2019年中考数学专题复习第六章三角形第8课时解直角三角形的应用单元训练

合集下载

2023 年九年级数学中考复习 解直角三角形的应用 解答专题提升训练题(含答案)

2023 年九年级数学中考复习 解直角三角形的应用 解答专题提升训练题(含答案)

2022-2023学年九年级数学中考复习《解直角三角形的应用》解答专题提升训练题(附答案)1.生活中,我们经常看到有的窗户上安装着遮阳篷,如图1.现在要为一个面向正南方向的窗户安装一个矩形遮阳篷.如图2,AB表示窗户的高,CD表示遮阳篷,且AB=1.5m,遮阳篷与窗户所在平面的夹角∠BCD等于75°.已知该地区冬天正午太阳最低时,光线与水平线的夹角为30°;夏天正午太阳最高时,光线与水平线的夹角为60°,若使冬天正午阳光最低时光线最大限度的射入室内,而夏天正午阳光最高时光线刚好不射入室内,试求出遮阳篷的宽度CD.2.万楼是湘潭历史上的标志性建筑,建在湘潭城东北、湘江的下游宋家桥.万楼的外形设计既融入了皇家大院、一类寺庙的庄严典雅,也吸收了江南民居诸如马头墙、猫拱背墙、灰瓦等特色,而最为独特的还是万楼“九五至尊”的结构.某数学小组为了测量万楼主楼高度,进行了如下操作:用一架无人机在楼基A处起飞,沿直线飞行120米至点B,在此处测得楼基A的俯角为60°,再将无人机沿水平方向向右飞行30米至点C,在此处测得楼顶D的俯角为30°,请计算万楼主楼AD的高度.(结果保留整数,≈1.41,≈1.73)3.海绵拖把一般由长杆、U型挤压器、海绵及连杆(含拉杆)装置组成(如图),拉动拉杆可带动海绵进入挤压器的两压杆间,起到挤水的作用.图1,图2,图3是其挤水原理示意图,A、B是拖把上的两个固定点,拉杆AP一端固定在点A,点P与点B重合(如图1),拉动点P可使拉杆绕着点A转动,此时点C沿着AB所在直线上下移动(如图2).已知AB=10cm,连杆PC为40cm,FG=4cm,MN=8cm.当P点转动到射线BA上时(如图3),FG落在MN上,此时点D与点E重合,点I与点H重合.(1)求ME的长;(2)转动AP,当∠P AC=53°时,①求点C的上升高度;②求点D与点I之间的距离(结果精确到0.1).(sin53°≈,cos53°≈,≈2.45,≈10.05)4.大约公元前600年,几何学家泰勒斯第一个测量出了金字塔的高度.如图①,他首先测量了金字塔正方形底座的边长为230米,然后他站立在沙地上的点B'处,请人不断测量他的影子B'C'.当他的影子B'C'和身高A'B'相等时,立刻测量出该金字塔塔尖P的影子A 与相应底棱中点B的距离约为22.2米.此时点A与点B的连线恰好与相应的底棱垂直,即正方形底座中心O与A和B在一条直线上.聪明的小明根据老师的讲述,迅速画出图②所示的测量金字塔高度的平面图形,请你根据这个平面图形计算出该金字塔的高度.5.如图,在苏州工业园区的金鸡湖东岸,有一座世界最大的水上摩天轮“苏州之眼”,其直径为120m,旋转1周用时24min.小明从摩天轮的底部(与地面相距0.5m)出发开始观光.(1)4min后小明离地面多高?(2)摩天轮转动1周,小明在离地面90.5m以上的空中有多长时间?6.如图,点A、B均为格点,线段AB与网格线交于点D.仅用无刻度尺的直尺在网格中画图,画图过程用虚线表示,画图结果用实线表示.(1)将线段AB绕点A顺时针旋转90°得线段AC;(2)在AC上找一点E,使∠ABE=∠ACD;(3)在BC上取一点P,使tan∠BAP=.7.一辆自行车竖直摆放在水平地面上如图所示,右边是它的示意图,横梁AC平行于水平面MN,现测得BC=80cm,∠CAB=60°,∠ACB=50°,B到MN的距离BE=30cm,AD为可调节高度,经研究发现,当坐垫高度为身高的0.6倍时,骑行者最舒适,现一身高170cm的同学骑车,当AD长约为多少时,可以使骑行者最舒适?(结果保留一位小数,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19,≈1.73)8.