卫星的发射变轨近地同步卫星教学文案

合集下载

2024届高考一轮复习物理教案(新教材人教版浙江专用):卫星发射、变轨和对接 双星模型

2024届高考一轮复习物理教案(新教材人教版浙江专用):卫星发射、变轨和对接 双星模型

第2讲 卫星发射、变轨和对接 双星模型目标要求 1.理解三种宇宙速度,并会求解第一宇宙速度的大小.2.会处理人造卫星的变轨和对接问题.3.掌握双星、多星系统,会解决相关问题.考点一 宇宙速度第一宇宙速度(环绕速度)v 1=7.9 km/s ,是物体在地球附近绕地球做匀速圆周运动的最大环绕速度,也是人造地球卫星的最小发射速度第二宇宙速度(逃逸速度) v 2=11.2 km/s ,是物体挣脱地球引力束缚的最小发射速度第三宇宙速度v 3=16.7 km/s ,是物体挣脱太阳引力束缚的最小发射速度1.地球的第一宇宙速度的大小与地球质量有关.( √ ) 2.月球的第一宇宙速度也是7.9 km/s.( × )3.同步卫星的运行速度一定小于地球第一宇宙速度.( √ )4.若物体的发射速度大于第二宇宙速度而小于第三宇宙速度,则物体绕太阳运行.( √ )1.第一宇宙速度的推导 方法一:由G m 地m R 2=m v 2R ,得v =Gm 地R= 6.67×10-11×5.98×10246.4×106m/s ≈7.9×103 m/s. 方法二:由mg =m v 2R得v =gR =9.8×6.4×106 m/s ≈7.9×103 m/s.第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,T min =2πR g=2π 6.4×1069.8s ≈5 075 s ≈85 min.正是近地卫星的周期. 2.宇宙速度与运动轨迹的关系(1)v 发=7.9 km/s 时,卫星绕地球表面做匀速圆周运动. (2)7.9 km/s<v 发<11.2 km/s ,卫星绕地球运动的轨迹为椭圆.(3)11.2 km/s ≤v 发<16.7 km/s ,卫星绕太阳运动的轨迹为椭圆.(4)v 发≥16.7 km/s ,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间.例1 宇航员在一星球上以速度v 0竖直上抛一质量为m 的物体,经2t 后落回手中,已知该星球半径为R ,忽略该星球自转,则该星球的第一宇宙速度的大小为( ) A.v 0R t B.2v 0Rt C.v 0R 2tD.4v 0Rt答案 A解析 由题意可知星球表面重力加速度为g =v 0t ,由万有引力定律知GMmR 2=mg =m v 12R ,解得v 1=gR =v 0Rt,故选A. 例2 (2023·湖北省联考)中国火星探测器“天问一号”成功发射后,沿地火转移轨道飞行七个多月,于2021年2月到达火星附近,要通过制动减速被火星引力俘获,才能进入环绕火星的轨道飞行.已知地球的质量约为火星质量的10倍,地球半径约为火星半径的2倍,下列说法正确的是( )A .若在火星上发射一颗绕火星运动的近地卫星,其速度至少需要7.9 km/sB .“天问一号”探测器的发射速度一定大于7.9 km/s ,小于11.2 km/sC .火星与地球的第一宇宙速度之比为1∶ 5D .火星表面的重力加速度大于地球表面的重力加速度 答案 C解析 卫星在行星表面附近绕行的速度为该行星的第一宇宙速度,由G MmR 2=m v 2R ,可得v =GMR,故v 火∶v 地=1∶5,所以在火星上发射一颗绕火星运动的近地卫星,其速度至少需要v 火=7.95km/s ,故A 错误,C 正确;“天问一号”探测器挣脱了地球引力束缚,则它的发射速度大于等于11.2 km/s ,故B 错误;g 地=G M 地R 地2,g 火=G M 火R 火2,联立可得g 地>g 火,故D 错误.考点二 卫星的变轨和对接问题1.变轨原理(1)为了节省能量,在赤道上顺着地球自转方向先发射卫星到圆轨道Ⅰ上,卫星在轨道Ⅰ上做匀速圆周运动,有G Mmr 12=m v 2r 1,如图所示.(2)在A 点(近地点)点火加速,由于速度变大,所需向心力变大,G Mm r 12<m v A 2r 1,卫星做离心运动进入椭圆轨道Ⅱ.(3)在椭圆轨道B 点(远地点)将做近心运动,G Mm r 22>m v B 2r 2,再次点火加速,使G Mmr 22=m v ′2r 2,进入圆轨道Ⅲ. 2.变轨过程分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v 1、v 3,在轨道Ⅱ上过A 点和B 点时速率分别为v A 、v B .在A 点加速,则v A >v 1,在B 点加速,则v 3>v B ,又因v 1>v 3,故有v A >v 1>v 3>v B . (2)加速度:因为在A 点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A 点,卫星的加速度都相同,同理,卫星在轨道Ⅱ或轨道Ⅲ上经过B 点的加速度也相同. (3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T 1、T 2、T 3,轨道半径分别为r 1、r 2(半长轴)、r 3,由开普勒第三定律r 3T2=k 可知T 1<T 2<T 3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E 1、E 2、E 3,从轨道Ⅰ到轨道Ⅱ和从轨道Ⅱ到轨道Ⅲ都需要点火加速,则E 1<E 2<E 3.