有理数的乘法第三课时

合集下载

人教版小学数学第七册第八单元数学广角 第1章 有理数 第3课时 有理数的加减乘除混合运算

人教版小学数学第七册第八单元数学广角 第1章 有理数 第3课时 有理数的加减乘除混合运算

6.用计算器计算的按键顺序是 1 3 4 - 2 1 1 , 则其表示的算式为 134-211,结果是 -77 . 7.用计算器计算(结果保留两位小数): (1)-9.8×(-3.27)≈ 32.05 ; (2)2.52÷(-15)≈ -0.17 ; (3)-3.4×0.78+5.8÷(-1.36)≈ -6.92 .
第1章 有理数
1.4 有理数的乘除法
1.4.2 有理数的除法 第3课时 有理数的加减乘除混合运算
1.(2015·河北)计算 3-2×(-1)等于( A ) A.5 B.1 C.-1 D.6
2.计算16×(-6)÷(-16)×6-6 等于( C ) A.-5 B.-36 C.30 D.-6
3.下列计算正确的是(D ) A.-1÷43×34=-1 B.-8×[-(-41)]=2 C.2-2×5=0 D.-18-58÷13=-2
14.(例题9变式)好生活超市去年由于受物价上涨的影响,第一季度平 均每月亏损1.2万元,第二季度在全体员工的努力下,平均每月盈利2.5万 元,第三季度平均每月盈利2.1万元,第四季度平均每月亏损0.9万元,试 说明这个超市去年总的盈亏情况如何?
解:记盈利为正数,亏损为负数,则有(-1.2)×3+2.5×3+2.1×3+( -0.9)×3=7.5(万元),即这个公司去年全年盈利7.5万元
解:原式=79×18-56×18+158×18+(-1.45+3.95)×6= 14-15+5+2.5×6=19
(2)(-1313)×15+(-623)×15+(-19671)÷5+7617÷5.
解:原式=(-1313671×51=[(-1313)+ (-623)+(-19671)+7671]×15=(-20-120)×15=-140×15=-28

《有理数的乘法》说课稿

《有理数的乘法》说课稿

《有理数的乘法》说课稿《有理数的乘法》说课稿1一、说教材:(一)地位、作用:本课的教学内容是有理数乘法交换律、结合律,分配律,是本单元的教学重点,也是本节课内容的难点。

有理数乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用,因此本节具有非常重要的作用。

(二)教学目标:1、经历探索有理数的乘法运算律的过程,发展学生观察、归纳等能力2、理解并掌握有理数的乘法运算律;乘法交换律、乘法结合律、分配率3、能运用乘法运算律简化运算,进一步提高学生的运算能力(三)重点、难点:运用乘法的运算律进行乘法运算运用乘法法则和乘法运算律进行运算二、说教学方法:根据本节教材内容和学生的实际水平,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,我将采用探究发现法、讲授法等。

教学中教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,教师并适时运用电教多媒体动画演示,激发学生探索知识的欲望来达到对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

三、说学法:根据学法指导自主性的原则,让学生在教师创设的问题情境下,通过教师的启发点拨,学生的积极思考努力下,自主参与知识的发生、发展、发现的过程,使学生掌握了知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的。

四、说教材程序:第一步现在用我们所学的知识,大家解一下这几道题:6×13 13×6(—5)×6 6×(-5)—4×(-1/2)-1/2×(—4)提问:观察一下这两组式子和结果,可以发现什么规律?学生:每组的计算结果一样,我们可以得到乘法的交换律结合律在有理数中依然成立。

乘法的交换律:两个数相乘,交换因式的位置,积不变。

ab=ba第二步现在用我们所学的知识,大家解一下这几道【2×(-3)】×(-1/3)2×【(-3)×(-1/3)】提问:大家又能发现什么规律乘法的结合律:三个数相乘先把前两个数相乘,或者先把后两个数相乘,积不变。

