同步卫星及变轨问题
第八讲:卫星变轨问题和双星问题

第八讲:卫星变轨问题和双星问题一、卫星相遇问题两颗卫星在同一轨道平面内同向绕地球做匀速圆周运动,a 卫星的角速度为ωa ,b 卫星的角速度为ωb .若某时刻两卫星正好同时通过地面同一点正上方,相距最近,如图甲所示.当它们转过的角度之差Δθ=π,即满足ωa Δt -ωb Δt =π时,两卫星第一次相距最远,如图乙所示.当它们转过的角度之差Δθ=2π,即满足ωa Δt -ωb Δt =2π时,两卫星再次相距最近.二、卫星变轨问题1.变轨分析(1)卫星在圆轨道上稳定运行时, G Mmr 2=m v 2r=mω2r =m ⎝⎛⎭⎫2πT 2r . (2)当卫星的速度突然增大时,G Mm r 2<m v 2r ,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大.当卫星进入新的轨道稳定运行时,由v =GMr可知其运行速度比原轨道时减小,但重力势能、机械能均增加.(3)当卫星的速度突然减小时,G Mm r 2>m v 2r ,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,例题、如图所示,北斗导航系统中的两颗工作卫星均绕地心做匀速周运动,且轨道半径为r ,某时刻工作卫星1、2分别位于轨道上的A 、B 两个位置,若两卫星均沿顺时针方向运行,地球表面的重力加速度为g ,地球半径为R ,不计卫星间的相互作用力。
下列判断正确的是( )例题、如图所示,三个质点a 、b 、c 质量分别为m 1、m 2、M ,(M >>m 1,M >>m 2).a 、b 在同一平面内绕c 沿逆时针方向做匀速圆周运动,它们的周期之比T a :T b =1:k .(k >1,为正整数)从图示位置开始,在b 运动一周的过程中,则( )A .a 、b 距离最近的次数为k 次B .a 、b 距离最近的次数为k+1次C .a 、b 、c 共线的次数为2k 次轨道半径变小.当卫星进入新的轨道稳定运行时,由v =GMr可知其运行速度比原轨道时增大,但重力势能、机械能均减小.2.三个运行物理量的大小比较(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v 1、v 3,在轨道Ⅱ上过A 点和B 点速率分别为v A 、v B .在A 点加速,则v A >v 1,在B 点加速,则v 3>v B ,又因v 1>v 3,故有v A >v 1>v 3>v B .(2)加速度:因为在A 点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A 点,卫星的加速度都相同,同理,经过B 点加速度也相同.(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行周期分别为T 1、T 2、T 3,轨道半径分别为r 1、r 2(半长轴)、r 3,由开普勒第三定律r 3T2=k 可知T 1<T 2<T 3. 三、多星模型1.定义绕公共圆心转动的两个星体组成的系统,我们称之为双星系统.如图所示.A .这两颗卫星的加速度大小相等,均为22gR rB .卫星1出A 位置运动到B 位置所需的时间是3rr R gC .这两颗卫星的机械能一定相等D .卫星1向后喷气就一定能够追上卫星22.特点(1)各自所需的向心力由彼此间的万有引力提供,即 Gm 1m 2L2=m 1ω21r 1, Gm 1m 2L 2=m 2ω22r 2. (2)两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2. (3)两颗星的半径与它们之间的距离关系为:r 1+r 2=L .3.