考向1 卫星变轨问题中各物理量的比较例3 (2023·浙江省名校协作体模拟)北京时间2021年10月16日,神舟十三号载人飞船顺利将翟志刚、王亚平、叶光富3名航天员送入空间站.飞船的某段运动可近似看作如图所示的情境,圆形轨道Ⅰ为空间站运行轨道,设圆形轨道Ⅰ的半径为r ,地球表面重力加速度为g ,地球半径为R ,地球的自转周期为T ,椭圆轨道Ⅱ为载人飞船运行轨道,两轨道相切于A 点,椭圆轨道Ⅱ的半长轴为a ,已知引力常量为G ,下列说法正确的是( )A .载人飞船若要进入轨道Ⅰ,需要在A 点减速B .根据题中信息,可求出地球的质量M =4π2r 3GT2C .载人飞船在轨道Ⅰ上的机械能小于在轨道Ⅱ上的机械能D .空间站在圆轨道Ⅰ上运行的周期与载人飞船在椭圆轨道Ⅱ上运行的周期之比为r 3∶a 3 答案 D解析 载人飞船若要进入轨道Ⅰ,要做离心运动,需要在A 点点火加速,故机械能增加,则载人飞船在轨道Ⅰ上的机械能大于在轨道Ⅱ上的机械能,A 、C 错误;设空间站在轨道Ⅰ运行的周期为T 1,由此可得G Mm r 2=4π2mr T 12,解得M =4π2r 3GT 12,题中T 为地球自转的周期,并非在轨道Ⅰ上的周期,不能利用该数据计算地球质量,B 错误;设在轨道Ⅱ上运行的周期为T 2,根据开普勒第三定律有r 3T 12=a 3T 22,解得T 1∶T 2=r 3∶a 3,D 正确.例4 嫦娥五号完美完成中国航天史上最复杂任务后,于2020年12月17日成功返回,最终收获1 731克样本.图中椭圆轨道Ⅰ、100公里环月轨道Ⅱ及月地转移轨道Ⅲ分别为嫦娥五号从月球返回地面过程中所经过的三个轨道示意图,下列关于嫦娥五号从月球返回过程中有关说法正确的是( )A .在轨道Ⅱ上运行时的周期小于在轨道Ⅰ上运行时的周期B .在轨道Ⅰ上运行时的加速度大小始终大于在轨道Ⅱ上运动时的加速度大小C .在N 点时嫦娥五号经过点火加速才能从轨道Ⅱ进入轨道Ⅲ返回D .在月地转移轨道上飞行的过程中可能存在不受万有引力的瞬间 答案 C解析 轨道Ⅱ的半径大于椭圆轨道Ⅰ的半长轴,根据开普勒第三定律可知,在轨道Ⅱ上运行时的周期大于在轨道Ⅰ上运行时的周期,故A 错误;在轨道Ⅰ上的N 点和轨道Ⅱ上的N 点受到的万有引力相同,所以在两个轨道上经过N 点时的加速度相同,故B 错误;从轨道Ⅱ到月地转移轨道Ⅲ做离心运动,在N 点时嫦娥五号需要经过点火加速才能从轨道Ⅱ进入轨道Ⅲ 返回,故C 正确;在月地转移轨道上飞行的过程中,始终在地球的引力范围内,不存在不受万有引力的瞬间,故D 错误.考向2 飞船对接问题例5 北京时间2021年10月16日神舟十三号载人飞船与在轨飞行的天和核心舱顺利实现径向自主交会对接,整个交会对接过程历时约6.5小时.为实现神舟十三号载人飞船与空间站顺利对接,飞船安装有几十台微动力发动机,负责精确地控制它的各种转动和平动.对接前飞船要先到达和空间站很近的相对静止的某个停泊位置(距空间站200 m).为到达这个位置,飞船由惯性飞行状态转入发动机调控状态,下列说法正确的是( ) A .飞船先到空间站同一圆周轨道上同方向运动,合适位置减速靠近即可 B .飞船先到与空间站圆周轨道垂直的同半径轨道上运动,合适位置减速靠近即可 C .飞船到空间站轨道下方圆周轨道上同方向运动,合适的位置减速即可 D .飞船先到空间站轨道上方圆周轨道上同方向运动,合适的位置减速即可 答案 D解析 根据卫星变轨时,由低轨道进入高轨道需要点火加速,反之要减速,所以飞船先到空间站下方的圆周轨道上同方向运动,合适位置加速靠近即可,或者飞船先到空间站轨道上方圆周轨道上同方向运动,合适的位置减速即可,故选D.考点三 双星或多星模型1.双星模型(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统.如图所示.(2)特点①各自所需的向心力由彼此间的万有引力提供,即Gm 1m 2L 2=m 1ω12r 1,Gm 1m 2L 2=m 2ω22r 2. ②两星的周期、角速度相同,即T 1=T 2,ω1=ω2. ③两星的轨道半径与它们之间的距离关系为r 1+r 2=L . ④两星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1.⑤双星的运动周期T =2πL 3G (m 1+m 2).⑥双星的总质量m 1+m 2=4π2L 3T 2G.2.多星模型所研究星体所受万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.常见的多星及规律:常见的三星模型①Gm 2(2R )2+GMm R 2=ma 向②Gm 2L2×cos 30°×2=ma 向 常见的四星模型①Gm 2L 2×cos 45°×2+Gm 2(2L )2=ma 向②Gm 2L 2×cos 30°×2+GmM ⎝⎛⎭⎫ L 3 2=ma 向例6 如图所示,“食双星”是两颗相距为d 的恒星A 、B ,只在相互引力作用下绕连线上O 点做匀速圆周运动,彼此掩食(像月亮挡住太阳)而造成亮度发生周期性变化的两颗恒星.观察者在地球上通过望远镜观察“食双星”,视线与双星轨道共面.观测发现每隔时间T 两颗恒星与望远镜共线一次,已知引力常量为G ,地球距A 、B 很远,可认为地球保持静止,则( )A .恒星A 、B 运动的周期为T B .恒星A 的质量小于B 的质量C .恒星A 、B 的总质量为π2d 3GT 2D .恒星A 的线速度大于B 的线速度 答案 C解析 每隔时间T 两颗恒星与望远镜共线一次,则两恒星的运动周期为T ′=2T ,故A 错误; 根据万有引力提供向心力有G m A m B d 2=m A 4π2(2T )2r A =m B 4π2(2T )2r B ,由题图知r A <r B ,则m A >m B ,故B错误;由B 选项得,两恒星总质量为M =m A +m B =π2d 3GT2,故C 正确;根据v =ωr ,两恒星角速度相等,则v A <v B ,故D 错误.