITY 论文题目:基于卷积神经网络的自然图像分类技术研究 姓名: 高小宁 专业:控制科学与工程

基于卷积神经网络的自然图像分类技术研究 摘要:卷积神经网络已在图像分类领域取得了很好的效果,但其网络结构及参数的选择对图像分类的效果和效率有较年夜的影响。为改良卷积网络的图像分类性能,本文对卷积神经网络模型进行了详细的理论阐发,并通过年夜量的比较实验,得出了影响卷积网络性能的因素。结合理论阐发及比较实验,本文设计了一个卷积层数为8层的深度卷积网络,并结合Batch Normalization、dropout等办法,在CIFAR10数据集上取得了88.1%的分类精度,有效地提高了卷积神经网络的分类效果。 关键词:卷积神经网络,图像分类,Batch Normalization,Dropout Research on Natural Image Classification Based on Convolution Neural Network Abstract: Convolution neural network has achieved very good results in image classification, but its network structure and the choice of parameters have a greater impact on image classification efficiency and efficiency. In order to improve the image classification performance of the convolution network, a convolutional neural network model is analyzed in detail, and a large number of contrastive experiments are conducted to get the factors that influence the performance of the convolution network. Combining the theory analysis and contrast experiment, a convolution layer depth convolution network with 8 layers is designed. Combined with Batch Normalization and dropout, 88.1% classification accuracy is achieved on CIFAR10 dataset. Which improves the classification effect of convolution neural network. Key Words:Convolution neural network(CNN), image classification, Batch Normalization,Dropout 目录 基于卷积神经网络的自然图像分类技术研究- 1 - 1引言-2- 2卷积神经网络的模型阐发-3- 2.1网络基本拓扑结构- 3 - 2.2卷积和池化- 4 - 2.3激活函数- 5 - 2.4 Softmax分类器与价格函数- 6 - 2.5学习算法- 7 - 2.6 Dropout- 9 - 2.7 Batch Normalization- 10 - 3模型设计与实验阐发-10- 3.1 CIFAR10数据集- 10 - 3.2 模型设计- 11 -

(完整版)卷积神经网络CNN原理、改进及应用

卷积神经网络(CNN) 一、简介 卷积神经网络(Convolutional Neural Networks,简称CNN)是近年发展起来,并引起广泛重视的一种高效的识别方法。 1962年,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的局部互连网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络[1](Convolutional Neural Networks-简称CNN)7863。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。 Fukushima在1980年基于神经元间的局部连通性和图像的层次组织转换,为解决模式识别问题,提出的新识别机(Neocognitron)是卷积神经网络的第一个实现网络[2]。他指出,当在不同位置应用具有相同参数的神经元作为前一层的patches时,能够实现平移不变性1296。随着1986年BP算法以及T-C问题[3](即权值共享和池化)9508的提出,LeCun和其合作者遵循这一想法,使用误差梯度(the error gradient)设计和训练卷积神经网络,在一些模式识别任务中获得了最先进的性能[4][5]。在1998年,他们建立了一个多层人工神经网络,被称为LeNet-5[5],用于手写数字分类,这是第一个正式的卷积神经网

络模型3579。类似于一般的神经网络,LeNet-5有多层,利用BP算法来训练参数。它可以获得原始图像的有效表示,使得直接从原始像素(几乎不经过预处理)中识别视觉模式成为可能。然而,由于当时大型训练数据和计算能力的缺乏,使得LeNet-5在面对更复杂的问题时,如大规模图像和视频分类,不能表现出良好的性能。 因此,在接下来近十年的时间里,卷积神经网络的相关研究趋于停滞,原因有两个:一是研究人员意识到多层神经网络在进行BP训练时的计算量极其之大,当时的硬件计算能力完全不可能实现;二是包括SVM在内的浅层机器学习算法也渐渐开始暂露头脚。直到2006年,Hinton终于一鸣惊人,在《科学》上发表文章,使得CNN再度觉醒,并取得长足发展。随后,更多的科研工作者对该网络进行了改进。其中,值得注意的是Krizhevsky等人提出的一个经典的CNN架构,相对于图像分类任务之前的方法,在性能方面表现出了显著的改善2674。他们方法的整体架构,即AlexNet[9](也叫ImageNet),与LeNet-5相似,但具有更深的结构。它包括8个学习层(5个卷积与池化层和3个全连接层),前边的几层划分到2个GPU上,(和ImageNet 是同一个)并且它在卷积层使用ReLU作为非线性激活函数,在全连接层使用Dropout减少过拟合。该深度网络在ImageNet大赛上夺冠,进一步掀起了CNN学习热潮。 一般地,CNN包括两种基本的计算,其一为特征提取,每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征。一旦该