七年级数学第3课时 有理数的运算复习案 试题

七年级数学第3课时 有理数的运算复习案 试题

第3课时有理数的运算复习案复习范围:有理数的运算知识点回忆:知识点一:有理数的加减1.同号两数相加,取_______符号,并把绝对值______;异号两数相加,取_______符号,并用______减去______;互为相反数的两个数相加得___________;一个数与0相加,仍得_________.2.两个数相加,先确定和的________,再确定和的________.3.减去一个数,等于加上这个数的________.同步测试:1.〔〕某天早晨的气温是-7℃,中午上升了11℃,那么中午的气温是℃.2.〔〕今年我三月份某一天的最低气温为-5℃,最高气温为13℃,那么这一天的最高气温比最低气温高〔〕A. -18℃B.18℃C.13℃D.5℃答案:1、4℃;2.B.知识点二:加法的运算律1.加法的交换律:两数相加,交换加数的位置,_______不变;2.加法的结合律:三个数相加,先把前两个数相加,或者者先把后两个数相加,_______不变.同步测试:1. 以下结论中,正确的选项是〔〕.〔A〕有理数减法中,被减数不一定比减数大〔B〕减去一个数,等于加上这个数〔C〕零减去一个数,仍得这个数〔D〕两个互为相反数的数相减得零2. 〔-5〕+〔+21〕+〔-5〕用简便方法计算可将原式化为_______,计算结果为______. 答案:1、A;2. [〔-5〕+〔-5〕]+〔+21〕,21.知识点三:有理数的乘法及其运算律1.两数相乘,同号_______,异号_______,并把绝对值______;任何数与0相乘,仍得_________.2.乘法的交换律:两数相乘,交换因数的位置,积_______;3.乘法的结合律:三个数相乘,先把前两个数相乘,或者者先把后两个数相乘,积_______.4.分配律:一个数与两个数的和相乘,就等于把这个数分别与这两个数相乘,再把积______.同步测试:1.计算:〔-4〕×0.25=__________,〔+4〕×〔-18〕=______,〔-52〕×〔-103〕=_______.2. 计算11112342⎛⎫+-⨯⎪⎝⎭时,应该运用〔〕.〔A〕加法交换律〔B〕乘法分配律〔C〕乘法交换律〔D〕乘法结合律答案:1、3.-1,-12,253;2.B.知识点四:有理数的除法1.两数相除,同号_______,异号_______,并把绝对值______;0除以任何一个等于0的数,都得_________.2. _________两个有理数数互为倒数.3.除以一个数,等于乘以这个数的________. _______不能作除数.同步测试:1.-的倒数是〔 〕.〔A 〕75 〔B 〕57 〔C 〕-75 〔D 〕-572.假设5a =,15b =-,那么a ÷b 等于〔 〕.〔A 〕-1 〔B 〕-25 〔C 〕1或者25 〔D 〕-1或者-25 答案:1、D ;2.B.知识点五:有理数的乘方与科学计数法1.求___________的运算叫做乘方,乘方的结果叫做_______.在na 中,a 叫做_______,n 叫做_______,na 读作_________,当把na 看做是运算结果时,读作_________.2. 正数的任何次幂都是_________,负数的______次幂是正数,负数的______次幂是负数,0的正整数次幂都是_______.3.把一个大于10的有理数表示成10na ⨯的形式,这种计数的方法叫做________,其中110a ≤≤,n 是正整数.同步测试:1.523⎛⎫⎪⎝⎭读作__________,其中底数是________,指数是__________;(5)n-读作_______,其中-5是________,n是__________;2. 用科学记数法表示91800000,正确的选项是( )(A)918×510(B)918×710(C)9.18×510(D)9.18×710答案:1.三分之二的五次方〔幂〕,23,5;-5的n次方〔幂〕,底数,指数;;知识点五:有理数的混合运算1.有理数的混合运算,先算______ ,再算______ , 最后算______ ,假如有括号,先算______ .同步测试:1.计算:19812(16)44⎛⎫-÷--÷-⎪⎝⎭.2.计算:23 331 (2)222⎛⎫⎛⎫-⨯+-÷-⎪ ⎪⎝⎭⎝⎭.答案:1.93664 -.2.34-.例题讲解:例1计算:(+9)-(+10)+(-8)-(-2)+3分析:把正数与正数结合在一起,负数与负数结合在一起,使运算清楚,不易混淆.解:原式=9-10-8+2+3=9+2+3-10-8=14-18=-4例2.计算:112(3)(1)223-÷-⨯ 分析:在此题中假设发现12(1)23-⨯的乘积是-1,就先计算后面的乘法是错误的.在同级运算中,应从左到右依次进展运算.解:112(3)(1)223-÷-⨯=7310()()223-÷-⨯72214()()2339=-⨯-⨯=例3.21293()12323-÷+-⨯+分析:此题是有理数的混合运算,应遵循其运算顺序:先做乘方,再做乘除,最后做加减;有括号的先算括号里面的.