例7 (多选)2019年人类天文史上首张黑洞图片正式公布.在宇宙中当一颗恒星靠近黑洞时,黑洞和恒星可以相互绕行,从而组成双星系统.在相互绕行的过程中,质量较大的恒星上的物质会逐渐被吸入到质量较小的黑洞中,从而被吞噬掉,黑洞吞噬恒星的过程也被称为“潮汐瓦解事件”.天鹅座X -1就是一个由黑洞和恒星组成的双星系统,它们以两者连线上的某一点为圆心做匀速圆周运动,如图所示.在刚开始吞噬的较短时间内,恒星和黑洞的距离不变,则在这段时间内,下列说法正确的是( )A .两者之间的万有引力变大B .黑洞的角速度变大C .恒星的线速度变大D .黑洞的线速度变大 答案 AC解析 假设恒星和黑洞的质量分别为M 、m ,环绕半径分别为R 、r ,且m <M ,两者之间的距离为L ,则根据万有引力定律有G MmL 2=F 向,恒星和黑洞的距离不变,随着黑洞吞噬恒星,在刚开始吞噬的较短时间内,M 与m 的乘积变大,它们间的万有引力变大,故A 正确;双星系统属于同轴转动的模型,角速度相等,根据万有引力提供向心力有G MmL 2=mω2r =Mω2R ,其中R +r =L ,解得恒星的角速度ω=G (M +m )L 3,双星的质量之和不变,则角速度不变,故B 错误;根据mω2r =Mω2R ,得M m =rR,因为M 减小,m 增大,所以R 增大,r 减小,由v恒=ωR ,v 黑=ωr ,可得v 恒变大,v 黑变小,故C 正确,D 错误.例8 (多选)如图所示,质量相等的三颗星体组成三星系统,其他星体对它们的引力作用可忽略.设每颗星体的质量均为m ,三颗星体分别位于边长为r 的等边三角形的三个顶点上,它们绕某一共同的圆心O 在三角形所在的平面内以相同的角速度做匀速圆周运动.已知引力常量为G ,下列说法正确的是( )A .每颗星体所需向心力大小为2G m 2r 2B .每颗星体运行的周期均为2πr 33GmC .若r 不变,星体质量均变为2m ,则星体的角速度变为原来的2倍D .若m 不变,星体间的距离变为4r ,则星体的线速度变为原来的14答案 BC解析 任意两颗星体间的万有引力大小F 0=G m 2r 2,每颗星体受到其他两个星体的引力的合力为F =2F 0cos 30°=3G m 2r 2,A 错误;由牛顿第二定律可得F =m (2πT )2r ′,其中r ′=r 2cos 30°=3r3,解得每颗星体运行的周期均为T =2πr 33Gm ,B 正确;星体原来的角速度ω=2πT=3Gm r 3,若r 不变,星体质量均变为2m ,则星体的角速度ω′=2πT ′=6Gmr 3,则星体的角速度变为原来的2倍,C 正确;星体原来的线速度大小v =2πr ′T ,若m 不变,星体间的距离变为4r ,则星体的周期T ′=2π(4r )33Gm=16πr 33Gm =8T ,星体的线速度大小v ′=2πT ′×4r ′=πr ′T ,则星体的线速度变为原来的12,D 错误.考点四 星球“瓦解”问题 黑洞1.星球的瓦解问题当星球自转越来越快时,星球对“赤道”上的物体的引力不足以提供向心力时,物体将会“飘起来”,进一步导致星球瓦解,瓦解的临界条件是赤道上的物体所受星球的引力恰好提供向心力,即GMmR 2=mω2R ,得ω=GMR 3.当ω>GMR 3时,星球瓦解,当ω<GMR 3时,星球稳定运行. 2.黑洞黑洞是一种密度极大、引力极大的天体,以至于光都无法逃逸,科学家一般通过观测绕黑洞运行的天体的运动规律间接研究黑洞.当天体的逃逸速度(逃逸速度为其第一宇宙速度的2倍)超过光速时,该天体就是黑洞.考向1 星球的瓦解问题例9 (2018·全国卷Ⅱ·16)2018年2月,我国500 m 口径射电望远镜(天眼)发现毫秒脉冲星“J0318+0253”,其自转周期T =5.19 ms.假设星体为质量均匀分布的球体,已知万有引力常量为6.67×10-11N·m 2/kg 2.以周期T 稳定自转的星体的密度最小值约为( )A .5×109 kg/m 3B .5×1012 kg/m 3C .5×1015 kg/m 3D .5×1018 kg/m 3答案 C解析 脉冲星稳定自转,万有引力提供向心力,则有G Mm r 2≥mr 4π2T 2,又知M =ρ·43πr 3,整理得密度ρ≥3πGT 2=3×3.146.67×10-11×(5.19×10-3)2 kg/m 3≈5.2×1015 kg/m 3,故选C.考向2 黑洞问题例10 科技日报北京2017年9月6日电,英国《自然·天文学》杂志发表的一篇论文称,某科学家在银河系中心附近的一团分子气体云中发现了一个黑洞.科学研究表明,当天体的逃逸速度(逃逸速度为其第一宇宙速度的2倍)超过光速时,该天体就是黑洞.已知某天体与地球的质量之比为k ,地球的半径为R ,地球的环绕速度(第一宇宙速度)为v 1, 光速为c ,则要使该天体成为黑洞,其半径应小于( ) A.2v 12R kc 2 B.2kc 2R v 12 C.k v 12R 2c 2 D.2k v 12R c2答案 D解析 地球的第一宇宙速度为v 1=GMR,则黑洞的第一宇宙速度为v 2=GkMr,并且有2v 2>c ,联立解得r <2k v 12Rc2,所以D 正确,A 、B 、C 错误.课时精练1.(多选)目前,在地球周围有许多人造地球卫星绕着它运转,其中一些卫星的轨道近似为圆,且轨道半径逐渐变小.