两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1.针对训练题型1:相遇问题1.如图所示,A 和B 两行星绕同一恒星C 做圆周运动,旋转方向相同,A 行星的周期为T 1,B 行星的周期为T 2,某一时刻两行星相距最近,则( )A .经过T 1+T 2两行星再次相距最近B .经过两行星再次相距最近C .经过两行星相距最远D .经过两行星相距最远2.已知地球自转周期为T0,有一颗与同步卫星在同一轨道平面的低轨道卫星,自西向东绕地球运行,其运行半径为同步轨道半径的四分之一,该卫星至少相隔多长时间才在同一城市的正上方出现一次.()A.B.C.D.题型2:变轨问题3.如图所示,假设月球半径为R,月球表面的重力加速度为g0,飞船在距月球表面高度为3R的圆形轨道Ⅰ上运动,到达轨道的A点点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B再次点火进入近月轨道Ⅲ绕月球做圆周运动。
高中物理卫星变轨问题

作业:
C 卫星在轨道1上经过Q点时的加速度
大于它在轨道2上经过Q点时的加速度 D 卫星在轨道2上经过P点时的加速度 等于它在轨道3上经过P点时的加速度
p
1 23 Q
❖ 卫星变轨
练习如图所示;a b c是在地球大气层外圆形轨道上运行的3颗
人造卫星;下列说法正确的是:
A b c的线速度大小相等;且大于a的线速度 B b c的向心加速度大小相等;且大于a的向心加速度 C c加速可追上同一轨道上的b;b减速可等到同一轨道上的c D a卫星由于某种原因;轨道半径缓慢减小;其线速度将变小
卫星在圆轨 道运行速度
V1
R
1
2
V2
mv12 r
G
Mm r2
F引
θ>900
v 减小
卫星变轨原理
r
v3
F引
椭圆mv32 r
GMr2m
使
卫
星
进
v4
入
更
v3
高
轨
道
做
圆
周
运 动
使卫星 v4, 加m 使 速 r42v到 GM r2 m
卫 星 的 回 收
❖ 卫星变轨
卫星如何变轨 以发射同步卫星为例;先进入一
专题 万有引力定律的应用
1 卫星比较问题 2 卫星变轨 问题
两颗人造地球卫星;都在圆形轨道上运行;它 们的质量相等;轨道半径不同;比较它们的向心加 速度an 线速度v 角速度ω 周期T
地球
计算中心天体的质量M 密度ρ
1某星体m围绕中心天体M做圆 周运动的周期为T;圆周运动
的轨道半径为r
M
4 2r3
练习发射地球同步卫星时;先将卫星发射至近地圆轨道1;然后
第4章 专题强化4 天体运动中的三种典型问题

否则无法在万有引力作用下绕地球做匀速圆周运动。而同步静止轨道卫 星相对地面静止,与地球自转周期相同,所以其轨道平面一定和赤道平 面重合,即同步静止轨道卫星需要在赤道上空做匀速圆周运动,不可能 经过北京上空,故C错误;由题意可知卫星b的周期为24 h,卫星c的周期 为8 h,某时刻两者相距最近,设经过时间t后二者再次相距最近,则 Ttc-Ttb=1,解得 t=12 h,故 D 正确。
[解析]设地球质量为 M,质量为 m 的卫星绕地球做半径为 r、线速度 大小为 v 的匀速圆周运动,根据牛顿第二定律有 GMr2m=mvr2,解得 v=
GrM,因为卫星 b 的轨道半径比卫星 c 的轨道半径大,根据上式可知 卫星 b 运行的线速度小于卫星 c 的线速度,故 A 错误;卫星 a 与卫星 b 轨道高度相同,周期相同,线速度大小相同,但二者质量不一定相同, 所以机械能不一定相同,故 B 错误;人造卫星的轨道平面一定过地心,