解:212193()1233()1293294236-÷+-⨯+=-+-⨯+=--+=.例4. 计算:〔65-3715+35〕×〔-30〕.分析:假设先计算括号里面的,非常费事,注意到乘数30是被乘数各分母的公倍数,运用乘法分配律可以约去所有的分母,易于口算,因此快捷一些.解:原式=65×〔-30〕-3715×〔-30〕+35×〔-30〕 =-25+74-18=31. 例5. 计算:0.7×9519+432×〔-14〕+107×94-3.25×14. 分析:假设按照运算顺序先算乘除再算加减,就相当繁琐,认真观察一下题目的特点,注意到各局部分别有公因数0.7和14,逆用乘法分配律可把公因数0.7和14提出来,巧妙地解答本类题目.原式=0.7×〔9519+94〕-14×〔432+3.25〕 =0.7×20-14×6=14-84=-70.例6. (2021年)2021年10月11日,第十一届全运会将在美丽的泉城召开.奥体中心由体育场,体育馆、游泳馆、网球馆,综合效劳楼三组建筑组成,呈“三足鼎立〞、“东荷西柳〞布局.建筑面积约为359800平方米,请用科学记数法表示建筑面积是〔保存三个有效数字〕〔 〕〔A 〕535.910⨯平方米 〔B 〕53.6010⨯平方米 〔C 〕53.5910⨯平方米 〔D 〕435.910⨯平方米分析:此题是一道与建筑有关的实际问题,用科学计数法就是把一个数表示成10na ⨯的形式,其中110a ≤≤,n 是正整数,规律是10的指数n 比原数的整数位数少1.解:因为359800=53.598100000 3.6010⨯≈⨯,应选〔B 〕.随堂检测1.“早穿皮袄午穿纱〞这句民谣形象地描绘了我们HY 奇妙的气温变化现象.五月的某一天,最高气温是18℃,温差是20℃,那么当天的最低气温是 ℃ 2.计算:19972×0= ; 48÷(-6) = ; -12 ×(-13 ) = ; -1.25÷(-14 ) = . 3.计算:(-2)3= ;(-1)10= ;--32= .“嫦娥一号〞卫星将发射升空飞向月球,地球月球外表约为384000千米,那么这个间隔 用科学记数法〔保存三个有效数字〕表示为〔 〕千米.A.41084.3⨯ B. 51084.3⨯ C. 61084.3⨯ D. 31084.3⨯ “运算〞:ba b a =*,例如93232==*,那么=*321〔 〕 A.81 B.8 C. 61 D. 23 6. 用计算器探究规律:请先用计算器计算298,2998,29998,299998,由此猜测28999 个n= .答案:1.-2℃ ; 2. 0;-8 ; 16 ; 5; 3. -8 ;1 ; -9 .4. B ; 5.A ; 6. 40006999个个n n ;提示:用计算器依次求出:298=9604,2998=996004,29998=99960004,299998=9999600004,由此猜测28999个n =40006999个个n n . 同步练习1.计算〔4分×4=16分〕 ①25.043375.3211-+-;②)36(187436597-⨯⎪⎭⎫⎝⎛-+-; ③91)3()2(100200622⨯-+-÷-; ④)21(5)8.0()32(942223-⨯--+-⨯÷-; 2.〔2021年〕据统计,2021年在国际HY 的强烈冲击下,我国国内消费总值约30 067 000 000 000元,仍比上年增长9.0%.30 067 000 000 000元用科学记数法表示为〔 〕〔A 〕30 067×109元〔B 〕300.67×1011元 〔C 〕3.006 7×1013元〔D 〕0.300 67×1014元3. (2021年)某在一次扶贫助残活动中,一共捐款2 580 000元.将2580000元用科学记数法表示为〔 〕〔A 〕72.5810⨯元 〔B 〕70.25810⨯元 〔C 〕62.5810⨯元 〔D 〕625.810⨯元4.〔2021年〕“十一五〞规划明确了今后五年“经济翻番、港城崛起〞的奋斗目的,即2021年金地区消费总值打破800亿元,把800亿元取两个有效数字用科学记数法可表示为_________元.5.某文具店在半年的销售中,盈亏情况如下表〔盈余为正,单位:元〕表中12月的盈亏数被墨水涂污了请你算出12月的盈亏数并说明12月是盈还是亏?盈亏是多少?6.当温度每上升1℃时,某种金属丝就伸长,反之,当温度每下降1℃时金属丝就缩短,把15℃的金属丝加热到80℃再使它冷却降到25℃,金属丝的长度经历了怎样的变化,最后的长度比原来长度伸长了多少?7.小力在电脑上设计了一个有理数运算程序:输入a ,加※键,再输入b ,得到运算a ※b =a 2-b 2-〔2(a -1)-b1〕÷(a -b ) ①求(-2) ※21的值; ②小华在运用此程序计算时,屏幕显示“该程序无法操作〞,你猜小华在输入数据时,可能出现什么情况?为什么?8.某邮局检修队沿公路检修线路,规定前进为正,后退为负,某天自A 点出发到收工时所走路程为〔单位:千米〕+10,-3,+4,-8,+13,-2,+7,+5,―5,―2.〔1〕求收工时,检修队距A 点多远.〔2〕假设每千米耗油千克,问从A 点出发到收工,一共耗油多少千克?9. 要把一笔钱寄给别人,可以从邮局汇款,也可以从银行汇款。