若卫星在轨道半径逐渐变小的过程中,只受到地球引力和稀薄气体阻力的作用,则下列判断正确的是()A.卫星的动能逐渐减小B.由于地球引力做正功,引力势能一定减小C.由于稀薄气体阻力做负功,地球引力做正功,机械能保持不变D.卫星克服稀薄气体阻力做的功小于引力势能的减小量答案BD解析在卫星轨道半径变小的过程中,地球引力做正功,引力势能一定减小,卫星轨道半径变小,动能增大,由于稀薄气体阻力做负功,机械能减小,选项A、C错误,B正确;卫星动能增大,卫星克服稀薄气体阻力做的功小于地球引力做的正功,而地球引力做的正功等于引力势能的减小量,所以卫星克服阻力做的功小于引力势能的减小量,选项D正确.2.(2023·浙江省强基联盟统测)2021年5月15日中国的火星探测器天问一号成功在火星表面着陆,如图为天问一号的降落器“祝融”运行的降低轨道示意图,由椭圆轨道1、椭圆轨道2、圆轨道3、最终经过轨道4落在火星表面附近,最后启动主发动机进行反冲,稳稳地落在火星表面,P点是它们的内切点.关于探测器在上述运动的过程中,下列说法中正确的是()A.探测器在轨道1和轨道2上运动时的机械能相等B.探测器在轨道2上由Q点向P点运动的过程中速度增大,机械能减小C.探测器在轨道1上运行经过P点的速度大于在轨道2上运行经过P点的速度D.轨道4可以看作平抛运动的轨迹答案 C解析探测器从轨道1变到轨道2上需要在P点减速,故机械能减小,所以探测器在轨道1和轨道2上运动时的机械能不相等,故C正确,A错误;探测器在同一轨道运行时,机械能不变,则探测器在轨道2上由Q点向P点运动的过程中速度增大,动能增大,势能减小,机可得,械能不变,故B错误;探测器沿轨道4到落到火星表面上是在做近心运动,由a=G MR2在降落过程中加速度不断增大,平抛运动的加速度不发生改变,故轨道4不能看成平抛运动的轨迹,故D 错误.3.(多选)宇宙中两颗靠得比较近的恒星,只受到彼此之间的万有引力作用互相绕转,称之为双星系统.设某双星系统A 、B 绕其连线上的某固定点O 做匀速圆周运动,如图所示.若A 、B 两星球到O 点的距离之比为3∶1,则( )A .星球A 与星球B 所受引力大小之比为1∶1 B .星球A 与星球B 的线速度大小之比为1∶3C .星球A 与星球B 的质量之比为3∶1D .星球A 与星球B 的动能之比为3∶1 答案 AD解析 星球A 所受的引力与星球B 所受的引力均为二者之间的万有引力,大小是相等的,故A 正确;双星系统中,星球A 与星球B 转动的角速度相等,根据v =ωr 可知,线速度大小之比为3∶1,故B 错误;A 、B 两星球做匀速圆周运动的向心力由二者之间的万有引力提供,可得G m A m BL 2=m A ω2r A =m B ω2r B ,则星球A 与星球B 的质量之比为m A ∶m B =r B ∶r A =1∶3,故C 错误;星球A 与星球B 的动能之比为E k A E k B =12m A v A 212m B v B2=m A (ωr A )2m B (ωr B )2=31,故D 正确.4.(2023·浙江诸暨市模拟)如图所示,“嫦娥一号”发射后绕地球椭圆轨道运行,多次调整后进入奔月轨道,接近月球后绕月球椭圆轨道运行,调整后进入月球表面轨道.已知a 是某一地球椭圆轨道的远地点,b 和c 是不同月球椭圆轨道的远月点,a 点到地球中心的距离等于b 点到月球中心的距离.则“嫦娥一号”( )A .在a 点速度小于地球第一宇宙速度B .在a 点和在b 点的加速度大小相等C .在b 点的机械能小于在c 点的机械能D .在奔月轨道上所受的万有引力一直减小 答案 A解析 地球第一宇宙速度等于卫星在地球表面轨道绕地球做圆周运动的线速度大小,是卫星绕地球运动的最大环绕速度,故“嫦娥一号”在a 点速度小于地球第一宇宙速度,A 正确;在a 点,根据万有引力提供向心力可得GM 地m r 2=ma a ,解得a a =GM 地r 2,在b 点,根据万有引力提供向心力可得GM 月m r 2=ma b ,解得a b =GM 月r 2,由于a 点到地球中心的距离等于b 点到月球中心的距离,且地球质量大于月球质量,可得a a >a b ,B 错误;卫星绕同一中心天体转动时,从低轨道变轨到高轨道,需要在变轨处点火加速,此过程卫星的机械能增加,可知同一卫星绕同一中心天体转动时,轨道越高,卫星机械能越大,故“嫦娥一号”在b 点的机械能大于在c 点的机械能,C 错误;在奔月轨道上,卫星受到地球的引力越来越小,受到月球的引力越来越大,可知“嫦娥一号”受到的万有引力先减小后增大,D 错误.5.星球上的物体脱离星球引力所需要的最小速度称为第二宇宙速度.星球的第二宇宙速度v 2与第一宇宙速度v 1的关系是v 2=2v 1.已知某星球的半径为r ,它表面的重力加速度为地球表面重力加速度g 的16.不计其他星球的影响.忽略该星球的自转,则该星球的第二宇宙速度为( ) A.gr 3B.gr 6C.gr 3D.gr答案 A解析 该星球的第一宇宙速度满足G Mmr 2=m v 12r ,在该星球表面处万有引力等于重力,则有G Mm r 2=m g6,由以上两式得该星球的第一宇宙速度v 1=gr 6,则该星球的第二宇宙速度v 2=2×gr6=gr3,故A 正确. 6.(2023·浙江稽阳联谊学校联考)2022年2月27日,长征八号遥二运载火箭在海南文昌点火起飞,经过12次分离,“跳着芭蕾”将22颗卫星分别顺利送入预定轨道,创造了我国一箭多星发射的最高纪录.如图所示,假设其中两颗同轨道卫星A 、B 绕地球飞行的轨道可视为圆轨道,轨道离地面的高度均为地球半径的116.下列说法正确的是( )A .卫星A 和卫星B 的质量必须严格相等 B .