基于深度卷积神经网络的目标检测

第35卷 第8期 福 建 电 脑 Vol. 35 No.8 2019年8月 Journal of Fujian Computer Aug. 2019 ——————————————— 程胜月,男,1995生,硕士研究生,研究方向为深度学习。E-mail:2968365693@https://www.360docs.net/doc/de5356554.html, 。张德贤,男,1961生,博士,研究方向为模式识别、人工智能信息处理。 基于深度卷积神经网络的目标检测 程胜月 张德贤 (河南工业大学信息科学与工程学院 郑州 450001) 摘 要 目标检测是计算机视觉领域中最基本、最具挑战性的课题之一,由于传统检测方法已经不能满足其在精度和速度上需求,深度学习利用其对图像特征强大地分析处理能力,逐渐成为目标检测的主流方向。本文首先对主流卷积神经网络框架进行简述,其次对目标检测中的几种重要的方法具体分析,最后对未来可能的发展方向进行讨论。 关键词 目标检测;卷积神经网络;RCNN ;YOLO ;SSD 中图法分类号 TP183 DOI:10.16707/https://www.360docs.net/doc/de5356554.html,ki.fjpc.2019.08.009 Target Detection Based on Deep Convolutional Neural Networks CHENG Shengyue, ZHANG Dexian (School of Information Science and Engineering, Henan University of Technology, Zhengzhou,China, 450001) 1引言 目标检测作为计算机视觉的基本问题之一,是 许多其他计算机视觉任务的基础,如实例分割、图像处理、对象跟踪等[1]。目前,目标检测已广泛应用于无人驾驶、安防监管、视频分析等领域。 传统目标检测方法包含预处理、窗口滑动、特征提取、特征选择、特征分类、后处理等步骤。而卷积神经网络本身具有特征提取、特征选择和特征分类的功能,所以在现在计算能力充足的情况下得到充分发展。 2主流深度卷积网络的发展 1998年Yann LeCun 提出的LeNet-5网络是首次成功应用于数字识别问题的卷积神经网络。但是由于当时计算能力不足,未能受到重视。直到2012年AlexNet 在ImageNet 图像分类任务竞赛中获得冠军,目标检测才迎来深度卷积神经网络的时代。 2.1 AlexNet AlexNet 由5个卷积层和3个全连接层组成,使用数据增广和Dropout 防止过拟合,并且提出了 局部响应归一化来提高模型的泛化能力。 2.2 VGGNet VGGNet 获得了2014年ILSVRC 比赛的亚军和目标定位的冠军。到目前为止,VGGNet 依然被广泛使用来提取图像的特征。VGGNet 主要是证明了增加网络的深度可以提高最终的性能。 2.3 GoogleNet GoogleNet 分析得出增加网络的深度和宽度可以提升性能,但同时不可避免的增加参数,造成过拟合和计算量过大。因此提出Inception 结构将稀疏矩阵聚类成相对稠密的子空间矩阵提高计算性能。 2.2 ResNet ResNet 指出随着卷积神经网络深度的增加,却出现梯度消失现象造成准确率的下降。ResNet 通过恒等映射解决深层网络梯度消失问题,大幅度提升深度卷积网络的性能。 3目标检测算法 手工设计特征的目标检测方法在2010年左右