北师大初中数学七上《2.7 有理数的乘法》PPT课件 (16)

北师大初中数学七上《2.7 有理数的乘法》PPT课件 (16)

(3) 3 (11).
(4)( 27) 0.
53
8
【思路点拨】确定两数符号→积的符号→绝对值相乘
【自主解答】(1)(-3)×7=-(3×7)=-21. (2)(-8)×(-2)=+(8×2)=16.
(3) 3 (11) (3 4) 4. 5 3 53 5
(4)( 27) 0 0. 8
(10 1 1 6) 2. 3 10
(2) 3 5 14 (0.25) 65
3 5 9 1 9. 654 8
【总结提升】有理数乘法运算“三步法”
题组一:两个有理数相乘 1.下列说法正确的是( ) A.同号两数相乘,符号不变 B.积一定大于每一个因数 C.两数相乘,如果积为正,那么这两个因数都是正数 D.两数相乘,如果积为负,那么这两个因数异号 【解析】选D.由有理数乘法法则可得D正确.
7 有理数的乘法
第1课时
1.熟记有理数的乘法法则.(重点) 2.能根据有理数的乘法法则计算有理数的乘法.(重点) 3.知道倒数的概念. 4.会判断多个非零有理数相乘积的符号.(难点)
一、有理数的乘法法则


(1)符号:两数相乘,同号得___,异号得___.
(2)绝对值:把绝对值_相__乘__.
(3)同0相乘:任何数与0相乘,积仍为_0_.
交换分子、分母的位置即得其倒数
【自主解答】(1)因为
34 43
1,所以
3 4
的倒数是
4. 3
(2)因为 0.2


1,( 5
1) 5

(5)

1,
所以-0.2的倒数是-5.
(3)因为2 2 8 ,( 8) ( 3) 1,

人教版七年级上册第一章《有理数》1.4.1 有理数的乘法教学课件(共17张PPT)