道上,Q 为同步卫星,故两者的周期相等,而 N 和 Q 同为卫星,由万有 引力充当向心力,故有 GMr2m=m4Tπ22r,解得 T= 4GπM2r3。由上式可知, 轨道半径越大,周期越大,故卫星 Q 的周期大于天和核心舱 N 的周期, 故有 TP=TQ>TN,C 错误;Q 是同步卫星,其轨道在赤道上方即纬度为 0°, 南充市不在赤道上,所以卫星 Q 一定不会经过南充上空,D 正确。
(3)在地球表面有 GMRm20 =mg,卫星一绕地球做圆周运动,有 GMRm21 =
m2Tπ1 2R1, 联立解得 g=32Tπ220R0。
[答案]
(1)2 2T0
42 (2)6 2-3T0
(3)32Tπ220R0
〔专题强化训练〕
1.(多选)(2022·四川南充三模)我国“神舟十三号”航天员翟志刚、 王亚平和叶光富在空间站驻留长达6个月之久,是我国入驻太空时间最 长的三人组,已知“天和”核心舱N绕地球运行的轨道距地面的高度约 为400 km,地球半径约6 400 km。关于地球赤道静止的物体P、同步卫 星Q和“天和”核心舱N的运动,下列说法正确的是( AD )
宇宙航行专题:人造卫星、变轨、对接问题

卫星变轨原理
卫星在圆轨 道运行速度 V1
R
1
F引
θ>900
3.072 km s
≈3.0km/s
确定值
地球同步卫星特点
1、定周期: T = 24 h
2、定轨道:地球同步卫星在通过赤道的平面 上运行, 3、定高度:离开地面的高度h为定值,约为地 球轨道半径的6倍。 h = 36000千米 4、定速率:所有同步卫星环绕 地球的速度(V) 都相同。 V = 3千米/秒
提示: 典型的三个圆运动:随地圆周运动、近地圆周运动、同步圆 周运动,应从运动和力两个角度区别和联系三个圆周运动
马鞍山中加双语学校 高一物理组
三、极地轨道和倾斜轨道卫星
极地卫星
倾斜轨道卫星
北极
北极
南极
南极
四、卫星变轨问题
卫星变轨问题
卫星变轨原理
V
m
A
F引
F引<F向
F引>F向
M
在A点万有引力相同
马鞍山中加双语学校 高一物理组
下午9时18分28秒
引导探究一
运 行 半径r 运 行 周期T
线速度 的计算
地球赤道上的物体,近地卫星,同步卫星
近地卫星 同步卫星
地球赤道上的 物体
R地
R地 85分钟(1.4h)
GM v r近
v
6.6R地
24h v=ωR地
=GMm/R地2-mg
24h
GM r同 r同
向心力 2R ma=mω 的计算
ma= GMm/r近2
ma=mω2r =GMm/r同2
向心加 速度之 比
a同/a物 a同/a近=r近 2/r同2 =r同/ R =1/(6.6)2 =6.6/1 马鞍山中加双语学校 高一物理组
高考物理(热点+题型全突破)专题5.3 三种特殊的卫星及卫星的变轨问题、天体的追击相遇问题(含解析)

专题5.3 三种特殊的卫星及卫星的变轨问题、天体的追击相遇问题一、近地卫星、赤道上物体及同步卫星的运行问题1.近地卫星、同步卫星、赤道上的物体的比较比较内容赤道表面的物体近地卫星同步卫星向心力来源万有引力的分力万有引力向心力方向指向地心重力与万有引力的关系重力略小于万有引力重力等于万有引力线速度v1=ω1R v2=GMRv3=ω3(R+h)=GMR+hv1<v3<v2(v2为第一宇宙速度)角速度ω1=ω自ω2=GMR3ω3=ω自=GMR+h3ω1=ω3<ω2向心加速度a1=ω21R a2=ω22R=GMR2a3=ω23(R+h) =GMR+h2a1<a3<a22.天体半径R与卫星轨道半径r的比较卫星的轨道半径r是指卫星绕天体做匀速圆周运动的半径,与天体半径R的关系为r=R+h(h为卫星距离天体表面的高度),当卫星贴近天体表面运动(h≈0)时,可认为两者相等。
【示例1】(多选)如图,地球赤道上的山丘e、近地资源卫星p和同步通信卫星q均在赤道平面上绕地心做匀速圆周运动。