卫星在轨道上飞行的速度大于7.9 km/sC .卫星B 在同轨道上加速就能与卫星A 对接D .卫星进入轨道后所受地球的万有引力大小约为它在地面时的(1617)2答案 D解析 人造卫星的环绕周期、环绕半径等参量与卫星自身质量无关,A 错误;第一宇宙速度为卫星绕地球表面做匀速圆周运动的最大环绕速度,卫星在轨道上飞行的速度小于7.9 km/s ,B 错误;卫星B 在同轨道上加速,会使卫星B 做离心运动,环绕半径变大,无法完成对接,C 错误;卫星在地球表面运动时,受地球的万有引力大小F 1=G MmR 2,卫星进入轨道后,受地球的万有引力大小F 2=G Mm(R +116R )2,因此卫星进入轨道后所受地球的万有引力大小约为它在地面时的(1617)2,D 正确.7.(2023·浙江省联考)2021年5月22日,中国首辆火星车“祝融号”已安全驶离着陆平台,到达火星表面(如图所示)开始巡视探测,已知地球质量约为火星质量的9.28倍,地球的第一宇宙速度约为火星第一宇宙速度的2.2倍.假设地球和火星均为质量分布均匀的球体,不考虑地球和火星的自转,则“祝融号”在地球表面和火星表面所受万有引力大小的比值约为( )A .0.4B .0.9C .2.5D .9 答案 C解析 设祝融号质量为m ,地球质量为M ,地球的第一宇宙速度为v ,地球的半径为R ,则GMm R 2=m v 2R ,得R =GM v 2,祝融号在地球表面所受万有引力大小为F =GMm R 2=GMm (GM v 2)2=m v 4GM,设火星质量为M 1,火星的第一宇宙速度为v 1,火星的半径为R 1,同理可得祝融号在火星表面所受万有引力大小为F 1=m v 14GM 1,所以F F 1=v 4M 1v 14M =(2.2)4×19.28≈2.5,故A 、B 、D 错误,C 正确.8.(2023·浙江绍兴市柯桥区模拟)2022年4月16日,神舟十三号与空间站天和核心舱分离,正式踏上回家之路,分离过程简化如图所示,脱离前天和核心舱处于半径为r 1的圆轨道Ⅰ,运行周期为T 1,从P 点脱离后神舟十三号飞船沿轨道Ⅱ返回半径为r 2的近地圆轨道Ⅲ上,Q 点为轨道Ⅱ与轨道Ⅲ的切点,在轨道Ⅲ上运行周期为T 2,然后再多次调整轨道,绕行5圈多点顺利着落在东风着陆场,根据信息可知( )A .T 1∶T 2=r 1∶r 2B .可以估算地球的密度为ρ=3πGT 12C .飞船在轨道Ⅱ上Q 点的速率要大于在轨道Ⅱ上P 点的速率D .飞船从P 到Q 过程中与地心连线扫过的面积与天和核心舱与地心连线在相同时间内扫过的面积相等 答案 C解析 根据开普勒第三定律有r 13T 12=r 23T 22,得T 1∶T 2=r 13∶r 23,故A 错误;根据万有引力提供向心力G Mm r 22=m 4π2T 22r 2,由于轨道Ⅲ为近地轨道,则地球体积为V =43πr 23,得ρ=M V =3πGT 22,故B 错误;飞船沿轨道Ⅱ运动过程中满足机械能守恒定律,Q 点的引力势能小于P 点的引力势能,故Q 点的动能大于P 点的动能,即Q 点的速度大于P 点的速度,故C 正确;根据开普勒第二定律,同一环绕天体与地心连线在相同时间内扫过的面积相等,飞船与核心舱在不同轨道运动,故D 错误.9.(2023·浙江省十校联盟第二次联考)如图所示,“天舟一号”货运飞船与“天宫二号”空间实验室对接,对接后飞行轨道高度与“天宫二号”圆轨道高度相同.已知引力常量为G ,地球半径为R .对接前“天宫二号”的轨道半径为r 、运行周期为T .由此可知( )A .“天舟一号”货运飞船是从与“天宫二号”空间实验室同一高度轨道上加速追上“天宫二号”完成对接的B .地球的质量为4π2r 2GT2C .对接后,“天舟一号”与“天宫二号”组合体的运行周期等于TD .地球的第一宇宙速度为2πRT答案 C解析 根据GMmr 2=m v 2r ,卫星加速,则所需向心力大于万有引力,卫星做离心运动,则“天舟一号”货运飞船是从比“天宫二号”空间实验室轨道低的轨道上加速追上“天宫二号”完成对接的,故A 错误;根据万有引力提供向心力,有GMm r 2=m 4π2T 2r ,可得M =4π2r 3GT 2,故B 错误;对接后“天舟一号”飞行轨道高度与“天宫二号”运行圆轨道高度相同,“天舟一号”与“天宫二号”组合体的运行周期等于T ,故C 正确;根据GMmR 2=m v 12R ,可得v 1=GMR,把M =4π2r 3GT 2代入解得v 1=2πTr 3R,故D 错误. 10.(2023·辽宁省模拟)我国成功地发射“天问一号”标志着我国成功地迈出了探测火星的第一步.已知火星直径约为地球直径的一半,火星质量约为地球质量的十分之一,航天器贴近地球表面飞行一周所用时间为T ,地球表面的重力加速度为g ,若未来在火星表面发射一颗人造卫星,最小发射速度约为( ) A.gT 2π B.5gT10πC.5gT5πD.25gT 5π答案 B解析 由G MmR 2=m v 2R,得第一宇宙速度v =GMR,设地球的第一宇宙速度为v 1,由g =ωv 1=2πT v 1,得v 1=gT2π,设火星的第一宇宙速度为v 2,则v 2v 1=M 2M 1·R 1R 2,代入数据解得v 2=55v 1=5gT10π,B 项正确.11.黑洞是一种密度极大、引力极大的天体,以至于光都无法逃逸,科学家一般通过观测绕黑洞运行的天体的运动规律间接研究黑洞.已知某黑洞的逃逸速度为v =2GMR,其中引力常量为G ,M 是该黑洞的质量,R 是该黑洞的半径.若天文学家观测到与该黑洞相距为r 的天体以周期T 绕该黑洞做匀速圆周运动,光速为c ,则下列关于该黑洞的说法正确的是( )。

