线性代数知识点归纳

合集下载

线性代数自考知识点汇总

线性代数自考知识点汇总

行列式1. 行列式的性质性质1 行列式与它的转置行列式相等T D D =.性质2 互换行列式的两行列,行列式变号.推论1 如果行列式有两行列的对应元素完全相同,则此行列式的值为零.如a b ca b c 0a b c'''= 性质3 行列式的某一行列中所有的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a = 推论2 如果行列式中有两行列元素成比例,则此行列式的值为零.如a b ca b c 0ka kb kc'''= 性质4 若行列式的某一行列的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+ 性质5 把行列式的某一行列的各元素乘以同一数然后加到另一行列对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++2. 余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i jij ij A (1)M +=-叫做元素ij a 的代数余子式.如111213212223313233a a a a a a a a a ,元素23a 的余子式为1112233132aa M a a =,元素23a 的代数余子式为11122323233132a a A (1)M a a +=-=-.3. 行列式按行列展开法则定理1 行列式的值等于它的任一行列的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++或 1122j j j j nj nj D a A a A a A =+++()1,2,,;1,2i n j n ==如111213212223313233a a a a a a a a a 111112121313a A a A a A =++ 定理2 行列式任一行列的元素与另一行列的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++=或,11220.j j j j nj nj a A a A a A i j +++=≠()1,2,,;1,2i n j n ==4. 行列式的计算 1二阶行列式1112112212212122a a a a a a a a =- 2三阶行列式111213212223313233a a a a a a a a a 112233122331132132132231122133112332a a a a a a a a a a a a a a a a a a =++--- 3对角行列式1212n nλλλλλλ=,n(m 1)21212n n(1)λλλλλλ-=-4三角行列式1111121n 2122222n 1122nn n1n2nn nn a a a a a a a a a a a a a a a ==111,n 11n1n n(n 1)212,n 12,n 12n 21n 2,n 1n1n1n1n2nna a a a a a a a (1)a a a a a a a -----==-5消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值.6降阶法:利用行列式的性质,化某行列只有一个非零元素,再按该行列展开,通过降低行列式的阶数求出行列式的值.7加边法:行列式每行列所有元素的和相等,将各行列元素加到第一列行,再提出公因式,进而求出行列式的值.矩阵1. 常见矩阵1对角矩阵:主对角线以外的元素全为0的方阵,称为对角矩阵.记作Λ. 2单位矩阵:主对角线上的元素全为1的对角矩阵,称为单位矩阵.记作E.3上三角矩阵:对角线以下的元素全为0的方阵.如11121n 222n nn a a a a a a ⎛⎫⎪⎪⎪ ⎪⎝⎭ 4下三角矩阵:对角线以上的元素全为0的方阵.如112122n1n2nn a a a a a a ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭5对称矩阵:设A 为n阶方阵,若T A A =,即ij ji a a =,则称A 为对称矩阵. 6反对称矩阵:设A 为n阶方阵,若T A A =-,即ij ji a a =- ,则称A 为反对称矩阵. 7正交矩阵:设A 为n阶方阵,如果T AA E =或T A A E =,则称A 为正交矩阵. 2. 矩阵的加法、数乘、乘法运算 1矩阵的加法 如a b c a b c a a b b c c d e f d e f d d e e f f ''''''+++⎛⎫⎛⎫⎛⎫+=⎪ ⎪⎪''''''+++⎝⎭⎝⎭⎝⎭注:① 只有同型矩阵才能进行加减运算;② 矩阵相加减就是对应元素相加减. 2数乘矩阵 如a b c ka kb kc k d e f kd ke kf ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭注:数乘矩阵就是数乘矩阵中的每个元素.3矩阵的乘法:设ij m ij n s s A (a ),B (b )⨯⨯==,规定ij m n AB C (c ),⨯== 其中sij i11j i22j is sj ik kj k 1c a b a b a b a b ==+++=∑(i 1,2,,m,j 1,2,,n.)==注:①左矩阵A 的列数等于右矩阵B 的行数;②左矩阵A 的第i 行与右矩阵B 的第j 列对应元素乘积的和是矩阵乘积C 的元素ij c . ③左矩阵A 的行数为乘积C 的行数,右矩阵B 的列数为乘积C 的列数. 