设e、p、q的圆周运动速率分别为v1、v2、v3,向心加速度分别为a1、a2、a3,则( )A.v1>v2>v3B.v1<v3<v2C.a1>a2>a3D.a1<a3<a2【答案】BD【解析】由题意可知:山丘与同步卫星角速度、周期相同,由v=ωr,a=ω2r可知v1<v3、a1<a3;对同步卫星和近地资源卫星来说,满足v =GM r 、a =GMr2,可知v 3<v 2、a 3<a 2。
故选项B 、D 正确。
【示例2】(多选)同步卫星离地心距离为r ,运行速率为v 1,加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2,第一宇宙速度为v 2,地球的半径为R ,则下列比值正确的是( )A.a 1a 2=rRB.a 1a 2=r 2R2 C.v 1v 2=r R D.v 1v 2=R r【答案】: AD【示例3】(2016·四川理综·3)国务院批复,自2016年起将4月24日设立为“中国航天日”.1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km ,远地点高度约为2 060 km ;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35 786 km 的地球同步轨道上.设东方红一号在远地点的加速度为a 1,东方红二号的加速度为a 2,固定在地球赤道上的物体随地球自转的加速度为a 3,则a 1、a 2、a 3的大小关系为( ) A.a 2>a 1>a 3 B.a 3>a 2>a 1 C.a 3>a 1>a 2 D.a 1>a 2>a 3【答案】 D【解析】 由于东方红二号卫星是同步卫星,则其角速度和赤道上的物体角速度相等,根据a =ω2r ,r 2>r 3,则a 2>a 3;由万有引力定律和牛顿第二定律得,G Mmr2=ma ,由题目中数据可以得出,r 1<r 2,则a 2<a 1;综合以上分析有,a 1>a 2>a 3,选项D 正确.【示例4】.有a 、b 、c 、d 四颗地球卫星,a 在地球赤道上未发射,b 在地面附近近地轨道上正常运动,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置如图,则有( )A .a 的向心力由重力提供B .c 在4 h 内转过的圆心角是π6C .b 在相同时间内转过的弧长最长D .d 的运动周期有可能是20 h 【答案】 C二、 卫星的变轨问题 1.三种情境2.变轨问题的三点注意(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新轨道上的运行速度变化由v =GMr判断。
专题强化训练二 卫星(近地、同步、极地)的宇宙航行运动规律与变轨问题

专题强化训练二:卫星(近地、同步、极地)的宇宙航行运动规律与变轨问题技巧归纳:人造卫星的变轨问题1.变轨问题概述 (1)稳定运行卫星绕天体稳定运行时,万有引力提供了卫星做圆周运动的向心力,即G Mmr 2=m v 2r .(2)变轨运行卫星变轨时,先是线速度大小v 发生变化导致需要的向心力发生变化,进而使轨道半径r 发生变化.①当卫星减速时,卫星所需的向心力F 向=m v 2r 减小,万有引力大于所需的向心力,卫星将做近心运动,向低轨道变轨.②当卫星加速时,卫星所需的向心力F 向=m v 2r 增大,万有引力不足以提供卫星所需的向心力,卫星将做离心运动,向高轨道变轨. 2.实例分析 (1)飞船对接问题①低轨道飞船与高轨道空间站对接时,让飞船合理地加速,使飞船沿椭圆轨道做离心运动,追上高轨道空间站完成对接(如图甲所示).