人教版七年级上册第一章《有理数》1.4.1 有理数的乘法教学课件(共17张PPT)
解:原式=0
1 2 3 4 5 (3) ( ) ( ) ( ) 2 3 4 5 6
9 … ( 10 )
2 1 5 (4)(-6) × ×(- ) ×(- 5 ) 4 6
1 4 (5)(-7) ×6×(- 7 ) × 4
(6)(1-2) ×(2-3) …(2005-2006) 解 : 原式 (1) (1)... (1) = -1
义务教育新课程标准实验教科书数学七年级上册
1.4.1有理数的乘法 (第二课时)
辽宁省铁岭市西丰县郜家店镇中学
谢林岐
计算:
(1)﹙-2﹚×3 ; (2)﹙-2﹚×﹙-3﹚; (3) 4×﹙-½ ﹚; (4)﹙-4﹚×﹙-½ ﹚.
义务教育新课程标准实验教科书数学七年级上册
1.4.1有理数的乘法 (第二课时)
2005个(-1)相乘
1.书后练习题 2.复习本节课所学知识
3.预习下一节
From:
几个不是0的数相乘,负因数的个 数是( 偶数 )时,积是正数;负 因数的个数是( 奇数 )时,积是 负数.
计算:
(1)(-3)×
(2)
×(-
)×()×
);
(-5)×6×(-
多个不是0的有理数相 乘,先做哪一步,再做 哪一步?
多个不是0的有理数相乘,先做哪一步,再做 哪一步? 第一步:确定符号(奇负偶正); 第二步:绝对值相乘。
2000
2 7 6 3 (2) ( ) ( ) ( ) 3 5 14 2 8 2 (3) ( ) ( 3.4) 0 7 3
-3/5
0
计算: 2 7 (3 ) (35) 0.0045 ( 3.5 ) 2008 3 2
11 解:原式 ( ) 35 0.0045 (3.5 3.5) 2008 3