如行矩阵乘列矩阵是一阶方阵即一个数,即()112111121s 111112211s s1s1b ba a a ab a b a b b ⎛⎫ ⎪ ⎪=++⎪ ⎪⎝⎭列矩阵乘行矩阵是s 阶方阵,即()1111111112111s 2121112112211s 11121s s1s111s112s11s a a b a b a b a a b a b a b b b b a a b a b a b ⎛⎫⎛⎫⎪⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭3. 逆矩阵设n 阶方阵A 、B,若AB=E 或BA=E,则A,B 都可逆,且11A B,B A --==.1二阶方阵求逆,设a b A c d ⎛⎫=⎪⎝⎭,则1*d b 11A A c a A ad bc --⎛⎫== ⎪--⎝⎭两调一除法. 2对角矩阵的逆11111221n n a a a a a a ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭, 111n 2121n1a a a a a a ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭.3分块对角阵的逆11111221s s A A A A ;A A ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭111s 2121s1A A A A A A ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭. 4一般矩阵求逆,初等行变换的方法:()()ERT1A E EA -−−−→.4. 方阵的行列式由n阶方阵A 的元素所构成的行列式各元素的位置不变叫做方阵A 的行列式.记作A 或detA. 5. 矩阵的初等变换下面三种变换称为矩阵的初等行列变换:1互换两行列;2数乘某行列;3某行列的倍数加到另一行列. 6. 初等矩阵单位矩阵经过一次初等变换得到的矩阵,称为初等矩阵.如001100100010,0k 0,010100001k 01⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭都是初等矩阵. 7. 矩阵的秩矩阵A 的非零子式的最高阶数,称为矩阵A 的秩.记作RA 或rA. 求矩阵的秩的方法:1定义法:找出A 中最高阶的非零子式, 它的阶数即为A 的秩.2初等行变换法:ERTA −−−→行阶梯形矩阵,RA=R 行阶梯形矩阵=非零行的行数. 8. 重要公式及结论 1矩阵运算的公式及结论()()12121212k k k k k k k k k k k k kk 10A B B A,(A B )C A (B C ),(A B )A B (AB )C A(BC ),(A B )C AC BC ,(AB )(A )B A(B )A A A ,(A )A ,(A )A ,E EAB A BA B ,EA AE A,A Eλλλλλλλλ+-+=+++=+++=+=+=+==⋅========()()()()()()T TTT T T T T T TTT nT n n A A,(A B )A B ,A A ,AB B A A A ,AB B A ,AA A A A EA A ,A A ,AB A B BA ,A A ,A B A Bλλλλ*******=+=+===========+≠+矩阵乘法不满足交换律,即一般地A B ≠AB;矩阵乘法不满足消去律,即一般地若AB=AC,无B=C ;只有当A 可逆时,有B=C.一般地若AB=O,则无A=O 或B=O.()222A B ?A 2AB B +++.2逆矩阵的公式及定理()()()()()()()()11111111n 11111k1k1T11T 1A A ,A A ,,A A 1A A,A A,A A ,A A AB B A1A A A AAA A ,Aλλ----------*-**--**-----===========A 可逆⇔|A |≠0⇔A ~E 即A 与单位矩阵E 等价 3矩阵秩的公式及结论()()()T m n R(O )0,R(A )min{m,n },R(A )R(A ),R(kA )R(A ),k 0A 0R(A )n ,R A B R A R B ⨯=≤==≠≠⇔=+≤+R AB ≤R A , R AB ≤R B .特别地,当A 可逆时,RAB=RB ;当B 可逆时,RAB=RA.()()ET A B A ~B R A R B −−→⇔⇒= 即等价矩阵的秩相等或初等变换不改变矩阵的秩.9. 矩阵方程1设 A 为n 阶可逆矩阵,B 为n ×m 矩阵,则矩阵方程AX=B 的解为1X A B -=;解法:① 求出1A -,再计算1A B -; ② ()()ERTAB E X −−−→ .2设 A 为n 阶可逆矩阵,B 为m ×n 矩阵,则矩阵方程XA=B 的解为1X BA -=;解法:① 求出1A -,再计算1BA -; ② ECT A E B X ⎛⎫⎛⎫−−−→⎪ ⎪⎝⎭⎝⎭. 10. 矩阵间的关系1等价矩阵:如果矩阵A 经过有限次初等变换变成矩阵B,那么称矩阵A 与B 等价.即存在可逆矩阵P,Q,使得PAQ=B.性质:等价矩阵的秩相等.2相似矩阵:如果存在可逆矩阵P,使得1P AP B -=,那么称A 与B 相似. 性质:相似矩阵有相同的特征多项式,相同的特征值,相同的行列式,相同的迹. 3合同矩阵:如果存在可逆矩阵P,使得TP AP B =,那么称A 与B 合同. 性质:合同矩阵的秩相等.向量空间1. 线性组合1若α=k β,则称向量α与β成比例. 2零向量O是任一向量组的线性组合.3向量组中每一向量都可由该向量组线性表示. 2. 