全同态发展简介与Packing Messages and Optimizing Bootstrapping报告

合集下载

同济大学网络系统团队在ACM SIGCOMM’2022发表研究成果

同济大学网络系统团队在ACM SIGCOMM’2022发表研究成果

972022年第6期南开大学刘哲理教授数据安全团队论文被USENIX SECURITY信息安全会议录用同济大学网络系统团队在ACM SIGCOMM’2022发表研究成果第31届国际信息安全会议USENIX SECURITY 将于2022年8月在美国波士顿举行,南开大学网络空间安全学院刘哲理教授带领的数据安全团队的论文“Birds of a Feather Flock Together: How Set Bias Helps to Deanonymize You via Revealed Intersection Sizes”被会议全文录用。

论文由刘哲理教授指导,博士生郭晓杰和硕士生韩叶合作完成。

安全多方计算是现代密码学的重要研究领域之一,该技术能够保证计算参与方协同计算一个既定函数,同时不泄露各参与方的数据隐私信息。

其中,针对集合交集的隐私统计技术由于业界广泛的需求而引起了关注与应用,这类技术协议允许计算参与方在其数据集合的交集上联合进行数据统计。

论文揭示了两方私有集合交集大小的隐私统计协议,在实际场景下进行应用时的隐私泄露情况。

通过模拟攻击者的视角,首次提出了两种针对此类协议的攻击方式,显示攻击者如何利用所获得的交集大小来推断参与协议运算的隐私集合中的交集成员身份,从而造成隐私数据中的身份信息泄露。

文章选取现实场景中的3个典型应用,使用所提出的攻击方案,针对真实数据集进行攻击实验模拟评估,指出了相关的信息泄露可能对现实实践造成的负面影响的程度,并提出了针对参与方攻击的可能防御措施。

近年来,南开大学数据安全团队聚焦隐私计算方向,在信息安全类期刊和会议连续发表论文。

2020年,团队研究成果“隐私保护的多平台联合广告推荐业务”在腾讯、京东、快手等公司的广告推荐业务中应用,入选中国首届十大典型数据安全实践案例,是唯一的高校入选案例。

同年,研究成果“大数据融合管理及隐私保护关键技术与应用”获得天津市科技进步二等奖。

LTE培训心得

LTE培训心得

lte全网架构lte关键技术:? ? ? ? ?频域多址技术(ofdm/sc-fdma)高阶调制与amc(自适应调制与编码) mimo与beamforming(波束赋形) icic(小区间干扰协调) son(自组织网络)mimo系统自适应,就是根据无线环境变化(信道状态信息csi)来调整自己的行为(变色龙行为)。

对于mimo可调整的行为有编码方式、调制方式、层数目、预编码矩阵,要想正确调整就需要用户端做出反馈(cqi、ri 、pmi),从而实现小区中不同ue根据自身所处位置的信道质量分配最优的传输模式,提升td-lte小区容量;波束赋形传输模式提供赋形增益,提升小区边缘用户性能。