第3讲 有理数的乘除及乘方 -提高班

第3讲 有理数的乘除及乘方 -提高班

第3讲有理数的乘除及乘方中考内容中考要求A B C有理数的运算理解有理数的运算律;理解乘方的意义掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主)运用运算律简化运算;运用有理数的运算解决简单问题科学记数法和近似数会用科学记数法表示数;了解近似数;会按实际问题的要求对结果取近似值中考大纲知识网络图3.1有理数的乘法一. 有理数的乘法1. 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.2. 有理数乘法的运算步骤:先确定积的符号,再确定积的绝对值.3. 有理数乘法的应用:要得到一个数的相反数,只要将它乘1-.4. 多个有理数相乘:(1)几个不是0的数相乘,负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数,即“奇负偶正”.(2)几个数相乘,如果其中有因数为0,那么积等于0. 5. 有理数乘法运算律:(1)乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.ab ba =(2)乘法结合律:一般地,有理数乘法中,三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.()()ab c a bc =(3)分配律:一般地,有理数乘法中,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.()a b c ab ac +=+二. 倒数1. 倒数的概念:乘积是1的两个数互为倒数. (1)倒数是成对出现的,单独一个数不能称为倒数.(2)互为倒数的两个数的乘积一定是1,即a ,b 互为倒数,则1a b ⨯=;反之亦然. (3)0没有倒数.2. 求一个非零有理数的倒数,把它的分子和分母颠倒位置即可. (1)非零整数可以看作分母为1的分数; (2)带分数一定要先化成假分数之后再求倒数.知识概述【例】(2017秋•顺义区期末)四个互不相等的整数的积为4,那么这四个数的和是( ) A .0 B .6C .﹣2D .2【练习】(2017秋•蓬溪县期末)如果a +b <0,并且ab >0,那么( ) A .a <0,b <0 B .a >0,b >0 C .a <0,b >0 D .a >0,b <0【例】(2016秋•芝罘区期末)已知abc >0,a >c ,ac <0,下列结论正确的是( ) A .a <0,b <0,c >0 B .a >0,b >0,c <0 C .a >0,b <0,c <0 D .a <0,b >0,c >0【例】(2017秋•滨海新区期末)对于有理数a 、b ,如果ab <0,a +b <0.则下列各式成立的是( )A .a <0,b <0B .a >0,b <0且|b |<aC .a <0,b >0且|a |<bD .a >0,b <0且|b |>a3.2有理数的除法一.有理数的除法1. 有理数除法法则:(1)除以一个不等于0的数,等于乘这个数的倒数.小试牛刀再接再厉总述思考:多个不是的数相乘,先做哪一步,再做哪一步?知识概述1a b a b÷=⋅,(0b ≠)(2)法则的另一说法:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.2. 有理数除法的运算步骤:先将除法换成乘法,然后确定积的符号,最后求出结果.3. 分数:分数可以理解为分子除以分母.二.有理数的乘除混合运算先将除法换成乘法,然后确定积的符号,最后求出结果. 注意:乘除混合运算要“从左到右”运算.【例】(2017秋•临沂月考)若x=(﹣1.125)×÷(﹣)×,则x 的倒数是( ) A .1 B .﹣1 C .±1 D .2【练习】(2017秋•郯城县月考)÷(﹣10)×(﹣)÷(﹣)【例】(2017秋•昌平区期末)计算:(﹣3)×6÷(﹣2)×.【练习】(2017秋•安图县期末)÷(﹣1)×.【例】(2017秋•怀柔区期末)计算:3×(﹣)÷(﹣1).5.(2017秋•城关区校级期中)计算: (1)﹣5÷(﹣1);(2)(﹣)÷(﹣)÷(﹣1).小试牛刀再接再厉3.3有理数的乘方一. 有理数的乘方1. 乘方的概念:求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂.(1)一般地,n 个相同的因数a 相乘,即n a a a a⋅⋅⋅⋅⋅⋅⋅个,记作,读作“a 的n 次方”;(2)在中,a 叫做底数,n 叫做指数;(3)当看作a 的n 次方的结果时,读作a 的n 次幂. 注意:()224-=,其底数为()2-,()()()22224-=-⨯-=;224-=-,其底数为2,()()222121224-=-⨯=-⨯⨯=-;239=749⎛⎫⎪⎝⎭,其底数为37,2333977749⎛⎫=⨯= ⎪⎝⎭; 239=77,其底数为3,23339777⨯==; 221391224⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,带分数的乘方运算,一定要先化成假分数后再运算.2. 一个数可以看作这个数本身的一次方,例如,5就是15,指数1通常省略不写.3. 幂的正负规律:(1)负数的奇次幂是负数,负数的偶次幂是正数,即“奇负偶正”; (2)正数的任何次幂都是正数; (3)0的任何正整数次幂都是0. 二. 科学记数法n a n a n a 总述思考:加减乘除混合运算的运算顺序是什么?知识概述1. 科学记数法:把一个大于10的数表示成10n a ⨯的形式(其中110a ≤<,n 是正整数).2. 用科学记数法表示一个n 位整数,其中10的指数是1n -,10的指数比整数的位数少1. 3. 万410=,亿810= 三.近似数1. 准确数:表示实际数量的数.2. 近似数:在一定程度上反映被考察量的大小,能说明实际问题的意义,与准确数非常地接近.3. 精确度:表示近似数与准确数的接近程度. 4. 精确度的类型: (1)纯数字类按四舍五入法对圆周率π取近似数时 3π≈(精确到个位)3.1π≈(精确到十分位,或叫精确到0.1)3.14π≈(精确到百分位,或叫精确到0.01) 3.142π≈(精确到千分位,或叫精确到0.001)(2)带单位类近似数2.6万(精确到千位) (3)科学记数法类近似数43.5110⨯(精确到百位)【例】(2018•金牛区校级模拟)下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有()A .1个B .2个C .3个D .4个【练习】(2018•河北二模)下列各对数中,数值相等的是( ) A .+32与+22 B .﹣23与(﹣2)3 C .﹣32与(﹣3)2 D .3×22与(3×2)2小试牛刀再接再厉【练习】(2018•绵阳)四川省公布了2017年经济数据GDP排行榜,绵阳市排名全省第二,GDP总量为2075亿元,将2075亿用科学记数法表示为()A.0.2075×1012B.2.075×1011C.20.75×1010D.2.075×1012【例】(2018•绍兴)绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116 000 000方,数字116 000 000用科学记数法可以表示为()A.1.16×109B.1.16×108C.1.16×107D.0.116×109【例】(2016秋•吴中区期末)阅读下列各式:(a•b)2=a2b2,(a•b)3=a3b3,(a•b)4=a4b4…回答下列三个问题:(1)验证:(2×)100=____,2100×()100=_____;(2)通过上述验证,归纳得出:(a•b)n=_____;(abc)n=______.(3)请应用上述性质计算:(﹣0.125)2017×22016×42015.总述总结:“奇负偶正”你了解全了吗?3.4有理数的混合运算知识概述一.有理数混合运算顺序:1.先乘方,再乘除,最后加减;2. 同级运算,从左到右进行;3. 如有括号,先做括号内的运算,按小括号、中括号、大括号的顺序依次进行. 二. 进行有理数混合运算时的易错点:1. 乘方概念错误,如326=等.2. 底数错误,如2(2)4-=-,224-=等.3. 运算顺序发生错误,如1232123÷⨯=÷=等.4. 分配律运算错误,如112(2)22241522-⨯-=-⨯-⨯=--=-等.【例】(2017秋•招远市期末)形如的式子叫做二阶行列式,其运算法则用公式表示为=xn ﹣ym ,依此法则计算的结果为( )A .17B .﹣17C .1D .﹣1【练习】(2017秋•费县期末)现定义一种新运算“*”,规定a*b=ab +a ﹣b ,如1*3=1×3+1﹣3,则(﹣2*3)*5等于( ) A .71 B .47 C .﹣47 D .﹣71【例】(2017秋•揭西县期末)计算:(﹣2)2÷×(﹣2)﹣=______.【练习】(2017秋•河口区期末)计算8﹣23÷的值为_____.【例】(2017秋•泸县期末)计算:﹣14﹣×[2﹣(﹣3)2].小试牛刀再接再厉【例】(2018•杭州二模)计算:﹣23+6÷3×圆圆同学的计算过程如下:原式=﹣6+6÷2=0÷2=0请你判断圆圆的计算过程是否正确,若不正确,请你写出正确的计算过程.【练习】(2018•邵阳县模拟)计算:﹣14+16÷(﹣2)3×|﹣3﹣1|.【巩固】(2017秋•贵阳期末)计算:(1)1﹣43×(﹣)(2)7×2.6+7×1.5﹣4.1×8.。