线性相关与线性无关1 单独一个向量线性相关当且仅当它是零向量.2 单独一个向量线性无关当且仅当它是非零向量.3 两向量线性相关当且仅当两向量对应成比例.4 两向量线性无关当且仅当两向量不对应成比例.5 含有O向量的向量组一定线性相关.6 向量组12m ,,,ααα线性相关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=有非零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩<向量的个数m.7n 个n 维向量12n ,,,ααα线性相关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα=0.8 向量组12m ,,,ααα线性无关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=只有零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩=向量的个数m.9 n 个n 维向量12n ,,,ααα线性无关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα≠0.10当m>n 时,m 个n 维向量一定线性相关.定理1:向量组 a 1 , a 2 ,……, a m m ≥2线性相关的充分必要条件是向量组中至少有一个向量可由其余m-1个向量线性表示.向量组线性无关的充分必要条件是向量组中任何一个向量都不能由其余向量线性表示. 定理2:如果向量组A :a 1 , a 2 ,……, a r 线性无关,而向量组 a 1 , a 2 ,……, a r ,α线性相关,则α可由A线性表示,且表示式唯一.定理3:设向量组2r 1A :,,,ααα,12r r 1m B :,,,,,,ααααα+若A 线性相关,则向量组B 也线性相关;反之,若向量组B 线性无关,则向量组A 也线性无关.即部分相关,则整体相关;整体无关,则部分无关. 定理4:无关组的截短组无关,相关组的接长组相关. 3. 极大无关组与向量组的秩定义1 如果在向量组 T 中有 r 个向量 a 1 , a 2 ,……, a r ,满足条件: ⑴ 向量组 a 1 , a 2 ,……, a r 线性无关, ⑵ T α∀∈,2r 1,,,,αααα线性相关.那么称向量 a 1 , a 2 ,……, a r 是向量组 T 的一个极大无关组.定义2 向量组的极大无关组中所含向量的个数,称为向量组的秩.定义3 矩阵的行向量组的秩称为矩阵的行秩;矩阵的列向量组的秩称为矩阵的列秩; 结论1 线性无关的向量组的极大无关组就是它本身;结论2 如果向量组的秩是r ,那么该向量组的任意 r 个线性无关的向量都是它的一个极大无关组; 定理1 设向量组A:a 1,a 2, …,a r ;及向量组B:b 1,b 2, …, b s ,如果组A 能由组B 线性表示,且组A 线性无关,则r ≦s.推论1 等价的向量组有相同的秩.定理2 矩阵的秩=矩阵列向量组的秩=矩阵行向量组的秩. 4. 向量空间定义1 设V 为n 维向量的集合,如果集合V 非空,且集合V 对于加法及乘数两种运算封闭,那么就称集合V 为向量空间.5. 基与向量在基下的坐标定义2 设V 是向量空间,如果向量组a 1 , a 2 ,……, a r ,满足条件: 1向量组 a 1 , a 2 ,……, a r 线性无关; 2T α∀∈,2r 1,,,,αααα线性相关.那么称向量组a 1 , a 2 ,……, a r 是向量空间V 的一个基, 基中所含向量的个数称为向量空间V 的维数,记作dimV ,并称V 为r 维向量空间.定义3 设向量组 a 1 , a 2 , … , a r 是向量空间V 的一个基,则V 中任一向量x 可唯一地表示为基的一个线性组合,即 1122r r x a a a λλλ=+++,称有序数组12r ,,,λλλ为向量x 在基 a 1 , a 2 , … , a r 下的坐标.线性方程组1. 线性方程组解的判定1 线性方程组Ax=b 有解的充分必要条件是它的系数矩阵A 和增广矩阵A,b 的秩相同,即RA=RA,b . 当RA=RA,b=r① 方程组AX=b 有惟一解的充分必要条件是r=n; ② 方程组AX=b 有无穷多解的充分必要条件是r < n. 2 方程组AX= b 无解的充分必要条件是R A ≠RA,b. 2. 齐次线性方程组有非零解的判定1 齐次方程组AX=0有非零解的充分必要条件是系数矩阵A 的秩 RA < 未知量的个数n .2 含有n 个方程,n 个未知量的齐次线性方程组AX=0有非零解的充分必要条件是方程组的系数行列式等于零.即|A |=03 齐次线性方程组AX=0中,若方程的个数m<未知量的个数n,则方程组有非零解 3. 齐次线性方程组解的性质(1) 若12,ξξ是Ax=0的解,则12ξξ+也是Ax=0的解; (2) 若ξ是Ax=0的解,则k ξ也是Ax=0的解.4. 齐次线性方程组的基础解系与通解 (1) 解空间齐次线性方程组Ax=0的全体解向量所组成的集合,是一个向量空间,称为方程组 Ax=0的解空间.记作V,即V={ x | Ax=0,x ∈R }. 2 基础解系齐次方程组AX=0的解空间 V 的一个基,称为齐次方程组AX=0 的一个基础解系. 基础解系中解向量的个数是n-rA.方程组AX=0的任意n-r 个线性无关的解都是AX=0的基础解系. 3齐次线性方程组的通解为1122n r n r k k k ξξξ--+++,其中12n r ,,,ξξξ-是Ax=0的一个基础解系.5. 非齐次线性方程组解的性质1若12,ηη是Ax=b 的解,则12ηη-是Ax=0的解; 即Ax=b 的任意两个解的差必是其导出组A x =0的解. 2若η是Ax=b 的解,ξ是Ax=0的解,则ηξ+是Ax=b 的解.