基于深度卷积网络的图像超分辨率--译文 董超

基于深度卷积网络的图像超分辨率 摘要:提出一种深度学习方法单一图像超分辨率(SR)。我们的方法直接学习一个端到端的低/高分辨率图像之间的映射。映射表示为卷积神经网络(CNN)的深处低分辨率图像作为输入和输出的高分辨率。我们进一步证明传统基于稀疏编码的SR方法也可以被视为一个深卷积网络。但与传统方法的是分别处理每个组件,我们的方法共同优化所有层。我们深CNN还一个轻量级的结构,展示了先进的修复质量,为达到快速的实际在线使用。我们将探讨不同的网络结构和参数设置来实现性能和速度之间权衡。此外,我们扩展我们的网络同时应对三个颜色通道,并显示更好的整体重建质量。 1介绍 单一图像超分辨率(SR)[20],旨在恢复高分辨率图像从一个低分辨率图像,是计算机的一个经典问题愿景。这个问题本质上是不适定的因为多样性存在对于任何给定的低分辨率的解决方案像素。换句话说,它是一个欠定的逆问题,并不是唯一的解决方案。这样的通常由约束减轻问题解空间的先验信息。学习先验,最近主要是采用最先进的方法基于实例的[46]策略。这些方法要么利用内部相似性的图像[5],[13],[16],[19],[47],或者从外部学习映射函数低收入和高分辨率的范例对[2],[4],[6],[15],[23],[25],[37],[41],[42],[ 47],[48],[50],[51]。外部的基于基于实例的方法可以制定通用图像超分辨率,或者可以设计合适领域特定的任务,例如,人脸幻觉[30],[50],根据训练样本提供。 基于稀疏编码的方法[49],[50]老代表外部基于实例的方法之一。这涉及几个步骤的解决途径。首先,人口出现的重叠的块输入图像和预处理(如。,减去的意思是和归一化)。这些块然后编码由一个低分辨率的字典。稀疏的系数传入的高分辨率字典重建高分辨率块。重叠重建块聚合(如。通过加权平均)来产生最终的输出。这个途径通过基于最外部的实例的方法共享,特别注意学习和优化词典[2],[49]、[50]或构建有效的映射功能[25]、[41]、[42],[47]。然而,其余的途径已经很少优化或步骤考虑在一个统一的优化框架。 在本文中,我们表明,上述途径相当于深卷积神经网络[27](更多细节在3.2节)。出于这事实上,我们考虑一个卷积神经网络直接学习一个端到端的低收入和之间的映射高分辨率图像。我们的方法从根本上不同于现有外部基于实例的方法,在我们这没有明确学习词典[41],[49]、[50]或繁殖[2]、[4]为建模的块空间。这些都是隐式地实现通过隐藏层。此外,块提取和聚合也制定了卷积层,所以在优化。在我们的方法中,整个SR途径完全是通过学习,很少的前/后处理。 我们命名该模型超分辨率卷积神经网络(SRCNN)1。被提议的SRCNN 有一些吸引人的属性。首先,它的结构是故意设计简单,然而, 相比之下最先进的基于实例的方法,提供了优越的

卷积神经网络全面解析之算法实现

卷积神经网络全面解析之算法实现 前言 从理解卷积神经到实现它,前后花了一个月时间,现在也还有一些地方没有理解透彻,CNN还是有一定难度的,不是看哪个的博客和一两篇论文就明白了,主要还是靠自己去专研,阅读推荐列表在末尾的参考文献。目前实现的CNN在MINIT数据集上效果还不错,但是还有一些bug,因为最近比较忙,先把之前做的总结一下,以后再继续优化。 卷积神经网络CNN是Deep Learning的一个重要算法,在很多应用上表现出卓越的效果,[1]中对比多重算法在文档字符识别的效果,结论是CNN优于其他所有的算法。CNN 在手写体识别取得最好的效果,[2]将CNN应用在基于人脸的性别识别,效果也非常不错。前段时间我用BP神经网络对手机拍照图片的数字进行识别,效果还算不错,接近98%,但在汉字识别上表现不佳,于是想试试卷积神经网络。 1、CNN的整体网络结构 卷积神经网络是在BP神经网络的改进,与BP类似,都采用了前向传播计算输出值,反向传播调整权重和偏置;CNN与标准的BP最大的不同是:CNN中相邻层之间的神经单元并不是全连接,而是部分连接,也就是某个神经单元的感知区域来自于上层的部分神经单元,而不是像BP那样与所有的神经单元相连接。CNN的有三个重要的思想架构: ?局部区域感知 ?权重共享 ?空间或时间上的采样 局部区域感知能够发现数据的一些局部特征,比如图片上的一个角,一段弧,这些基本特征是构成动物视觉的基础[3];而BP中,所有的像素点是一堆混乱的点,相互之间的关系没有被挖掘。 CNN中每一层的由多个map组成,每个map由多个神经单元组成,同一个map的所有神经单元共用一个卷积核(即权重),卷积核往往代表一个特征,比如某个卷积和代表一段弧,那么把这个卷积核在整个图片上滚一下,卷积值较大的区域就很有可能是一段弧。注意卷积核其实就是权重,我们并不需要单独去计算一个卷积,而是一个固定大小的权重矩阵去图像上匹配时,这个操作与卷积类似,因此我们称为卷积神经网络,实际上,BP也可以看做一种特殊的卷积神经网络,只是这个卷积核就是某层的所有权重,即感知区域是整个图像。权重共享策略减少了需要训练的参数,使得训练出来的模型的泛华能力更强。 采样的目的主要是混淆特征的具体位置,因为某个特征找出来后,它的具体位置已经不重要了,我们只需要这个特征与其他的相对位置,比如一个“8”,当我们得到了上面一个"o"时,我们不需要知道它在图像的具体位置,只需要知道它下面又是一个“o”我们就可以知道是一个'8'了,因为图片中"8"在图片中偏左或者偏右都不影响我们认识它,这种混淆具体位置的策略能对变形和扭曲的图片进行识别。 CNN的这三个特点是其对输入数据在空间(主要针对图像数据)上和时间(主要针对时间序列数据,参考TDNN)上的扭曲有很强的鲁棒性。CNN一般采用卷积层与采样层交