②若飞船和空间站在同一轨道上,飞船加速时无法追上空间站,因为飞船加速时,将做离心运动,从而离开这个轨道.通常先使后面的飞船减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度,如图乙所示.(2)卫星的发射、变轨问题如图发射卫星时,先将卫星发射至近地圆轨道1,在Q 点点火加速做离心运动进入椭圆轨道2,在P 点点火加速,使其满足GMmr 2=m v 2r,进入圆轨道3做圆周运动.一、单选题1.(2022·江苏省江都中学高三开学考试)据报道,一颗来自太阳系外的彗星擦火星而过。
如图所示,设火星绕太阳在圆轨道上运动,运动半径为r ,周期为T 。
该彗星在穿过太阳系时由于受到太阳的引力,轨道发生弯曲,彗星与火星在圆轨道的A 点“擦肩而过”。
已知万有引力常量G ,则( )A.可计算出火星的质量B.可计算出彗星经过A点时受到的引力C.可确定太阳分别对彗星和火星的引力在A点产生的加速度相等D.可确定彗星在A点的速度大小为2r vTπ=2.(2022·云南·昆明一中模拟预测)随着“嫦娥奔月”梦想的实现,我国不断刷新深空探测的“中国高度”。
专题_双星,卫星变轨,同步地球卫星

C、飞船从原轨道加速至一较高轨道,再减速追上空 间站完成对接
D、无论飞船采取何种措施,均不能与空间站对接
双星问题 两颗质量相距较近的恒星相互绕着两者连线上 某固定点旋转的现象,叫双星。 【双星特点】 1.两颗恒星均围绕共同的旋转中心 做匀速圆周运动。 2.两颗恒星与旋转中心时刻三点共 线,即两颗恒星角速度相同,周期 相同。(同轴转动) 3.两恒星之间万有引力分别提供了 两恒星的向心力,是一对作用力和 反作用力。 4.两颗恒星间的距离等于双星做圆 周运动的轨道半径的和。 `
径为R的圆轨道上运行;另一种形式是三颗星位于等边三角
形的三个项点上,并沿外接于等边三角形的圆形轨道运行。 设每个星体的质量均为m。 ⑴试求第一种形式下,星体运动的线速度和周期。 ⑵假设两种形式星体的运动周期相同,第二种形式下星体之 间的距离应为多少?
双星问题
卫星相遇
【思考】对于不同轨道的两颗卫星a、b,a、b之间距离何 时达到最大,何时最小? 当a、b与中心天体O连成一条直线时,
以发射同步卫星为例,先进入
一个近地的圆轨道,然后在v2点 火加速,进入椭圆形转移轨道 (该椭圆轨道的近地点在近地圆 轨道上,远地点在同步轨道上),
到达远地点时再次自动点火加速,
进入同步轨道。
v2
v2>v1 v4>v3 v1>v4
v2>v1>v4>v3
卫星变轨 【例题】如图所示,宇宙飞船B在低轨道飞行,为了给更高轨 道的空间站A输送物资,它可以采用喷气的方法改变速度,从
4 R 联立解得 M 1 M 2 GT 2
2
l 1 + l2 = R
3
双星问题
【例题】宇宙中存在一些离其它恒星较远的、由质量相等的 三颗星组成的三星系统,通常可忽略其它星体对它们的引力 作用。已观测到稳定的三星系统存在两种基本的构成形式: 一种是三颗星位于同一直线上,两颗星围绕中央星在同一半
高中物理人教版《必修第二册》教案讲义:卫星的变轨问题及宇宙航行的几个问题辨析

人造卫星的发射过程要经过多次变轨方可到达预定轨道,在赤道上顺着地球自转方向发射卫星到圆点点火加速,速度变大,进入椭圆轨道Ⅱ再次点火加速进入圆轨道Ⅲ卫星变轨问题分析方法速度大小的分析方法.①卫星做匀速圆周运动经过某一点时,其速度满足以此为依据可分析卫星在两个不同圆轨道上的②卫星做椭圆运动经过近地点时,卫星做离心运动,m v2.以此为依据可分析卫星沿椭圆轨r道和沿圆轨道通过近地点时的速度大小(即加速离心.发射“嫦娥三号”的速度必须达到第三宇宙速度.在绕月圆轨道上,卫星周期与卫星质量有关.卫星受月球的引力与它到月球中心距离的平方成反比.