即Ax=b 的任意一个解和其导出组 A x =0 的任意一个解之和仍是 Ax=b 的解. 6. 非齐次线性方程组的通解非齐次线性方程组AX=b 的通解为*1122n r n r k k k ξξξη--++++其中12n r ,,,ξξξ-为对应的齐次线性方程组Ax=0的一个基础解系, *η为非齐次线性方程组AX=b 的任意一个解,称为特解.方阵的特征值1. 向量的内积设1122n n x y x y x ,y x y ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则x,y 的内积为[]1122n n x,y x y x y x y =+++.1向量x 的长度:2n x x ==++2非零向量的单位化:若向量 x ≠0 , 1x .x则是单位向量 3当[]x,y 0,x y =时称向量与正交.4若非零向量组中的向量两两正交,则称该向量组为正交组. 5若正交组中每个向量都是单位向量,则称它为标准正交组. 定理1 正交向量组必线性无关定理2 A 为正交矩阵的充分必要条件是 A 的列行向量都是单位向量且两两正交. 6施密特正交化过程设123,,ααα是一个线性无关的向量组,① 正交化:令11,βα=[][]1222111,a ,,ββββββ=-[][][][]132333121122,a ,a a ,,βββββββββ=--;② 单位化:取312123123e ,e ,e ββββββ===. 则123e ,e ,e 是与123,,ααα等价的标准正交组. 2. 特征值与特征向量1方阵A 的特征值λ是特征方程A E 0λ-=的根. 2三角矩阵和对角矩阵的全部特征值就是它的全部对角元.3方阵和它的转置方阵有相同的特征值. 4设12n ,,,λλλ是n 阶方阵A 的全部特征值,则()12n tr A λλλ=+++,12n A λλλ=⋅⋅.即方阵A 的对角线上元素之和等于A 的全部特征值之和,方阵A 的行列式等于A 的全部特征值的乘积. 5若λ是方阵A 的特征值,则()fλ是方阵()f A 的特征值. 特别地,当()f A 0=时,方阵A 的特征值是()f 0λ=的根.说明:m m 1m m 110f (x )a x a xa x a --=++++,m m 1m m 110f (A )a A a A a A a E --=++++.例如λ是方阵A 的特征值,则方阵()f A A 2E =+的特征值是()f2λλ=+.方阵()2f A A 3A 4E =--的特征值是()2f34λλλ=--.例如若2A 3A 4E 0--=,则方阵A 的特征值是2340λλ--=的根,即121,4λλ=-=.6设12P ,P 都是方阵A 的属于同一特征值0λ的特征向量,则()112212k P k P k ,k +不全为零也是0λ的特征向量.7属于不同特征值的特征向量线性无关.8属于不同特征值的线性无关的特征向量的并集仍线性无关. 3. 方阵的对角化1若方阵A 与对角矩阵Λ相似,则说A 可以对角化.即存在可逆矩阵P,使得1P AP Λ-=. Λ是以A 的n 个特征值为对角元素的对角矩阵. 2n 阶方阵A 可以对角化的充分必要条件是①A 有n 个线性无关的特征向量;②属于每一个特征值的线性无关的特征向量的个数与该特征值的重数相同. 3n 阶方阵A 可以对角化的充分条件是n 阶方阵A 的n 个特征值互不相等. 4若A 与B 相似,则()f A 与()f B 相似.4. 实对称矩阵的对角化1实对称矩阵的属于不同特征值的特征向量彼此正交.2实对称矩阵一定可以对角化. 即存在正交矩阵P,使得1P AP Λ-=.Λ是以A 的n 个特征值为对角元素的对角矩阵.3利用正交矩阵将对称矩阵化为对角矩阵的步骤:1求特征值;2求特征向量;3将特征向量正交化,单位化;4最后将这些特征向量做成矩阵.二次型1. 二次型的标准化(1) 用正交变换化二次型为标准形的具体步骤:① 写出二次型T f x Ax =的对称矩阵A ;② 求A 的全部特征值12n ,,,λλλ;③ 求每个特征值的线性无关的特征向量12n ,,,ξξξ; ④ 将特征向量正交化,单位化,得12n ,,,ηηη;⑤ 将这些特征向量做成矩阵,记()12n C ,,,ηηη=,最后做正交变换x=Cy ,得到f 的标准形为 2221122n n f y y y λλλ=+++.其中12n ,,,λλλ是T f x Ax =的矩阵A 的特征值.(2) 用配方法化二次型为标准形的具体步骤:① 若二次型含有i x 的平方项,则先把含有i x 的项集中,然后配方,再对其余的变量同样进行,直到都配成平方项为止,经过可逆的线性变换,就得到标准形;② 若二次型中不含有平方项,则先作可逆线性变换,令i i j j i j kk x y y x y y x y =-⎧⎪=+⎨⎪=⎩,k=1,2,…,n,i≠j化二次型为含有平方项的二次型,然后再按1中方法配方.2. 规范二次型设二次型T f x Ax =的标准形为222211p p p 1p 1r r f d y d y d y d y ++=++---,i d 0>,r 是f 的秩令11p p p 1p 1r r y z y z y z y z ++⎧=⎪⎪⎪⎪⎪=⎪⎪⎨⎪=⎪⎪⎪⎪⎪=⎪⎩,得22221p p 1r f z z z z +=++---,称为二次型T f x Ax =的规范形.注:规范形是唯一的.其中正平方项的个数p 称为Tf x Ax =正惯性指数,负平方项的个数r-p 称为T f x Ax =负惯性指数,它们的差p-r-p=2p-r 称为T f x Ax =符号差.3. 正定二次型二次型T f x Ax =正定⇔矩阵A 正定⇔A 的特征值全为正⇔A 的各阶顺序主子式都为正. 二次型T f x Ax =负定⇔矩阵A 负定⇔A 的奇数阶顺序主子式为负,偶数阶顺序主子式为正.。