卷积神经网络总结

1 卷积神经网络 卷积神经网络是深度学习的一种,已成为当前图像理解领域的研究热点它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。这个优点在网络的输入是多维图像时表现得更为明显, 图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程. 卷积网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移、比例缩放以及其他形式的变形具有一定不变性. 在典型的CNN 中,开始几层通常是卷积层和下采样层的交替, 在靠近输出层的最后几层网络通常是全连接网络。卷积神经网络的训练过程主要是学习卷积层的卷积核参数和层间连接权重等网络参数, 预测过程主要是基于输入图像和网络参数计算类别标签。卷积神经网络的关键是:网络结构(含卷积层、下采样层、全连接层等) 和反向传播算法等。在本节中, 我们先介绍典型CNN 的网络结构和反向传播算法, 然后概述常用的其他CNN 网络结构和方法。神经网络参数的中文名称主要参考文献 [18] 卷积神经网络的结构和反向传播算法主要参考文献 [17] 。 网络结构 卷积层 在卷积层, 上一层的特征图(Feature map) 被一个可学习的卷积核进行卷积, 然后通过一个激活函数(Activation function), 就可以得到输出特征图. 每个输出特征图可以组 合卷积多个特征图的值[17] : ()l l j j x f u = 1j l l l l j j ij j i M u x k b -∈= *+∑ 其中, l j u 称为卷积层l 的第j 个通道的净激活(Netactivation), 它通过对前一层输出特征图1 l j x -进行卷积求和与偏置后得到的, l j x 是卷积层l 的第j 个通道的输出。()f g 称为激活函数, 通常可使用sigmoid 和tanh 等函数。j M 表示用于计算l j u 的输入特征图子集, l ij k 是卷积核矩阵, l j b 是对卷积后特征图的偏置。对于一个输出特征图l j x ,每个输入特征图1 l j x -对应的卷积核l ij k 可能不同,“*”是卷积符号。 下采样层 下采样层将每个输入特征图通过下面的公式下采样输出特征图[17] : ()l l j j x f u = 1()l l l l j j j j u down x b β-=+ 其中, l j u 称为下采样层l 的第j 通道的净激活, 它由前一层输出特征图1 l j x -进行下采样

基于深度卷积神经网络的人脸识别研究定稿版

基于深度卷积神经网络的人脸识别研究 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

基于深度卷积神经网络的人脸识别研究 深度卷积神经网络主要应用包括语音识别、图像处理、自然语言处理等。本文就当前大环境下研究了卷积神经网络模型在静态环境下人脸识别领域的应用。卷积神经网络模型需要设计一个可行的网络模型,将大量的人脸训练数据集加载到网络模型中,然后进行自动训练,这样就可以得到很好的识别率。把训练好的模型保存下来,那么这个模型就是一个端到端的人脸特征提取器。该方法虽然操作简单,但是需要根据训练数据集设计合理的网络结构,而且最难的关键点是超参数的调整和优化算法的设计。因此本文结合残差网络和融合网络构建了两个与计算资源和数据资源相匹配的网络模型,并通过反复调整超参数和调试优化器使其在训练集上能够收敛,最终还取得较好的识别率。 本文的主要研宄内容和创新点如下: 1.介绍了卷积神经网络的基础理论知识。先从传统人工神经网络的模型结构、前向和反向传播算法进行了详细的分析;然后过渡到卷积神经网络的相关理论,对其重要组成部分如卷积层、激励层、池化层和全连接层进行了具体的阐述;最后对卷积神经网络训练时的一些注意事项进行了说明。 人工神经元是构成人工神经网络的基本计算单元,单个神经元的模型结构如下图所示。 其中, b X W b x w Z T+ = + =∑1 1 1 ) ( ) ( , z f x h h w = 卷积神经网路的基本结构简单的池化过程:

2.对深度学习框架TensorFlow的系统架构和编程模型作了一些说明,并对人脸数据进行预处理,包括人脸检测、数据增强、图像标准化和人脸中心损失。 TensorFlow的系统架构如下图所示 TensorFlow的编程模式 系统本地模式和分布式模式示意图 3.提出了基于改进的MyVGGNet和MySqueezeNet网络的人脸识别。首先分析了模型VGGNet-16和SqueezeNe的网络结构及相关参数,然后本文提出将原VGGNet-16和SqueezeNe的网络结构和参数进行优化,并在每个卷积层和激励层之间添加批归一化层,在VGGNet-16网络末尾用1个1 * 1的卷积层代替三个全连接层,还增加全局平均池化层,得到新的MyVGGNet和MySqueezeNet模型,最后在LFW数据集上分别获得9 4.3%和9 5.1%的准确率。 VGGNet-16 网络结构框图 MyVGGNet 网络框图 MyVGGNet网络训练时LFW测试集的准确率走势图 MyVGGNet网络在LFW上的ROC曲线图 4.提出了基于二叉树型融合网络BTreeFuseNet_v1和BTreeFuseNet_v2的人脸识别。首先对深度神经网络的优化问题和融合原理作了分析;然后结合残差学习,融入分支并行、融合和级联三种结构,采用ReLU函数、BN层、Dropout层、哈维尔方法和截断高斯函数初始化方法、Adam优化器等技巧,构建了两个层次深度为22和19的网络模型

BP神经网络及深度学习研究 - 综述

BP神经网络及深度学习研究 摘要:人工神经网络是一门交叉性学科,已广泛于医学、生物学、生理学、哲学、信息学、计算机科学、认知学等多学科交叉技术领域,并取得了重要成果。BP(Back Propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。本文将主要介绍神经网络结构,重点研究BP神经网络原理、BP神经网络算法分析及改进和深度学习的研究。 关键词:BP神经网络、算法分析、应用 1引言 人工神经网络(Artificial Neural Network,即ANN ),作为对人脑最简单的一种抽象和模拟,是人们模仿人的大脑神经系统信息处理功能的一个智能化系统,是20世纪80 年代以来人工智能领域兴起的研究热点。人工神经网络以数学和物理方法以及信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,旨在模仿人脑结构及其功能的信息处理系统。 人工神经网络最有吸引力的特点就是它的学习能力。因此从20世纪40年代人工神经网络萌芽开始,历经两个高潮期及一个反思期至1991年后进入再认识与应用研究期,涌现出无数的相关研究理论及成果,包括理论研究及应用研究。最富有成果的研究工作是多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。因为其应用价值,该研究呈愈演愈烈的趋势,学者们在多领域中应用[1]人工神经网络模型对问题进行研究优化解决。 人工神经网络是由多个神经元连接构成,因此欲建立人工神经网络模型必先建立人工神经元模型,再根据神经元的连接方式及控制方式不同建立不同类型的人工神经网络模型。现在分别介绍人工神经元模型及人工神经网络模型。 1.1人工神经元模型 仿生学在科技发展中起着重要作用,人工神经元模型的建立来源于生物神经元结构的仿生模拟,用来模拟人工神经网络[2]。人们提出的神经元模型有很多,其中最早提出并且影响较大的是1943年心理学家McCulloch和数学家W.Pitts在分析总结神经元基本特性的基础上首先提出的MP模型。该模型经过不断改进后,形成现在广泛应用的BP神经元模型。人工神经元模型是由人量处理单元厂泛互连而成的网络,是人脑的抽象、简化、模拟,反映人脑的基本特性。一般来说,作为人工神经元模型应具备三个要素: (1)具有一组突触或连接,常用 w表示神经元i和神经元j之间的连接强度。 ij (2)具有反映生物神经元时空整合功能的输入信号累加器 。