模式3和模式8中均含有单流发射,当信道质量快速恶化时,enb可以快速切换到模式内发射分集或单流波束赋形模式。

由于模式间自适应需要基于rrc层信令,不可能频繁实施,只能半静态转换。

因此lte在除tm1、2之外的其他mimo模式中均增加了开环发送分集子模式(相当于tm2)。

开环发送分集作为适用性最广的mimo技术,可以对每种模式中的主要mimo技术提供补充。

相对与tm2进行模式间转换,模式内的转换可以在mac层内直接完成,可以实现ms(毫秒)级别的快速转换,更加灵活高效。

每种模式中的开环发送分集子模式,也可以作为向其他模式转换之前的“预备状态”。

ue要接入lte网络,必须经过小区搜索、获取小区系统信息、随机接入等过程。

ue不仅需要在开机时进行小区搜索,为了支持移动性,ue会不停地搜索邻居小区、取得同步并估计该小区信号的接收质量,从而决定是否进行切换或小区重选。

为了支持小区搜索,lte定义了2个下行同步信号pss和sss。

ue开机时并不知道系统带宽的大小,但它知道自己支持的频带和带宽。

为了使ue能够尽快检测到系统的频率和符号同步信息,无论系统带宽大小,pss和sss都位于中心的72个子载波上。

ue会在其支持的lte频率的中心频点附近去尝试接收pss和sss,通过尝试接收pss和sss,ue可以得到如下信息:(1)得到了小区的pci;(2)由于cell-specific rs及其时频位置与pci 是一一对应的,因此也就知道了该小区的下行cell-specific rs及其时频位置;(3)10ms timing,即系统帧中子帧0所在的位置,但此时还不知道系统帧号,需要进一步解码pbch;(4)小区是工作在fdd还是tdd模式下;(5)cp配置,是normal cp还是extended cp。

Unsupervised learning of finite mixture models

Unsupervised learning of finite mixture models

[18], [36], [37], which converges to a maximum likelihood (ML) estimate of the mixture parameters. However, the EM algorithm for finite mixture fitting has several drawbacks: it is a local (greedy) method, thus sensitive to initialization because the likelihood function of a mixture model is not unimodal; for certain types of mixtures, it may converge to the boundary of the parameter space (where the likelihood is unbounded) leading to meaningless estimates. An important issue in mixture modeling is the selection of the number of components. The usual trade off in model order selection problems arises: With too many components, the mixture may over-fit the data, while a mixture with too few components may not be flexible enough to approximate the true underlying model. In this paper, we deal simultaneously with the above mentioned problems. We propose an inference criterion for mixture models and an algorithm to implement it which: 1) automatically selects the number of components, 2) is less sensitive to initialization than EM, and 3) avoids the boundary of the parameters space. Although most of the literature on finite mixtures focuses on mixtures of Gaussian densities, many other types of probability density functions have also been considered. The approach proposed in this paper can be applied to any type of parametric mixture model for which it is possible to write an EM algorithm. The rest of paper is organized as follows: In Section 2, we review finite mixture models and the EM algorithm; this is standard material and our purpose is to introduce the problem and define notation. In Section 3, we review previous work on the problem of learning mixtures with an unknown number of components and dealing with the drawbacks of the EM algorithm. In Section 4, we describe the proposed inference criterion, while the algorithm which implements it is presented in Section 5. Section 6 reports experimental results and Section 7 ends the paper by presenting some concluding remarks.

深度学习报告

深度学习报告

深度学习报告在写本报告前,阅读了《The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches》,并在网上查看了一些相关的内容,对其整合和理解。

但是其中的很多细节还没有足够的时间去探索,有的概念也不是很确定自己说的对不对,还望指正。

这篇报告的主要目标是介绍深度学习的总体思路及其应用相关领域,包括有监督(如DNN、CNN 和 RNN)、无监督(如 AE、GAN)(有时 GAN 也用于半监督学习任务)和深度强化学习(DRL)的思路。

在某些情况下,深度强化学习被认为是半监督/无监督的方法。

本论文的其余部分的组织方式如下:第一节主要介绍深度学习分类和特征。

第二节讨论 DNN,第三节讨论 CNN;第四节介绍了不同的先进技术,以有效地训练深度学习模型;第五节讨论 RNN;第六节讨论AE;第七节讨GAN;第八节中介绍强化学习(RL);第九节解释迁移学习;第十节介绍了深度学习的高效应用方法和硬件;第十一节讨论了深度学习框架和标准开发工具包(SDK)。

下面是AI,ML,NN,DL的关系图:一.深度学习分类和特征A.深度学习类型深度学习方法可以分为以下几个类:监督学习,半监督学习,无监督学习,此外,还有另一类学习方法称为强化学习(RL)或深度强化学习(DRL),它们经常在半监督或有时在非监督学习方法的范围内讨论。