线性代数经管类知识点

线性代数经管类知识点

线性代数经管类知识点线性代数在经管类学科中具有重要的地位,其涉及的知识点对于分析、建模和解决管理问题具有重要的作用。

本文将介绍一些线性代数在经管类学科中常用的知识点,并探讨其应用。

应用于经管类学科的线性代数知识主要包括矩阵运算、线性方程组的求解以及向量空间的理解。

我们将逐一进行阐述。

1. 矩阵运算:矩阵是一个重要的线性代数工具,在经管类学科中广泛应用于数据的存储和计算。

矩阵的加法、减法和乘法运算能够对数据进行处理和分析。

例如,在经济学中,我们可以通过矩阵乘法来计算不同经济指标的加权平均值,从而对经济状况进行评估。

此外,矩阵的转置运算也可以用于解决一些经济和管理问题,例如对投资组合的评估与优化。

2. 线性方程组的求解:线性方程组是经管类学科中常见的数学模型。

通过线性代数的方法,我们可以求解线性方程组,从而得到方程组的解析解或数值解。

这对于经济学中的均衡分析和管理学中的约束优化问题具有重要的作用。

同时,我们还可以通过求解线性方程组来进行数据拟合和趋势预测,帮助企业做出决策。

3. 向量空间的理解:向量空间是线性代数中的一个重要概念,它描述了向量的线性组合和向量之间的相对位置关系。

在经管类学科中,我们经常遇到多个变量之间的关系,例如市场需求与供给的关系、公司利润与销售额的关系等。

通过将变量转化为向量,我们可以使用向量空间的理论和方法来分析这些关系。

例如,我们可以通过求解向量的线性相关性来检验变量之间的相关性,从而评估市场需求的变化对供给的影响,或者评估公司销售额的变化对利润的影响。

除了以上提到的知识点,线性代数在经管类学科中还有其他重要的应用。

例如,特征值和特征向量的分析可以用于研究矩阵的稳定性和动态系统的行为。

奇异值分解可以用于降维和数据压缩,从而提取关键信息。

矩阵的逆可以用于求解逆问题,例如在金融学中用于对冲或风险管理。

总之,线性代数在经管类学科中扮演着不可或缺的角色。

通过掌握矩阵运算、线性方程组求解和向量空间的理解,我们能够更好地理解和分析经济和管理问题。

大学数学线性代数知识点归纳总结

大学数学线性代数知识点归纳总结

大学数学线性代数知识点归纳总结线性代数是数学的一个重要分支,广泛应用于各个领域。

作为大学数学的一门核心课程,线性代数为我们提供了一种处理线性方程组、矩阵运算和向量空间等数学工具和理论。

在这篇文章中,我将对大学数学线性代数的知识点进行归纳总结。

1. 向量与向量空间- 向量的定义和性质- 向量的线性组合与线性相关性- 向量空间的定义和基本性质- 子空间与超平面- 线性无关与基2. 线性方程组- 线性方程组的概念与解的存在唯一性- 矩阵形式与增广矩阵- 初等行变换与线性方程组的等价性- 齐次线性方程组与非齐次线性方程组- 线性方程组的解的结构3. 矩阵与矩阵运算- 矩阵的定义和性质- 矩阵的加法与数乘- 矩阵的转置与对称矩阵- 矩阵乘法与矩阵的秩- 逆矩阵与可逆矩阵4. 特征值与特征向量- 特征值与特征向量的定义 - 特征多项式与特征方程- 对角化与可对角化条件- 特征值与矩阵的相似性5. 线性变换与线性映射- 线性变换的基本性质- 线性变换矩阵与基变换- 线性变换的零空间与像空间 - 线性变换的维数定理6. 内积空间与正交性- 内积空间的定义和性质- 正交向量与正交补空间- 正交投影与最小二乘法- 施密特正交化过程7. 特殊矩阵与应用- 对角矩阵与对角化- 正交矩阵与正交对角化- 幂零矩阵与Jordan标准形- 应用:图像处理、数据压缩、网络分析等通过对以上知识点的整理和总结,我们对大学数学线性代数的学习有了更加清晰的认识。

线性代数的理论和方法在计算机科学、物理学、工程学等领域都有广泛的应用,了解和掌握线性代数知识对于我们的学术研究和职业发展都具有重要意义。

希望本文能帮助读者对线性代数有更深入的了解,并在实际应用中发挥作用。

线性代数知识点总结

线性代数知识点总结

向量的模长
• 定义:向量的大小
• 计算公式:|v| = √(x² + y² + ... + n²)
向量的加法运算
向量加法的定义
• 两个向量的和是一个新的向量,其坐标等于两个向量坐标的和
• 向量加法满足交换律和结合律
向量加法的计算
• 直接将两个向量的对应坐标相加
• 可以用坐标法表示向量加法
向量加法的性质
正定二次型
• 二次型的标准化是将二次型表示为标准二次型的形式
• 正定二次型是指二次型对应的矩阵是正定矩阵
• 标准二次型的形式为f(x) = x′Ax + λx′x
• 正定二次型的二次函数在向量空间的原点处取得最小值
08
线性规划
线性规划问题的定义与模型
线性规划问题的定义
• 线性规划问题是一种优化问题,要求求解一组变量的最优值
06
特征值与特征向量
特征值与特征向量的定义与性质
01
特征值的定义
• 特征值是线性变换特征方程的根
• 特征值表示线性变换对向量的放大倍数
02
特征向量的定义
• 特征向量是线性变换特征方程的解向量
• 特征向量表示线性变换对向量的方向
03
特征值与特征向量的性质
• 特征值具有唯一性和稳定性
• 特征向量具有线性无关性
二次型的定义与表示
二次型的定义
二次型的表示
• 二次型是一种二次函数,表示为f(x) = Ax² + Bx + C
• 二次型可以用矩阵表示,为f(x) = x′Ax + x′Bx + x′Cx
• 其中,A、B、C是常数矩阵
• 其中,A、B、C是二次型的系数矩阵

线性代数知识点全面总结基本功课

线性代数知识点全面总结基本功课
6、若A为反对称矩阵,则AT=-A 。
*
教书育人
三、重要公式、法则。
1、矩阵的加法与数乘
A + B = B + A ; (A + B ) + C = A + ( B + C ); A + O = O + A = A; A + (-A) = O; k(lA) = (kl)A ; (k+l)A = kA+ lA ; k( A + B )= kA + kB ; 1A = A, OA = O 。
的系数行列式D ≠0 , 原方程组有惟一解
*
教书育人
4、齐次线性方程组的克拉默法则。
若齐次线性方程组有非零解,则它的系数行列式必为 零。
*
教书育人
三、重要公式
*
教书育人
*
教书育人
*
教书育人
四、典型例题
1、3~4阶的行列式
2、简单的n阶行列式
3、用公式
*
教书育人
可逆矩阵与初等变换
概念
求法
证法
如果AB=BA=E,则A可逆, B是A的逆矩阵.
用定义
用伴随矩阵
分块对角矩阵
|A| ≠ 0 , A可逆 .
|A| = 0 , A不可逆 .
AB = E , A与B互逆.
反证法.
*
教书育人
二、重要定理
1、设A、B是n阶矩阵,则|AB|=|A||B|。
2、若A是可逆矩阵,则A的逆矩阵惟一。
概念
特殊矩阵
m×n个数aij (i = 1,2,…,m ; j =1,2,…,n)
构成的数表
单位矩阵: 主对角线元素都是1,其余元素都是零的 n 阶方阵 E