七年级数学上册第二章有理数及其运算2.7有理数的乘法课件新版北师大版


拓展提升
解:∵a与b互为相反数, ∴a+b=0, ∵c与d互为倒数, ∴cd=1, ∵e为绝对值最小的数, ∴e=0,
体验收获
今天我们学习了哪些知识?
1.有理数的乘法法则 2.倒数 3.有理数乘法运算
布置作业
教材54页习题第1,3题。
编后语
• 同学们在听课的过程中,还要善于抓住各种课程的特点,运用相应的方法去听,这样才能达到最佳的学习效果。 • 一、听理科课重在理解基本概念和规律 • 数、理、化是逻辑性很强的学科,前面的知识没学懂,后面的学习就很难继续进行。因此,掌握基本概念是学习的关键。上课时要抓好概念的理解,
4个 -3相加
活动探究
(-3)×4= -12 (-3)×3= -9 (-3)×2= -6
(-3)×1= -3
一个因数减小 1时,积怎样变
化?
(-3)×(-1)= 3
(-3)×0= 0
(-3)×(-2)= 6
一个因数减少1时,积增大3.
(-3)×(-3)= 9
你能写出右边各式的 结果吗?
(-3)×(-4)= 12
Q
-12 -9 -6 -3 0 3 6 9 12
3 ×(-4)= -12
在Q点左侧12cm处
讲授新知 3×4=12 (-3)×(-4)=12
正数乘正数积为_正_数 负数乘负数积为_正_数
同号 得正
3×(-4)= -12 (-3)×4= -12
负数乘正数积为_负_数 正数乘负数积为_负_数
异号 得负
= +(5×7) 同号得正,绝对值相乘 =35
观察(3)(4)小题的结果,你发现了什么?
讲授新知 如果两个有理数的乘积为1,那么称其中一个数是 另一个的倒数,也称这两个有理数互为倒数。