(1)监督学习将大量的数据输入机器,这些数据被事先贴上标签,例如,要训练一个神经网络来识别苹果或者橙子的图片,就需要给这些图片贴上标签,机器通过识别所有被标记为苹果或橙子的图片来理解数据,这些图片有共同点,因此机器可以利用这些已识别的图片来更准确的预测新图片中的内容到底是苹果还是橙子。

他们看到的标记数据越多,看到的数据集越大,预测准确性就越高。

所以监督学习是一种使用标注数据的学习技术。

在其案例中,环境包含一组对应的输入输出。

文档:轻量化网络 MobileNet-V2

文档:轻量化网络 MobileNet-V2

轻量化网络:MobileNet-V22018年01月23日09:27:28阅读数:52060版权声明:本文为TensorSense原创文章,转载请注明出处, 转载请注明出处!https:///u011995719/article/details/79135818•oooMobileNetV2:《Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation》于2018年1月公开在arXiv(美[ˈɑ:rkaɪv]) :MobileNetV2是对的改进,同样是一个轻量化卷积神经网络。

创新点:1. Inverted residuals,通常的residuals block是先经过一个1*1的Conv layer,把feature map的通道数“压”下来,再经过3*3 Conv layer,最后经过一个1*1 的Conv layer,将feature map 通道数再“扩张”回去。

即先“压缩”,最后“扩张”回去。

而inverted residuals就是先“扩张”,最后“压缩”。

为什么这么做呢?请往下看。

2.Linear bottlenecks,为了避免Relu对特征的破坏,在residual block的Eltwise sum之前的那个1*1 Conv 不再采用Relu,为什么?请往下看。

创新点全写在论文标题上了!由于才疏学浅,对本论文理论部分不太明白,所以选取文中重要结论来说明MobileNet-V2。

先看看MobileNetV2 和V1之间有啥不同()主要是两点:1.Depth-wise convolution之前多了一个1*1的“扩张”层,目的是为了提升通道数,获得更多特征;2.最后不采用Relu,而是Linear,目的是防止Relu破坏特征。

再看看MobileNetV2的block 与ResNet 的block:()主要不同之处就在于,ResNet是:压缩”→“卷积提特征”→“扩张”,MobileNetV2则是Inverted residuals,即:“扩张”→“卷积提特征”→“压缩”正文:MobileNet-V1 最大的特点就是采用depth-wise separable convolution来减少运算量以及参数量,而在网络结构上,没有采用shortcut的方式。

基于插值和周期图法的高动态信号载波频偏粗估计

基于插值和周期图法的高动态信号载波频偏粗估计

收稿日期:2021 07 03;修回日期:2021 09 01作者简介:魏苗苗(1987 ),女(通信作者),河南鹿邑人,讲师,博士,主要研究方向为时序信号处理(6542@zut.edu.cn);刘洲峰(1962 ),男,河南郑州人,教授,硕导,博士,主要研究方向为数字图像处理;李春雷(1979 ),男,教授,博士,主要研究方向为智能信息处理;孙俊(1982 ),男,河南洛阳人,副教授,博士研究生,主要研究方向为信道测量和噪声估计.基于插值和周期图法的高动态信号载波频偏粗估计魏苗苗1,2 ,刘洲峰1,李春雷1,孙 俊1,2(1.中原工学院电子信息学院,郑州450007;2.郑州大学信息工程学院,郑州450001)摘 要:针对卫星通信系统中接收信号载波动态范围大、信噪比低造成的信号载波同步困难的问题进行了研究。

基于联合插值和频域移位平均周期图法的载波频偏估计算法,通过对半符号周期频域移位平均周期图法中各并行支路输出的功率谱峰值波形进行双谱线插值,以进一步降低载波频偏变化率估计误差,进而改善原算法捕获概率。