在绕月轨道上,卫星受地球的引力大于受月球的引力明白第三宇宙速度是指被发射物体能够脱离太阳系的最小发射速度,而“嫦娥三号”没有脱离太阳的引力范要熟记万有引力的表达式并清楚是万有引力提供卫星做圆如图所示,发射同步卫星的一般程序是:先让卫星进入一个近地的圆轨道,然后在P点变轨,进入椭圆形转移轨道椭圆轨道的近地点为近地圆轨道上的P点,远地点为同步卫星圆,到达远地点Q时再次变轨,进入同步卫星轨设卫星在近地圆轨道上运行的速率为v1,在椭圆形转移轨道点的速率为v2,沿转移轨道刚到达远地点,在同步卫星轨道上的速率为v4,则下列说法正确的是点变轨时需要加速,Q点变轨时要减速点变轨时需要减速,Q点变轨时要加速D.v2>v1>v4>v3练2发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火使其沿椭圆轨道2运行,最后再次点火将卫星送入同步圆轨道3,轨道1、2相切于Q点,轨道2、3相切于P点,如图所示,卫星分别在1、2、3轨道上正常运行时,以下说法正确的是()A.卫星在轨道3上的运行速率大于在轨道1上的运行速率B.卫星在轨道3上的角速度大于在轨道1上的角速度C.卫星在轨道1上运动一周的时间大于它在轨道2上运动一周的时间D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度反思总结卫星变轨问题关键词转化二、有关宇宙航行的几个问题辨析辨析1.发射速度与运行速度的比较(1)发射速度在地面以某一速度发射一个物体,发射后不再对物体提供动力,在地面离开发射装置时的速度称为发射速度,三个宇宙速度都是指发射速度.(2)运行速度运行速度是指做圆周运动的人造卫星稳定飞行时的线速度,对于人造地球卫星,轨道半径越大,则运行速度越小.(3)有的同学这样认为:沿轨道半径较大的圆轨道运行的卫星的发射速度大,发射较为困难;而轨道半径较小的卫星发射速度小,发射较为容易.这种观点是片面的.因为高轨卫星的发射难易程度与发射速度没有多大关系,如果我们在地面上以7.9km/s 的速度水平发射一个物体,则这个物体可以贴着地面做圆周运动而不落到地面;如果速度增大,则会沿一个椭圆轨道运动.速度越大,椭圆轨道的半长轴就越大;如果这个速度达到11.2km/s,则这个物体可以摆脱地球的引力.可见,无论以多大速度发射一个物体或卫星,都不会使之成为沿较大的圆轨道做圆周运动的人造卫星,高轨卫星的发射过程是一个不断加速变轨的过程,并不是在地面上给一个发射速度就可以的.【典例2】(多选)如图所示,在发射地球同步卫星的过程中,卫星首先进入椭圆轨道Ⅰ,然后在Q点通过改变卫星速度,让卫星进入地球同步轨道Ⅱ,则()A.该卫星的发射速度必定大于11.2km/sB.卫星在同步轨道Ⅱ上的运行速度大于7.9km/sC.在椭圆轨道上,卫星在P点的速度大于在Q点的速度D.卫星在Q点通过加速实现由轨道Ⅰ进入轨道Ⅱ辨析2.分清三个不同(1)重力和万有引力的向心加速度等于重力加速度g 的运动周期有可能是20小时如图所示,地球赤道上的山丘e,近地资源卫星均在赤道平面上绕地心做匀速圆周运动.设、v3,向心加速度分别为v2<v33<a2已知地球赤道上的物体随地球自转的线速度大小为近地卫星线速度大小为,地球同步卫星线速度大小为设近地卫星距地面高度不计,同步卫星距地面高度约为地倍.则下列结论正确的是(。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18
习
2、我国成功实施了“神舟”七号载入航天飞行并 实现了航天员首次出舱。飞船先沿椭圆轨道飞行, 后在远地点343千米处点火加速,由椭圆轨道变成 高度为343千米的圆轨道,在此圆轨道上飞船运行 周期约为90分钟。下列判断正确的是(B C )