完整版线性代数知识点总结

完整版线性代数知识点总结

完整版线性代数知识点总结线性代数是数学的一个分支,研究向量空间及其上的线性变换。

它在各个领域中都有广泛的应用,包括物理学、计算机科学、工程学等。

以下是线性代数的一些重要知识点总结:1.向量和向量空间:向量是有方向和大小的量,可以用来表示力、速度、位移等。

向量空间是向量的集合,具有加法和标量乘法运算,同时满足一定的性质。

2.线性方程组和矩阵:线性方程组是一组线性方程的集合,研究其解的性质和求解方法。

矩阵是一个由数构成的矩形数组,可以用来表示线性方程组中的系数和常数。

3.矩阵的运算:包括矩阵的加法、减法和乘法运算。

矩阵乘法是一种重要的运算,可以用来表示线性变换和复合变换。

4.行列式和特征值:行列式是一个标量,表示矩阵的一些性质,如可逆性和面积/体积的变换。

特征值是矩阵对应的线性变换中特殊的值,表示该变换在一些方向上的伸缩程度。

5.向量的内积和正交性:向量的内积是一种二元运算,可以用来表示向量之间的夹角和长度。

正交向量是指内积为零的向量,可以用来表示正交补空间等概念。

6.向量的投影和正交分解:向量的投影是一个向量在另一个向量上的投影,可以用来表示向量的分解。

正交分解是将一个向量分解为与另一个向量正交和平行的两个向量之和。

7.线性变换和线性映射:线性变换是指保持向量加法和标量乘法运算的变换。

线性映射是向量空间之间的函数,具有保持线性运算的性质。

8.特征值和特征向量:特征值和特征向量是线性变换或矩阵中一个重要的概念,用于描述变换的性质和方向。

9.正交矩阵和对称矩阵:正交矩阵是一个方阵,其列向量组成的矩阵是正交的。

对称矩阵是一个方阵,其转置等于自身。

10.奇异值分解:奇异值分解(SVD)是一种矩阵的分解方法,用来将一个矩阵分解为三个矩阵的乘积。

SVD在数据压缩、图像处理和机器学习等领域有广泛的应用。

11.最小二乘法:最小二乘法是一种数学优化方法,用来找到一条曲线或超平面,使得这些数据点到该曲线或超平面的距离平方和最小。

线性代数重要知识点及典型例题答案

线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和nnn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ〔奇偶〕排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。

〔转置行列式〕TD D =②行列式中*两行〔列〕互换,行列式变号。

推论:假设行列式中*两行〔列〕对应元素相等,则行列式等于零。

③常数k 乘以行列式的*一行〔列〕,等于k 乘以此行列式。

推论:假设行列式中两行〔列〕成比例,则行列式值为零;推论:行列式中*一行〔列〕元素全为零,行列式为零。

④行列式具有分行〔列〕可加性⑤将行列式*一行〔列〕的k 倍加到另一行〔列〕上,值不变行列式依行〔列〕展开:余子式、代数余子式ij M ijji ij M A +-=)1( 定理:行列式中*一行的元素与另一行元素对应余子式乘积之和为零。

克莱姆法则:非齐次线性方程组 :当系数行列式时,有唯一解:0≠D )21(n j DD x j j ⋯⋯==、 齐次线性方程组 :当系数行列式时,则只有零解01≠=D 逆否:假设方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a →②对称行列式:jiij a a =③反对称行列式:奇数阶的反对称行列式值为零ji ij a a -=④三线性行列式: 方法:用把化为零,。

化为三角形行列式333122211312110a a a a a a a 221a k 21a ⑤上〔下〕三角形行列式:行列式运算常用方法〔主要〕行列式定义法〔二三阶或零元素多的〕化零法〔比例〕化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:〔零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵)n m A * 矩阵的运算:加法〔同型矩阵〕---------交换、结合律数乘---------分配、结合律n m ij ka kA *)(= 乘法注意什么时候有意义nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑== 一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0转置A A TT =)(TTTBA B A +=+)((反序定理)T T kA kA =)(T T T A B AB =)(方幂:2121k k k kA AA += 几种特殊的矩阵:对角矩阵:假设AB 都是N 阶对角阵,k 是数,则kA 、A+B 、AB 都是n 阶对角阵数量矩阵:相当于一个数〔假设……〕 单位矩阵、上〔下〕三角形矩阵〔假设……〕对称矩阵反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,假设存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的,(非奇异矩阵、奇异矩阵|A|=0、伴随矩阵)B A =-1 初等变换1、交换两行〔列〕2.、非零k 乘*一行〔列〕3、将*行〔列〕的K 倍加到另一行〔列〕初等变换不改变矩阵的可逆性 初等矩阵都可逆 初等矩阵:单位矩阵经过一次初等变换得到的〔对换阵 倍乘阵 倍加阵〕等价标准形矩阵⎪⎪⎭⎫ ⎝⎛=O OO I D rr 矩阵的秩r(A):满秩矩阵 降秩矩阵 假设A 可逆,则满秩假设A 是非奇异矩阵,则r 〔AB 〕=r 〔B 〕初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵,行列式n ij n ij a k ka )()(=nijn nij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆;③不是所有的方阵都存在逆矩阵;④假设A 可逆,则其逆矩阵是唯一的。

线性代数知识点总结

线性代数知识点总结第一章 行列式第一节:二阶与三阶行列式把表达式11221221a a a a -称为11122122a a a a 所确定的二阶行列式,并记作11122112a a a a ,即1112112212212122.a a D a a a a a a ==-结果为一个数。

(课本P1) 同理,把表达式112233122331132132112332122133132231,a a a a a a a a a a a a a a a a a a ++---称为由数表111213212223313233a a a a a a a a a 所确定的三阶行列式,记作111213212223313233a a a a a a a a a 。