仿真结果显示,当比特信噪比为2.5dB时,相比于半符号周期频域移位平均周期图法,该算法只增加了一次插值计算就可以实现将载波频偏变化率估计误差降低27%。

在同等估计精度和参数设置下,相比于半符号周期频域移位平均周期图法和带补零频域移位评价周期图法,基于联合插值和周期图法的载波频偏粗估计算法可达到更高的捕获概率。

关键词:频偏估计;载波同步;频域移位;插值估计;高动态中图分类号:TN927+.23 文献标志码:A 文章编号:1001 3695(2022)02 038 0548 04doi:10.19734/j.issn.1001 3695.2021.07.0303CoarsecarrieroffsetestimationofhighdynamicalsignalbasedoninterpolationandperiodogramalgorithmWeiMiaomiao1,2 ,LiuZhoufeng1,LiChunlei1,SunJun1,2(1.SchoolofElectronics&Information,ZhongyuanUniversityofTechnology,Zhengzhou450007,China;2.SchoolofInformationEnginee ring,ZhengzhouUniversity,Zhengzhou450001,China)Abstract:Insatellitecommunicationsystems,thereceivedsignalusuallyhasthecharacteristicsofhighdynamicrangeandlowsignal to noiseratio(SNR),whichleadstodifficultyofcarriersynchronization.Thecarrierestimationalgorithmbasedoninterpolationandfrequencydomainshiftedaverageperiodogrammethodcouldreducetheestimationerroroffrequencyoffsetderivative,andincreasetheacquisitionprobabilitybybispectruminterpolationonthepeakwaveformofpowerspectrumoutputbyparallelbranchesinthesemi symbolfrequencydomainshiftedaverageperiodogrammethod.ThesimulationresultsshowthatwhenbitSNRis2.5dB,comparedwiththesemi symbolfrequencydomainshiftedaverageperiodogrammethod,theestimationerrorofthefrequencyoffsetderivativecanbereducedby27%withonlyoneinterpolationcalculationadded.Withthesameaccuracyrequirementandparametersetting,comparedwithsemi symbolfrequencydomainshiftedaverageperiodogrammethodandzero paddingfrequencydomainshiftedaverageperiodogrammethod,theproposedalgorithmreachesahigherprobabilityofacquisition.Keywords:frequencybiasestimation;carriersynchronization;frequencydomainshift;interpolationestimation;highdynamics0 引言面对近年来日益增高的卫星应用需求,实现超远距离下的可靠通信是保证空间探测系统有效运行的关键,但是有效载荷通信信号普遍存在运动速度极高、信噪比极低的特点,以火星等深空探测活动为例,接收信号比特信噪比可低至2dB以下,并伴有复杂运动情况[1],致使载波频偏参量不仅包含频率偏差,而且还有更高阶分量[2~4]。