A.飞船变轨前后的速度相等 B.飞船在圆轨道上时所需的向心力大于在椭 圆轨道远地点的向心力 C.飞船在此圆轨道上运动的角速度大于同步 卫星运动的角速度 D.飞船变轨前通过椭圆轨道远地点时的加速 度大于变轨后沿圆轨道运动的加速度
-
课堂练习
3、发射同步卫星时,通常先将卫星发
送到近地轨道Ⅰ,使其绕地球做匀速
圆周运动,速率为v1,第一次在P点点 火加速,在短时间内将速率由v1增加
v4
到v2,使卫星进入椭圆形的转移轨道
Ⅱ;卫星运行到远地点Q时的速率为
v3,此时进行第二次点火加速,在短
时间内将速率由v3增加到v4,使卫星
进入同步轨道Ⅲ,绕地球做匀速圆周
a
-
2、其它变轨问题——渐变
例:某人造卫星因受高空稀薄空气的阻力作用,绕地 球运转的轨道会慢慢改变。每次测量中卫星的运动均 可近似看作圆周运动,某次测量卫星的轨道半径为r1, 后来变为r2,以v1、v2表示卫星在这两个轨道上的线 速度大小,T1、T2表示卫星在这两个轨道上绕地球运 动的周期,则( A)D A.卫星做向心 运动 B.卫星做离心运动
根据上述信息判断下列说法的正误:
√A 卫星由停泊轨道进入地月转移轨道要在近地点经过 多次加速才行
√B 卫星由月球捕获轨道进入工作轨道要在近月点经 过多次减速才行
C 卫星在停泊轨道上的运行速度大于地球的第一宇 宙速度
√D 卫星在停泊轨道和工作轨道运行的速度之比为 a b
E 卫星在停泊轨道和工作轨道运行的周期之比为 b
C. r2<r1 v1<v2 T1<T2
D.卫星变轨过程中机械能减小,动能增大
-
课堂练习
1、据报道,“嫦娥一号”和“嫦娥二号”绕 月飞行器的圆形工作轨道距月球表面分别约 为200km和100km,运行速率分别为v1和v2。 那么,v1和v2的比值为(月球半径取1700km)
A 19
B 18
C 18 D 19
思考2:
(1)比较 v1p、 v2p、 v2Q、 v3Q的大小
(2)比较T1、T2、T3的大小
(3)比较a1p与a2p ;a2p与a2Q ;an1p与an2p ; a1与a3
-
二、其它卫星的变轨问题
1、嫦娥卫星发射中的变轨——突变
1
2
地月转 移轨道
月球 捕获 轨道
已知:地球和月球的质量之比为a,卫星的停泊轨道 1与工作轨道2的半径之比为b,卫星在这两个轨道上 都看成做匀速圆周运动 -
同步卫星及变轨问题
-
一、地球同步卫星
1、什么是地球同步卫星
指在轨道上跟地球自转同步,相对地面静止的 卫星,因此也叫静止轨道卫星,这一类卫星通 常用作传递通讯信号,所以也叫通讯卫星。
2、地球同步卫星的特点
(1)绕行方向与地球自转方向相同 (2)绕行周期与地球自转周期相同T=24h ,角速度也相同 (3)卫星轨道必须定点在赤道的正上方,轨道平面与赤 道平面重合,距地面高度h=36000km (4)所有同步卫星的运动参数都相同,有唯一确定的值
-
3、同步卫星的处理方法: F向=F引
例如:计算同步卫星的轨道高度h (周期T已知)
m 4 T 22(Rh)G(R M h)2m h3G 4M 2R T
代入数据可得:h=36000km 确定了轨道高度后,便可由F向=F引列式 确定线速度、角速度了
-
4、同步卫星的发射
Q
1
P
3
2
同步卫星发射模拟
思考1:同步卫星是高轨 道卫星,发射时采用了 变轨发射,其变轨的原 理实际上是用了什么原 理?由此可知 卫星回收 的过程如何呢?
运动。则有( ABC )
v3 Q
v1 Ⅰ Ⅱ
Ⅲ
P v2
A v2>v1>v4>v3
B 卫星在转移轨道上的周期小于24h
C 卫星在近地轨道及转移轨道上经过P点时的加速度相等 D 卫星在同步轨道及转移轨道上- 经过Q点时所需的向心力相等