七年级数学上1.4有理数的乘除法2有理数的除法第3课时有理数的加减乘除混合运算习题人教


9.等式[(-9)- ]÷(-3)=3中, 表示的数是( D )
A.1
B.-1 C.3
D.0
10.下列运算中,错误的是( C )
1
5
A.-1+6×
6
÷(-6)=-6
1 5
B.(-6)÷(-4)÷
1
5
=4
310131652=1630
C.
13
1 3
2 3
1
2
5
5
11.已知a,b互为倒数,c,d互为相反数,m为最大的负整数,则
第一章 有理数
1.4 有理数的乘除法
1.4.2 有理数的除法 第3课时 有理数的加减乘除混合运算
知识点一 有理数的加减乘除混合运算 1.计算3-2×(-1)等于( A )
A.5
B.1
C.-1
D.6
2.计算12+(-18)÷(-6)-(-3)×2的结果是( C )
A.7
B.8
C.21
D.36
3.下列运算正确的是( A )
售出的质量/千克 80 60 30 40 30 60 价格/(元·千克-1) +3 +2 +1 0 -1 -2
平均每千克脆冬枣的价格是多少?
解:[80×3+60×2+30×1+40×0+30×(-1)+60×(-2)]÷300+40= 40.8(元). 答:平均每千克脆冬枣的价格是40.8元.
拔尖角度 利用混合运算探究规律 15.观察图形,解答问题:
独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/202022/3/202022/3/203/20/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/202022/3/20March 20, 2022

七年级数学有理数的乘法教案及教学设计(精选6篇)

七年级数学有理数的乘法教案及教学设计(精选6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!七年级数学有理数的乘法教案及教学设计(精选6篇)作为一位杰出的老师,有必要进行细致的教案准备工作,教案有利于教学水平的提高,有助于教研活动的开展。

1.4.2 第3课时 利用计算器进行有理数的加减乘除混合运算


+ 2 +3 + 4+ 5 +4 + 3+ 2 +1 由此,你可以猜想出哪些类似等式1 _____________________
=123454321(答案不唯一) ___________________________ .
1.4 有理数的乘除法
[归纳总结] 用计算器探索数字运算的有关规律,通常的做 法是以小见大,从已知的情形中寻找规律,猜想一般情形下 可能存在的规律,并通过计算器进行验证,从而探索出数字 运算中所蕴含的一般规律.
1.4 有理数的乘除法
知识点二
用计算器进行有理数乘除法运算
方法:用 × 、 ÷ 键.
[点拨] 也可以有理数的乘除法
重难互动探究
探究问题一 例1 用计算器进行有理数的加减乘除混合运算
用计算器计算:
(1)(-417)+509+(-371)+(-137)=________ -416 ; (2)29-105+37.5=________ -38.5 ; 20 . (3)-125÷5-15×(-3)=________
1 2 1 1 4 4 -1 , 2 -3 +1 (2)( -5)÷ -1 × × -2 ÷ 7 = ______ ÷ 7 4 3 2 45 5
1 1 15 . - 1 =______ 6
1.4 有理数的乘除法
活动2
教材导学
利用计算器计算 22 22 (1)我们知道 叫圆周率π的疏率, 它可作为π的近似值, 化 7 7 成小数近似于 3.142857.下面我们用计算器来探究 142857 的 有趣性质:
142857 ,142857×2=________ 285714 , 142857×1=________
428571 ,142857×4=________ 571428 , 142857×3=________ 857142 . 714285 ,142857×6=________ 142857×5=________
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档