stability of networked control systems


lay) that occurs while exchanging data among devices connected to the shared medium. This delay, either constant (up to jitter) or time varying, can degrade the performance of control systems designed without considering the delay and can even destabilize the system. Next, the network can be viewed as a web of unreliable transmission paths. Some packets not only suffer transmission delay but, even worse, can be lost during transmission. Thus, how such packet
Байду номын сангаас0272-1708/01/$10.00©2001IEEE IEEE Control Systems Magazine
February 2001
©2000 Image 100 Ltd.
dropouts affect the performance of an NCS is an issue that must be considered. Another issue is that plant Physical Plant outputs may be transmitted using multiple network packets (so-called multiple-packet transmission), due to Sensor 1 ... Sensor n Actuator 1 ... Actuator m the bandwidth and packet size constraints of the network. Because of the arbitration of the network medium with other nodes on the network, chances are Other Control Network Other that all/part/none of the packets could arrive by the Processes Processes time of control calculation. Controller The implementation of distributed control can be traced back at least to the early 1970s when Figure 1. A typical NCS setup and information flows. Honeywell’s Distributed Control System (DCS) was introduced. Control modules in a DCS are loosely connected because most of the real-time control tasks (sensing, sion as asynchronous dynamical systems (ADSs) [11] and calculation, and actuation) are carried out within individual analyze their stability. Finally, we present our conclusions. modules. Only on/off signals, monitoring information, alarm information, and the like are transmitted on the serial net- Review of Previous Work work. Today, with help from ASIC chip design and significant Halevi and Ray [1] consider a continuous-time plant and disprice drops in silicon, sensors and actuators can be crete-time controller and analyze the integrated communicaequipped with a network interface and thus can become in- tion and control system (ICCS) using a discrete-time dependent nodes on a real-time control network. Hence, in approach. They study a clock-driven controller with mis-synNCSs, real-time sensing and control data are transmitted on chronization between plant and controller. The system is repthe network, and network nodes need to work closely to- resented by an augmented state vector that consists of past values of the plant input and output, in addition to the curgether to perform control tasks. Current candidate networks for NCS implementations rent state vectors of the plant and controller. This results in a are DeviceNet [5], Ethernet [6], and FireWire [7], to name a finite-dimensional, time-varying discrete-time model. They few. Each network has its own protocols that are designed also take message rejection and vacant sampling into account. Nilsson [2] also analyzes NCSs in the discrete-time dofor a specific range of applications. Also, the behavior of an main. He further models the network delays as constant, inNCS largely depends on the performance parameters of the dependently random, and random but governed by an underlying network, which include transmission rate, meunderlying Markov chain. From there, he solves the LQG opdium access protocol, packet length, and so on. timal control problem for the various delay models. He also There are two main approaches for accommodating all of points out the importance of time-stamping messages, these issues in NCS design. One way is to design the control which allows the history of the system to be known. system without regard to the packet delay and loss but design In Walsh et al. [3], the authors consider a continuous a communication protocol that minimizes the likelihood of plant and a continuous controller. The control network, these events. For example, various congestion control and shared by other nodes, is only inserted between the sensor avoidance algorithms have been proposed [8], [9] to gain nodes and the controller. They introduce the notion of maxibetter performance when the network traffic is above the limit mum allowable transfer interval (MATI), denoted by τ, that the network can handle. The other approach is to treat the which supposes that successive sensor messages are sepanetwork protocol and traffic as given conditions and design rated by at most τ seconds. Their goal is to find that value of control strategies that explicitly take the above-mentioned isτ for which the desired performance (e.g., stability) of an sues into account. To handle delay, one might formulate conNCS is guaranteed to be preserved. trol strategies based on the study of delay-differential It is assumed that the nonnetworked feedback system equations [10]. Here, we discuss analysis and design strategies for both network-induced delay and packet loss. T &( t ) = A11 x ( t ), x ( t ) = [x p ( t ), x c ( t )] x This article is organized as follows. First, we review some previous work on NCSs and offer some improvements. Then, we summarize the fundamental issues in NCSs and ex- (where x p and x c represent the plant and controller state) is amine them with different underlying network-scheduling globally exponentially stable. Thus, there exists a P such that protocols. We present NCS models with network-induced delay and analyze their stability using stability regions and a (1) AT 11 P + PA11 = − I . hybrid systems technique. Following that, we discuss methods to compensate network-induced delay and present ex- Next, it is assumed that the network’s effects can be comperimental results over a physical network. Then, we model puted by the error, e(t), between the plant output and conNCSs with packet dropout and multiple-packet transmis- troller input. So the networked system’s state vector is

基于抽象解密结构的全同态加密构造方法分析

基于抽象解密结构的全同态加密构造方法分析宋新霞;陈智罡【摘要】为什么能够在格上构造全同态加密?密文矩阵的本质及构造方法是什么?该文提出一个重要的概念:抽象解密结构.该文以抽象解密结构为工具,对目前全同态加密构造方法进行分析,得到抽象解密结构、同态性与噪音控制之间的关系,将全同态加密的构造归结为如何获得最终解密结构的问题,从而形式化地建立全同态加密构造方法.最后对GSW全同态加密方法分析,提出其密文矩阵是由密文向量堆叠而成.基于密文堆叠法,研究密文是矩阵的全同态加密的通用性原因,给出密文矩阵全同态加密与其它全同态加密之间的包含关系.【期刊名称】《电子与信息学报》【年(卷),期】2018(040)007【总页数】7页(P1669-1675)【关键词】全同态加密;构造方法;抽象解密结构;密文堆叠;学习错误问题【作者】宋新霞;陈智罡【作者单位】浙江万里学院基础学院宁波315100;浙江万里学院电子与计算机学院宁波315100;中国科学院信息工程研究所信息安全国家重点实验室北京100093【正文语种】中文【中图分类】TP309.7全同态加密能够在不知道密钥的情况下,对密文进行任意计算。