基于深度卷积神经网络模型的文本情感分类

第45卷第$期V o l.45 N o.3计算机工程 C o m p u te r E n g in e e rin g 2019年3月 M a rc h2019 ?开发研究与工程应用?文章编号:1000#428(2019)0$-0$00-09文献标志码:A中图分类号:TP183 基于深度卷积神经网络模型的文本情感分类 周锦峰,叶施仁,王晖 (常州大学信息科学与工程学院,江苏常州213164) 摘要:为高效提取不同卷积层窗口的文本局部语义特征,提出一种深度卷积神经网络(C N N)模型。通过堆叠多 个卷积层,提取不同窗口的局部语义特征。基于全局最大池化层构建分类模块,对每个窗口的局部语义特征计算 情感类别得分,综合类别得分完成情感分类标注。实验结果表明,与现有C N N模型相比,该模型具有较快的文本 情感分类速度。 关键词:情感分析;情感分类标注;深度学习;卷积神经网络;词向量 中文引用格式:周锦峰,叶施仁,王晖.基于深度卷积神经网络模型的文本情感分类[J].计算机工程,2019,45(3):300-308. 英文引用格式:Z H O U J in fe n g,Y E S h ire n,W A N G H u i. T ext sentim ent classification based on deep con volution al neural netw ork m o d e l*J].Com puter E n g in e e rin g,2019,45 (3) :300-308. Text Sentiment Classification Based on Deep Convolutional Neural Network Model Z H O U J in fe n g,Y E S h ire n,W A N G H u i (School of Inform ation Science and E ngineering,Changzhou Universit;^,C hangzhou,Jiangsu 213164,C hina) [A b s tr a c t]This paper proposes a d e e p C o nvo lutio na l N eural N e tw ork(C N N)m odel to e ffic ie n tly extract semantic features o f d iffe re n t con volution al layer w indow s fo r te x t.The m odel avoids m anually specifying m u ltip le w indo w sizes and retains local semantic features o f diffe re n t w indow s by stacking a n u m b e r o f con volution al l C lassification m odules are b u ilt based on t he G lobal M a x P ooling(G M P)layer to calculate the category score f local semantic features o f each w in d o w.The m odel synthesizes these category scores to com plete the sentiment classification annotation.E xperim ental results show that the m odel has faster text sentim ent classificat o f other C N N m odels. [K e y w o r d s]sentim ent analysis;sentim ent classification a n n o ta tion;deep le a rn in g;C o nvo lutio na l N eural N e tw ork (C N N) ;w ord vector D O I:10.19678/j.issn.1000-3428.0050043 〇概述 情感分析主要通过人类书写的文本分析和研究 人的意见、情感、评价、态度和情绪,是自然语言处理 (N a tu ra l La ng ua ge P ro c e ss in g,N L P)中最热门的研究 领域之一,并在数据挖掘、W e b挖掘和文本挖掘等应 用范畴得到广泛研究[16]。例如,分析电商平台上对 已购商品的点评,群众对政府新颁布的政策法规的 讨论以及消费者对新产品或服务的反馈等。每天数 以亿计的用户文本信息包含了丰富的用户观点和情 感极性,从中可以挖掘和分析出大量的知识和模式。 深度学习为经典数据挖掘任务提供了新的手 段。卷积神经网络(C o n v o lu tio n a l N e u ra l N e tw o rk,C N N)是一种用于处理具有网状拓扑结构数据的深度神经网络(D eep N e u ra l N e tw o r k,D N N)。C N N 通过卷积操作,组合低层特征形成更加抽象的高层特 征,使模型能够针对目标问题,自动学习特征。在文 本情感分类应用中,C N N能够有效避免传统机器学 习方法所面临的样本特征表达稀疏、计算复杂等问题[4]。 目前,以C N N为基础的文本情感分类方法多数 是通过学习文本的一种窗口或多种窗口局部语义信 息,然后提取文本最大语义特征进行情感划分。此 类方法在文本情感分类标注领域已取得较好的效 果。但是目前在文本情感分类标注领域[56],甚至在 N L P的其他分类问题中[860],使用的C N N模型多数 采用一个或多个卷积层并行的结构。C N N模型解 决情感分类标注问题时,为了充分捕捉语义的距离 基金项目:国家自然科学基金(61272367);江苏省科技厅项目(BY2015027-12)。 作者简介:周锦峰(1978—),男,硕士,主研方向为机器学习、自然语言处理;叶施仁,副教授、博士;王晖(通信作者),讲师、博士。收稿日期:2018-01-10修回日期:2018-02-27E-m a i l:zhouzhou9076@ https://www.360docs.net/doc/de5356554.html,

相关文档
最新文档