卫星的轨道变化教学案例

卫星的轨道变化教学案例

卫星的轨道变化教学案例柳林一中刘富刚一,教学目标:知识与技能:1,知道人造地球卫星的种类和轨道类型。

让学生了解各类轨道上卫星的用途。

2,知道卫星发射过程中的轨道变化情况,了解相关航天知识。

过程与方法:1,通过万有引力对于向心力的提供情况,结合必修二中第五章离心运动的相关知识,引导学生分析为什么卫星轨道会发生变化?2,通过课件演示轨道变化情况。

3,通过例题引导学生判断轨道变化后各有关物理量的变化情况。

情感态度与价值观1.了解人类探索太空的过程,感受科技发展对人类进步的巨大促进作用,通过对我国航天事业发展史的了解,渗透爱国主义教育。

2.感知人类探索宇宙的梦想及巨大成就,激发学生学习物理的热情,促使学生树立献身科学的人生观和价值观。

教学重点:卫星轨道变化是满足的条件教学难点:卫星轨道变化前后加速度,速度,能量的判断教学方法和手段:以启发式教学、建构主义为指导思想,采用以问题为中心的课堂教学模式,结合多媒体辅助教学。

二,问题导学:1,我们知道世界各国发射了许多的人造地球卫星,大家知道卫星的种类有哪些?(提示:从不同的标准来分)2,我们物理中侧重从轨道的角度来研究卫星,那么大家想一下,人造地球卫星有哪些轨道?,3,卫星的轨道发射时是否一步到位?为什么不采取直接发射?人类舍近求远有什么原因?4,卫星轨道的变化是如何操作的?理论依据呢?轨道变化后各物理量的变化情况如何判断?(提示:课后完成),5,结合相关知识谈一下我国近年来航空航天方面的进展和取得的成就?作为中学生,我们又应该抱有多大的抱负?(课后自己查阅相关资料)三,教学过程1,回答上面的几个问题。

2,老师介绍卫星的种类和轨道类型。

按照轨道倾角的大小,卫星的轨道可以分三种:第一种,倾角为零度,卫星轨道平面与地球赤道平面重合,卫星始终在赤道上空飞行,这种轨道称为赤道轨道。

例如,地球同步卫星。

第二种,倾角为90度,卫星轨道平面与地球赤道平面垂直,卫星飞越南北两极上空,叫极地轨道。

专题08:卫星的发射、变轨与对接--高中物理专题教案(人教版2019必修第二册)

专题08:卫星的发射、变轨与对接--高中物理专题教案(人教版2019必修第二册)

第七章万有引力与宇宙航行专题08:卫星的发射、变轨与对接考点卫星的变轨与飞船的对接(一)从地面发射后变轨到预定轨道卫星发射后要经过多次变轨方可到达预定轨道,如图所示。

(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上。

(2)在A点(近地点)点火加速,由于速度变大,万有引力不足以提供向心力,卫星做离心运动进入椭圆轨道Ⅰ。

(3)在B点(远地点)再次点火加速进入圆形轨道Ⅰ。

(二)卫星变轨的实质两类变轨离心运动向心运动示意图变轨起因卫星速度突然增大卫星速度突然减小万有引力与向心力的大小关系GMmr2<mv2r GMmr2>mv2r 变轨结果速度增大——离心:转变为椭圆轨道运动或在较大半径圆轨道上运动速度减小——近心:转变为椭圆轨道运动或在较小半径圆轨道上运动新圆轨道上运动的速率比原轨道的小,周期比原轨道的大新圆轨道上运动的速率比原轨道的大,周期比原轨道的小一、选择题1.(2023江苏盐城高级实验中学模拟)北京时间2022年11月12日10时03分,搭载天舟五号货运飞船的长征七号遥六运载火箭,在我国海南文昌航天发射场点火发射,12时10分,天舟五号货运飞船仅用2小时便顺利实现了与中国空间站天和核心舱的快速交会对接,如图所示,创造了世界纪录。

下列说法中正确的是()A.天舟五号货运飞船的发射速度大于11.2 km/sB.天和核心舱的运行速度大于7.9 km/sC.在文昌航天发射场点火发射,是为了更好地利用地球的自转速度D.要实现对接,天舟五号货运飞船应在天和核心舱相同轨道处加速2.(2023江苏常州期中)2023年我国“天宫号”太空实验室实现了长期有人值守,我国迈入空间站时代。

如图所示,“天舟号”沿椭圆轨道运动,A、B两点分别为椭圆轨道的近地点和远地点,在B点“天舟号”与“天宫号”完成对接。

则()A.“天舟号”从A处飞向B处做加速运动B.“天舟号”与“天宫号”的运动周期相等C.“天舟号”与“天宫号”对接前必须先加速运动D.“天舟号”与“天宫号”在对接处受到地球的引力相等3.(2023江苏南通海安高级中学月考)神舟十三号载人飞船从核心舱下方采用“径向对接”的方式实现对接,“径向对接”指两对接口在地球半径的延长线上,对接前两者要在间隔一定距离的位置保持相对静止一段时间,如图所示,之后飞船再向上逐步接近核心舱实现对接,则()A.相对静止时,飞船的速度大于核心舱的速度B.相对静止时,飞船的向心加速度大于核心舱的向心加速度C.飞船通过加速逐步向上靠近核心舱D.飞船的速度大于7.9 km/s才能最终靠近核心舱4.(2022江苏连云港期中)在人类太空征服史中,让人类遗憾的是“太空加油站”的缺乏。