这种特殊的性质使得全同态加密有广泛的应用需求。

2009年Gentry[1]提出第1个全同态加密,随后人们基于不同的困难问题,设计出一些全同态加密算法,例如:基于小主理想上的全同态加密[2],基于整数上的全同态加密,基于学习错误问题LWE(环LWE)上的全同态加密。

在这些全同态加密中,由于LWE(环LWE)上的全同态加密其形式简单、效率高,并且安全性归约到格上标准困难问题[11],具有抗量子攻击的特性,成为目前主流的全同态加密。

同时人们也不断对全同态加密进行优化,目前已经实现了全同态加密算法库。

为了研究解密结构与同态性之间的关系,我们抽象定义出一个重要概念:抽象解密结构。

基于抽象解密结构我们定义了加法和乘法期盼解密结构的概念。

动态场景下基于YOLOv5_和几何约束的视觉SLAM_算法

包装工程第45卷第3期·208·PACKAGING ENGINEERING2024年2月动态场景下基于YOLOv5和几何约束的视觉SLAM算法王鸿宇1,吴岳忠1,2*,陈玲姣1,陈茜1(1.湖南工业大学轨道交通学院,湖南株洲412007;2.湖南省智能信息感知及处理技术重点实验室,湖南株洲412007)摘要:目的移动智能体在执行同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)的复杂任务时,动态物体的干扰会导致特征点间的关联减弱,系统定位精度下降,为此提出一种面向室内动态场景下基于YOLOv5和几何约束的视觉SLAM算法。

方法首先,以YOLOv5s为基础,将原有的CSPDarknet主干网络替换成轻量级的MobileNetV3网络,可以减少参数、加快运行速度,同时与ORB-SLAM2系统相结合,在提取ORB特征点的同时获取语义信息,并剔除先验的动态特征点。

然后,结合光流法和对极几何约束对可能残存的动态特征点进一步剔除。

最后,仅用静态特征点对相机位姿进行估计。

结果在TUM数据集上的实验结果表明,与ORB-SLAM2相比,在高动态序列下的ATE和RPE 都减少了90%以上,与DS-SLAM、Dyna-SLAM同类型系统相比,在保证定位精度和鲁棒性的同时,跟踪线程中处理一帧图像平均只需28.26 ms。