即111213212223313233a a a a a a a a a =112233122331132132112332122133132231,a a a a a a a a a a a a a a a a a a ++--- 二三阶行列式的计算:对角线法则(课本P2,P3) 注意:对角线法则只适用于二阶及三阶行列式的计算。

利用行列式计算二元方程组和三元方程组:对二元方程组11112212112222a x a xb a x a x b +=⎧⎨+=⎩设11122122a a D a a =≠1121222b a D b a =1112212.a b D a b =则1122221111122122b a b a Dx a a D a a ==,1112122211122122.a b a b Dx a a Da a ==(课本P2)对三元方程组111122133121122223323113223333a x a x a x b a x a x a x b a x a x a x b ++=⎧⎪++=⎨⎪++=⎩,设1112132122233132330a a a D a a a a a a =≠,1121312222333233b a a D b a a b a a =,1111322122331333a b a D a b a a b a =,1112132122231323a ab D a a b a a b =, 则11D x D =,22Dx D =,33D x D=。

线性代数的知识点归纳(同济_第五版)


行列式的定义
1. 行列式的计算:
① ( 定义法 ) Dn
a11 a12 a21 a22
an1 an 2
a1n a2 n
ann
( 1) a a ( j1j 2
jn ) 1 j1 2 j2
j1 j 2 jn
anj n
② (降阶法) 行列式按行(列)展开定理:
行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和
* *
b11b22 bnn
0
0 bnn
精彩文档
实用标准文案
AO A
=
O B OB ④ 若 A与 B 都是方阵(不必同阶) , 则
OA
A
=
BO BO
AO AB
B ( 1) mn A B
2 -1 0 0
-1 3 0 0
例 计算
0 0 11
0 0 -2 5
2 -1 0 0
-1 3 0 0 2 -1 1 1
? 矩阵的秩的性质:
① A O r ( A) ≥ 1; A O r ( A) 0 ; 0 ≤ r ( Am n ) ≤ min( m, n) ② r ( A) r ( AT ) r ( AT A)
③ r ( kA) r ( A) 其中 k 0
④ 若Am n, Bn s ,若r ( AB) 0
r ( A) r ( B) n B的列向量全部是 Ax 0的解
( 1)齐次线性方程组的解的结构(基础解系与通解的关系)
( 2)非齐次线性方程组的解的结构(通解)
1. 线性表示: 对于给定向量组 , 1, 2, , n ,若存在一组数 k1, k2 , , kn 使得
k1 1 k2 2
则称 是 1, 2, , n 的线性组合,或称称

线性代数知识点简单总结

线性代数知识点简单总结线性代数是数学的一个分支,主要研究向量、向量空间(也称为线性空间)、线性变换以及线性方程组的理论。

以下是线性代数的一些核心知识点的简单总结:1. 向量与空间- 向量:可以视为空间中的点或箭头,具有大小和方向,可以进行加法和数乘运算。

- 零向量:所有向量加法的单位元,加任何向量结果不变。

- 单位向量:长度为1的向量。

- 向量空间:一组向量的集合,其中任意向量的线性组合仍然在这个集合中。

- 子空间:向量空间的子集,自身也是一个向量空间。

- 维数:向量空间的基的大小,表示为n维空间。

2. 矩阵与线性变换- 矩阵:一个由数字排列成的矩形阵列,可以表示线性变换。

- 行向量与列向量:矩阵中的行和列可以被视为行向量或列向量。

- 线性变换:保持向量加法和数乘的函数,可以用矩阵来表示。

- 单位矩阵:对角线为1,其他为0的方阵,与任何矩阵相乘结果不变。

- 转置:将矩阵的行变成列,列变成行的操作。

3. 线性方程组- 齐次线性方程组:形如Ax=0的方程组,其中A是矩阵,x是未知向量。

- 非齐次线性方程组:形如Ax=b的方程组,b不是零向量。

- 行列式:方阵的一个标量值,可以表示矩阵表示的线性变换对空间体积的缩放因子。

- 克拉默法则:使用行列式解线性方程组的方法,适用于小规模且系数矩阵行列式非零的情况。

4. 特征值与特征向量- 特征值:一个标量λ,使得存在非零向量x满足Ax=λx。

- 特征向量:与特征值对应的非零向量x。

- 特征多项式:用于求解特征值的多项式,定义为det(A-λI)=0。

- 对角化:将矩阵表示为特征向量和特征值的组合。

5. 内积与正交性- 内积(点积):两个向量的函数,满足Schwarz不等式。

- 正交:两个向量的内积为零,表示它们在空间中垂直。

- 正交基:一组向量,任意两个向量都正交。

- 正交补:对于一个向量空间的子集,所有与该子集中所有向量正交的向量组成的集合。

6. 奇异值分解- 奇异值分解(SVD):将任意矩阵分解为三个特殊矩阵的乘积,即A=UΣV*。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.. . … . word. … 线性代数复习要点

第一部分 行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 行列式的定义 1. 行列式的计算:

① (定义法)1212121112121222()1212()nnnnnjjjnjjnjjjjnnnnaaaaaaDaaaaaa1

②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.

1122,,0,.ijijinjnAijaAaAaAij





 .. . … . word. … ③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. 11221122***0**0*00nn

nn

bbAbbbb

④ 若AB与都是方阵(不必同阶),则==()mnAOAAOABOBOBBOAAABBOBO

1

⑤ 关于副对角线:(1)211212112111()nnnnnnnnnnnaOaaaaaaaOaO

1

⑥ 德蒙德行列式:1222212111112nijnjinnnnnxxxxxxxxxxx111 ⑦ ab型公式:1[(1)]()nabbbbabbanbabbbabbbba

⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨ (递推公式法) 对n阶行列式nD找出nD与1nD或1nD,2nD之间的一种关系——称为递推公式,其中 nD,1nD,2nD等结构相同,再由递推公式求出nD的方法称为递推公式法.

(拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算. ⑩ (数学归纳法) 2. 对于n阶行列式A,恒有:1(1)nnknkkkEAS,其中kS

为k阶主子式;

3. 证明0A的方法: .. . … . word. … ①、AA;

②、反证法; ③、构造齐次方程组0Ax,证明其有非零解; ④、利用秩,证明()rAn; ⑤、证明0是其特征值.

4. 代数余子式和余子式的关系:(1)(1)

ijijijijijijMAAM

第二部分 矩阵

1. 矩阵的运算性质 2. 矩阵求逆 3. 矩阵的秩的性质 4. 矩阵方程的求解

1. 矩阵的定义 由mn个数排成的m行n列的表111212122212nnmmmnaaaaaaAaaa称为mn矩阵. 记作:ijmnAa或mnA  同型矩阵:两个矩阵的行数相等、列数也相等.  矩阵相等: 两个矩阵同型,且对应元素相等.  矩阵运算 a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减). b. 数与矩阵相乘:数与矩阵A的乘积记作A 或A,规定为()ijAa

.

c. 矩阵与矩阵相乘:设()ijmsAa, ()ijsnBb

,则()ijmnCABc,

其中 12121122(,,,)jjijiiisijijissj

sj

bbcaaaabababb





注:矩阵乘法不满足:交换律、消去律, 即公式00ABBAABA或B=0不成立. .. . … . word. … a. 分块对角阵相乘:11112222,ABABAB11112222ABABAB,1122nnnAAA

b. 用对角矩阵○左乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的○行向量; 11112111111211221222221222221212000000nnnn

mmmmnmmmmmmn

abbbababababbbabababBabbbababab



c. 用对角矩阵○右乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的○列向量.

11121111121212122221212222121122000000nmnnmn

mmmnmmmmmn

bbbaabababbbbaabababBbbbaababab



d. 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘.

④ 方阵的幂的性质:mnmnAAA, ()()mnmnAA

⑤ 矩阵的转置:把矩阵A的行换成同序数的列得到的新矩阵,叫做A的转置矩阵,记作TA.

a. 对称矩阵和反对称矩阵: A是对称矩阵 TAA.

A是反对称矩阵 TAA.

b. 分块矩阵的转置矩阵:TTTTTABACCDBD

⑥ 伴随矩阵: 1121112222*12nTnijnnnnAAAAAAAAAAA,ij

A为A中各个元素的代数余子式.

**AAAAAE

,1*nAA, 11AA.

分块对角阵的伴随矩阵:***ABABAB *(1)(1)mnmnAABBBA .. . …

. word. … 2. 逆矩阵的求法 方阵A可逆 0A. ①伴随矩阵法 1AAA ○

注: 1abdbcdcaadbc1 主换位副变号

② 初等变换法 1()()AEEA初等行变换

③ 分块矩阵的逆矩阵:111AABB 111ABBA









1111ACAACBOBOB 1111AOAOCBBCAB









④ 1231111213aaaaaa , 3211111213aaaaaa ⑤ 配方法或者待定系数法 (逆矩阵的定义1ABBAEAB)

3. 行阶梯形矩阵 可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖 线后面的第一个元素非零. 当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是0时, 称为行最简形矩阵 4. 初等变换与初等矩阵 对换变换、倍乘变换、倍加(或消法)变换 初等变换 初等矩阵 初等矩阵的逆 初等矩阵的行列式 ijrr(ijcc) (,)Eij

1(,)(,)EijEij

 (,)Eij1

irk(ick) (())Eik

11[()][()]kEikEi [()]Eikk

矩阵转置的性质: ()TTAA ()TTTABBA TAA 11()()TTAA ()()TTAA

矩阵可逆的性质: 11()AA 111()ABBA 11AA 11()()kkkAAA



伴随矩阵的性质: 2()nAAA ()ABBA 1nAA 11()()AAAA ()()kkAA

() ()1 ()10 ()1 nrAnrArAnrAn若若若 ABAB

kkAA AAAAAE

(无条件恒成立) .. . …

. word. … ijrrk(ijcck) (,())Eijk

1[,()][,()]EijkEijk

 [,()]Eijk1

☻矩阵的初等变换和初等矩阵的关系:

 对A施行一次初等○行变换得到的矩阵,等于用相应的初等矩阵○左乘A;  对A施行一次初等○列变换得到的矩阵,等于用相应的初等矩阵○右乘A. 注意: 初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵.

5. 矩阵的秩 关于A矩阵秩的描述: ①、()rAr,A中有r阶子式不为0,1r阶子式 (存在的话) 全部为0; ②、()rAr,A的r阶子式全部为0; ③、()rAr,A中存在r阶子式不为0;

☻矩阵的秩的性质:

① ()AOrA≥1; ()0AOrA;0≤()mnrA≤min(,)mn ② ()()()TTrArArAA

③ ()()rkArAk 其中0 ④ ()(),,()0mnnsrArBnABrABBAx 若若0的列向量全部是的解 ⑤ ()rAB≤min(),()rArB ⑥ 若P、Q可逆,则()()()()rArPArAQrPAQ; 即:可逆矩阵不影响矩阵的秩.

⑦ 若()()()mnAxrABrBrAnABOBOAABACBC 只有零解 在矩阵乘法中有左消去律;

若()()()nsrABrBrBnB 在矩阵乘法中有右消去律. ⑧ ()rr

EOEO

rArAAOOOO若与唯一的等价,称为矩阵的等价标准型.

⑨ ()rAB≤()()rArB, max(),()rArB≤(,)rAB≤()()rArB

相关文档
最新文档