宇宙航行地球同步卫星教案

宇宙航行地球同步卫星教案

宇宙航行-地球同步卫星教案第一章:引言1.1 教学目标:让学生了解地球同步卫星的基本概念。

激发学生对宇宙航行和地球同步卫星的兴趣。

1.2 教学内容:宇宙航行简介:宇宙航行的意义、发展历程和现状。

地球同步卫星的概念:地球同步卫星的定义、特点和应用。

1.3 教学方法:采用讲授法,介绍宇宙航行和地球同步卫星的基本概念。

利用多媒体展示宇宙航行的图片和视频,激发学生的兴趣。

1.4 教学活动:引导学生思考宇宙航行的意义和重要性。

学生展示对地球同步卫星的理解和认识。

第二章:地球同步卫星的轨道2.1 教学目标:让学生了解地球同步卫星的轨道特点。

培养学生分析问题和解决问题的能力。

2.2 教学内容:地球同步卫星的轨道特点:轨道平面、轨道周期和轨道高度。

地球同步卫星轨道的计算方法。

2.3 教学方法:采用讲授法,介绍地球同步卫星轨道的特点和计算方法。

利用数学模型和实例解释地球同步卫星轨道的计算过程。

2.4 教学活动:学生分组讨论地球同步卫星轨道的特点。

学生进行轨道计算的练习,加深对轨道计算方法的理解。

第三章:地球同步卫星的应用3.1 教学目标:让学生了解地球同步卫星的应用领域。

培养学生对地球同步卫星应用的实际意义的认识。

3.2 教学内容:地球同步卫星的应用领域:通信、气象、地球观测等。

地球同步卫星应用的实例和效益。

3.3 教学方法:采用讲授法,介绍地球同步卫星的应用领域和实例。

利用多媒体展示地球同步卫星应用的图片和视频。

3.4 教学活动:学生分组讨论地球同步卫星应用的实际意义。

学生展示对地球同步卫星应用的理解和认识。

第四章:地球同步卫星的发射和控制4.1 教学目标:让学生了解地球同步卫星的发射和控制过程。

培养学生对地球同步卫星发射和控制技术的兴趣。

4.2 教学内容:地球同步卫星的发射过程:发射设施、发射方式和发射注意事项。

地球同步卫星的控制技术:轨道控制、姿态控制和生命周期控制。

4.3 教学方法:采用讲授法,介绍地球同步卫星的发射和控制过程。

宇宙航行地球同步卫星教案

宇宙航行地球同步卫星教案

宇宙航行-地球同步卫星教案一、教学目标1. 让学生了解地球同步卫星的基本概念,知道它的特点和作用。

2. 让学生掌握地球同步卫星的运动原理,理解其与地球自转的关系。

3. 培养学生的空间想象能力和科学思维能力。

二、教学内容1. 地球同步卫星的概念2. 地球同步卫星的特点3. 地球同步卫星的作用4. 地球同步卫星的运动原理5. 地球同步卫星与地球自转的关系三、教学重点与难点1. 教学重点:地球同步卫星的概念、特点、作用及运动原理。