结论该算法能够有效降低动态物体对实时SLAM过程造成的干扰,为实现更加智能化、自动化的包装流程提供了可能。

关键词:视觉SLAM;动态场景;目标检测;光流法;对极几何约束中图分类号:TB486;TP242 文献标志码:A 文章编号:1001-3563(2024)03-0208-10DOI:10.19554/ki.1001-3563.2024.03.024Visual SLAM Algorithm Based on YOLOv5 and Geometric Constraints inDynamic ScenesWANG Hongyu1, WU Yuezhong1,2*, CHEN Lingjiao1, CHEN Xi1(1. School of Railway Transportation, Hunan University of Technology, Hunan Zhuzhou 412007, China;2.Key Laboratory for Intelligent Information Perception and Processing Technology, Hunan Zhuzhou 412007, China)ABSTRACT: When mobile intelligence agent performs the complex task of Simultaneous Localization And Mapping (SLAM), the interference of dynamic objects will weaken the correlation between feature points and the degradation of the system's localization accuracy. In this regard, the work aims to propose a visual SLAM algorithm based on YOLOv5 and geometric constraints for indoor dynamic scenes. First, based on YOLOv5s, the original CSPDarknet backbone network was replaced by a lightweight MobileNetV3 network, which could reduce parameters and speed up operation, and at the same time, it was combined with the ORB-SLAM2 system to obtain semantic information and eliminate a priori dynamic feature points while extracting ORB feature points. Then, the possible residual dynamic feature points were further culled by combining the optical flow method and epipolar geometric constraints. Finally, only static feature points were used for camera position estimation. Experimental results on the TUM data set showed that both ATE and RPE were收稿日期:2023-10-25基金项目:国家重点研发计划项目(2022YFE010300);湖南省自然科学基金项目(2021JJ50050,2022JJ50051,2023JJ30217);湖南省教育厅科学研究项目(22A0422,21A0350,21B0547,21C0430);中国高校产学研创新基金重点项目(2022IT052);湖南省研究生创新基金项目(CX20220835)*通信作者第45卷第3期王鸿宇,等:动态场景下基于YOLOv5和几何约束的视觉SLAM算法·209·reduced by more than 90% on average under high dynamic sequences compared with ORB-SLAM2, and the processing of one frame in the tracking thread took only 28.26 ms on average compared with the same type of systems of DS-SLAM and Dyna-SLAM, while guaranteeing localization accuracy and robustness. The algorithm can effectively reduce the interference caused by dynamic objects to the real-time SLAM process. It provides a possibility for more intelligent and automatic packaging process.KEY WORDS: visual SLAM; dynamic scene; target detection; optical flow method; epipolar geometric constraints视觉SLAM(Simultaneous Localization and Mapping)技术在包装行业的应用日益广泛,其通过分析相机捕获的图像信息,实现对环境的实时感知和三维重建。

关于ADMM的研究(二)

关于ADMM的研究(⼆)4. Consensus and Sharing本节讲述的两个优化问题,是⾮常常见的优化问题,也⾮常重要,我认为是ADMM算法通往并⾏和分布式计算的⼀个途径:consensus和sharing,即⼀致性优化问题与共享优化问题。

Consensus4.1 全局变量⼀致性优化(Global variable consensus optimization)(切割数据,参数(变量)维数相同)所谓全局变量⼀致性优化问题,即⽬标函数根据数据分解成N⼦⽬标函数(⼦系统),每个⼦系统和⼦数据都可以获得⼀个参数解xi,但是全局解只有⼀个z,于是就可以写成如下优化命题:mins.t.∑i=1Nfi(xi),xi∈Rnxi−z=0注意,此时fi:Rn→R⋃+∞仍是凸函数,⽽xi并不是对参数空间进⾏划分,这⾥是对数据⽽⾔,所以xi维度⼀样xi,z∈Rn,与之前的问题并不太⼀样。

这种问题其实就是所谓的并⾏化处理,或分布式处理,希望从多个分块的数据集中获取相同的全局参数解。

在ADMM算法框架下(先返回最初从扩增lagrangian导出的ADMM),这种问题解法相当明确:Lρ(x1,…,xN,z,y)=∑i=1N(fi(xi)+yTi(xi−z)+(ρ/2)∥xi−z∥22)s.t.C={(x1,…,xN)|x1=…=xN}⟹xk+1izk+1yk+1i=argminx(fi(xi)+(yki)T(xi−zk)+(ρ/2)∥xi−z∥22))=1N∑i=1N(xk+1i+(1ρyki))=yki+ρ(xk+1i−zk+1)对y-update和z-update的yk+1i和zk+1i分别求个平均,易得y¯k+1=0,于是可以知道z-update步其实可以简化为zk+1=x¯k+1,于是上述ADMM其实可以进⼀步化简为如下形式:xk+1iyk+1i=argminx(fi(xi)+(yki)T(xi−x¯k)+(ρ/2)∥xi−x¯k∥22))=yki+ρ(xk+1i−x¯k+1)这种迭代算法写出来了,并⾏化那么就是轻⽽易举了,各个⼦数据分别并⾏求最⼩化,然后将各个⼦数据的解汇集起来求均值,整体更新对偶变量yk,然后再继续回带求最⼩值⾄收敛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档