2. 教学难点:地球同步卫星的运动原理及其与地球自转的关系。

四、教学方法1. 采用问题驱动法,引导学生思考和探索地球同步卫星的相关问题。

2. 利用多媒体课件,展示地球同步卫星的运动轨迹和原理。

3. 结合实际案例,让学生了解地球同步卫星在实际应用中的重要性。

五、教学步骤1. 导入新课:简要介绍地球同步卫星的基本概念,激发学生的兴趣。

2. 讲解地球同步卫星的特点:自主研制、运行在地球同步轨道、周期与地球自转周期相同等。

3. 讲解地球同步卫星的作用:通信、气象、导航等领域的应用。

4. 讲解地球同步卫星的运动原理:万有引力提供向心力,保持与地球自转同步。

5. 讲解地球同步卫星与地球自转的关系:同步卫星的轨道平面与地球赤道平面共面,角速度与地球自转角速度相同。

6. 课堂练习:让学生运用所学知识,分析实际案例,了解地球同步卫星在实际应用中的重要性。

7. 总结与展望:总结本节课的主要内容,展望地球同步卫星在未来发展中的应用前景。

六、地球同步卫星的轨道设计1. 教学目标让学生理解地球同步卫星轨道的基本特征。

让学生掌握地球同步卫星轨道的设计原理和方法。

2. 教学内容地球同步卫星轨道的特征参数。

轨道倾角与地球赤道的关系。

轨道高度与地球引力的影响。

轨道设计的方法和步骤。

3. 教学重点与难点教学重点:地球同步卫星轨道的特征参数和设计方法。

教学难点:轨道设计中的物理原理和计算方法。

4. 教学方法采用案例分析法,分析已有的地球同步卫星轨道设计案例。

宇宙航行-地球同步卫星教案

宇宙航行-地球同步卫星教案

宇宙航行-地球同步卫星教案第一章:引言1.1 课程目标:了解地球同步卫星的基本概念。

理解地球同步卫星的运行原理和应用。

1.2 教学内容:介绍地球同步卫星的定义和特点。

解释地球同步卫星的运行机制。

探讨地球同步卫星的应用领域。

1.3 教学方法:采用讲授法,介绍地球同步卫星的基本概念。

利用多媒体演示地球同步卫星的运行原理。

组织学生进行小组讨论,分享对地球同步卫星应用的理解。

第二章:地球同步卫星的定义和特点2.1 课程目标:掌握地球同步卫星的定义和特点。

2.2 教学内容:解释地球同步卫星的定义,包括其相对于地球的轨道特性和运行速度。

讨论地球同步卫星的特点,如固定的地面追踪位置和周期性轨道。

2.3 教学方法:使用幻灯片展示地球同步卫星的定义和特点。

通过实例解释地球同步卫星的运行速度和周期性轨道。

第三章:地球同步卫星的运行原理3.1 课程目标:理解地球同步卫星的运行原理。

3.2 教学内容:解释地球同步卫星的运行原理,包括地球自转和卫星轨道的同步性。

探讨地球同步卫星的轨道倾角和轨道高度对运行原理的影响。

3.3 教学方法:利用动画演示地球同步卫星的运行原理。

引导学生进行思考和提问,解答学生对地球同步卫星运行原理的疑问。

第四章:地球同步卫星的应用领域4.1 课程目标:了解地球同步卫星的应用领域。

4.2 教学内容:探讨地球同步卫星在不同领域的应用,如通信、气象观测、导航等。

介绍地球同步卫星在各个应用领域的重要性和贡献。

4.3 教学方法:使用案例分析法,介绍地球同步卫星在不同领域的具体应用。

组织学生进行小组讨论,分享对地球同步卫星应用的理解和看法。

5.1 课程目标:激发学生对地球同步卫星未来发展的思考和展望。

5.2 教学内容:引导学生思考地球同步卫星的未来发展趋势和可能的应用领域。

5.3 教学方法:邀请学生分享对地球同步卫星未来发展的思考和展望。

第六章:地球同步卫星的轨道设计6.1 课程目标:理解地球同步卫星轨道的设计原理。

卫星的发射变轨追及问题 共23张ppt课件


(2)当卫星的速率突然减小时,GMr2m>mvr2,即万有引力大于所 需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道 半径变小,当卫星进入新的轨道稳定运行时由 v= GrM可知 其运行速率比原轨道时增大。卫星的发射和回收就是利用这一 原理。
二、 卫星的追及相遇问题
例1、宇宙飞船和空间站在同一轨道上运动,若飞船想与前 面的空间站对接,飞船为了追上轨道空间站,可采取的方法 是( ) A飞船加速直到追上轨道空间站,完成对接 B飞船从原轨道减速至一个较低轨道,再加速追上轨道空间 站,完成对接. C飞船加速至一个较高轨道,再减速追上轨道空间站,完成 对接. D无论飞船如何采取何种措施,均不能与空间站对接
GM
v= r 可知其圆周运动运行速率比原轨道时减小。
在发射一颗质量为m的人造地球同步卫星时,先将其发射
到贴近地球表面运行的圆轨道I上(离地面高度忽略不
计),再通过一椭圆轨道II变轨后到达距地面高为h的预
定圆轨道III上。已知它在圆形轨道I上运动的加速度为g,
地球半径为R,图中PQ长约为8R,卫星在变轨过程中质量
V1V2 V3V4 的大小关
2
3 系。
总结:卫星变轨的实质
.Mm v2ຫໍສະໝຸດ (1)当卫星突然点火加速时, G r2 <m r ,
即万有引力不足以提供向心力,卫星将做离心运动,脱离 原来的圆轨道而绕着椭圆轨道运行,到达远地点时速度已 经很小,如果想在经过远地点的大圆上匀速圆周运动需要 再次点火加速,当卫星进入新的圆轨道稳定运行时由
不变,则下列正确的有( ) A. 卫星在轨道II上运动经过P点的加速度为 B. 卫星在轨道III上运动的线速度为 C. 卫星在轨道III上运行时经过P点的速率大于 在轨道II上运行时经过P点的速率 D.在轨道Ⅱ上运动的周期小于 在轨道Ⅰ上运动的周期 E.在轨道III上经过P点的加速度小于 在轨道II上经过P点的加速度

宇宙航行-地球同步卫星教案

必修二 6.5宇宙航行——地球同步卫星教案一、教案背景本节前已经讲过卫星的发射,环绕的有关知识,对卫星环绕地球飞行的速率、周期等有了初步的了解,高中阶段主要研究的有极地卫星和地球同步卫星,其中地球同步卫星用于通讯等和人们生活息息相关用途,并且其轨道、运动有着其自己的特点。

因此设立了本教案让同学们更好的了解同步卫星的特点及用途,培养学生的学习兴趣。

二、教学课题地球同步卫星三、教材分析本节为第六章第五节中的一个内容。

此前,学生已经学习了圆周运动和万有引力定律,知道卫星做圆周运动所需要的向心力是万有引力所充当的。

并且在万有引力定律的成就一课中,对天体的运动规律也有了一定的认识。

四、三维目标(一)知识与技能1、了解地球同步卫星的一些实际应用。

2、了解地球同步卫星的运动特点。

3、地球同步卫星和其他卫星的运动的共同点:万有引力作为行星、卫星圆周运动的向心力,会用万有引力定律计算天体的质量。

4、理解并运用万有引力定律处理地球同步卫星问题的思路和方法。

(二)过程与方法1、培养学生根据事件的之间相似性采取类比方法分析新问题的能力与方法。

2、培养学生归纳总结建立模型的能力与方法。

3、培养学生自学能力和团队合作意识。

(三)情感、态度与价值观体会万有引力定律在人类认识自然、改造自然的巨大意义和作用。

使学生对航天知识产生兴趣,增强学生学习物理的积极性和主动性。

五、教学重点、难点重点:地球同步卫星的轨道特点和运行规律。

难点:地球同步卫星的轨道位置的确定。

六、教学方法教师启发、引导,学生观察并自主思考,讨论、交流学习成果。

并结合应用现代信息技术和网络资源。

通过分析找到地球表面物体万有引力与两个分力——重力和物体随地球自转的向心力,与同步卫星若在北半球受到的万有引力的两个分力进行对比与比较。

得到地球同步卫星轨道位置的结论,并由万有引力定律及同步卫星周期,从而推导地球同步卫星的速度、高度等。

七、教学过程(一)、新课引入在地球的周围有许许多多的卫星,有气象卫星、通讯卫星等等。

“同步卫星的变轨发射”教学演示


通过 教 学 演 示 ,不仅 使 学生 了解 同 步卫 星 变轨 发射 的 过 程和 同步 卫 星 的基 本 特 征 , 时老 师 通 过 教 学 过程 的设 计 , 同 使 学 生 对 物 体做 圆周 运 动 的 备 件 和 速 度 与 环 绕 轨 道 变 化 的 关
. m/。 上, 我给 学生安排 了一节“ 同步卫星的变轨发射” 的教学课 , 为 79 k s 同
时考 虑 选 用《 真 物 理 实验 室》 件 进行 辅 助 课 堂教 学 演 示 。 仿 软 二 、 学准 备 教
在 讲 解这 个 问题 之 前 , 先 向 学生 布 置 以下 问题 , 求 学 我 要
根 据 学 生 的 回答 , 师 总 结 学 生 的 汇报 , 导并 简 单地 进 学生对学习的 问题 有一 个较 完整的认 识和 了解。如果学生愿 教 引 行卫 星 变轨 发 射 的 情景 描 述 : ( 1 把 卫 星发 射 到 高度 约 2 0 30 k 的 圆形轨 道 上 , )先 0  ̄ 0 m
第二步: 老师改变速度参数, 分别以 v 7 =. 9千米 / v 80 秒;= .
数 。让 学 生观 看卫 星 的运 动 轨 迹 变化 。
3变轨 发 射 的过 程 演 示 .
由 火箭把 卫 星发 射 到 3 00 k 的 赤 道 上 空 ,然后 做 九 十度 千米 /秒 ;= 0 千米 / ;= 1 千米 /秒等作为速度参 60 m v 1. 2 秒 v l. 2
就 是发 射 的过程 中不 直 接进 入 目标 轨 道 , 而是 先进 入停 泊轨
道 , 后 再进 入 目标 轨 道 , 一 个 变换 轨 道 的过 程 。 然 有
2教 师 总结 、 发 引导 . 启
在 上述 教 学演 示 的 基础 上 , 我通 过 课 前 准 备 的 教 学课 件 , 再把 同步卫 星 变轨 发射 的过 程 向学 生 进 行课 堂 演 示 ,从 而使
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档