如图,一扇窗户打开后可以用窗钩AB将其固定,窗钩的一个端点A固定在窗户底边OE 上,且与转轴底端O之间的距离为20cm,窗钩的另一个端点B在窗框边上的滑槽OF上移动,滑槽OF的长度为17cm,AB、BO、AO构成一个三角形.当窗钩端点B与点O之间的距离是7cm的位置时(如图2),窗户打开的角∠AOB的度数为37°.求窗钩AB的长度(精确到1cm).(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)9.图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,两条等长的钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量∠BAC=100°,车位锁的底盒BC=60cm.(1)求AB的长;(结果精确到0.1)(2)若一辆汽车的底盘高度为26cm,当车位锁上锁时,这辆汽车能否进入该车位?(参考数据:sin40°≈0.64,cos40°≈0.77,tan,40°≈0.84)10.图1是某校花的警示牌,可近似地看成由一个正方形和矩形拼接而成.现将其简化抽象成图2,量得正方形ABCD的边长为40cm,矩形EFGH的边FG=AB,EF=16cm.(1)连接BF,CG,直接写出BF与CG的关系:;(2)若点D到点G所在的水平线的垂线段为DM,点E为BC的中点,∠HGM=50°,求点A到直线GM的距离.(结果精确到0.1cm.参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)11.图1是货物传送机械上的一种翻转装置,它可以使物体在传送带上实现翻转.图2是其截面简化示意图,已知连杆OA=50cm,载物直角面A﹣B﹣C中∠ABC=90°,其中点O固定,点B在水平杆OM上左右滑动,AB=BC=30cm.当载物面BC与水平杆OM重合时为初始位置,载物面BC与水平杆OM垂直时完成翻转.(1)直接写出点B与点O的之间距离d的取值范围是;(2)当点B由初始位置向右滑动10cm时,求载物面BC与水平杆OM的夹角∠CBM的(结果精确到0.1°,参考数据:sin72.5°≈0.95,cos72.5°≈0.30,tan72.5°≈3.18.)度数.12.如图1是一种利用风力带动风车叶片旋转,再通过增速机将旋转的速度提升来促使发电机发电的装置,图2是其结构示意图,风车的三个叶片OA=OB=OC=20m,每两个叶片之间的夹角为120°,点O为叶片旋转的轴心,管状塔OM垂直于山顶水平地面,OM=60m.(1)在图2中,若∠BOM=20°,则∠COM的度数为,点B到地面的距离可表示为;(2)在图2的基础上,风车三个叶片顺时针旋转90°后,求风车最高点到地面的距离.(参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192,结果保留一位小数)13.如图1所示的健身器械为倒蹬机,使用方法为上身不动,腿部向前发力,双腿伸直之后,然后再慢慢回收.图2为示意图,已知DE,DC在初始位置,DE=DC=60cm,点B、C、G在同一直线上,AB⊥BG,∠A=46°,∠DCG=95°.(1)当DE,DC在初始位置时,求点D到AC的距离;(2)当双腿伸直后,如图3,点E,D分别从初始位置运动到点E',D',假设E'、D'、C 三点共线,求此时点E上升的竖直高度.(结果保留整数)(参考数据:sin41°≈0.66,cos41°≈0.75,tan41°≈0.87,cos44°≈0.72,sin44°≈0.69,tan44°≈0.97)14.图1是笔记本电脑放在散热支架上的实物图,实物图的侧面可抽象成图2,结点B,C,D处可转动,支撑架AB=BC=CD=28cm,面板DE=28cm,若DE始终与AB平行.(1)直接写出∠ABC,∠BCD,∠CDE之间的数量关系;(2)若∠ABC=∠BCD=∠CDE,电脑显示屏宽EF=26cm,且∠DEF=105°,求笔记本电脑显示屏的端点F到AB的距离.(结果精确到0.1cm.参考数据:sin75°≈0.97,cos75°≈0.26,≈1.73)15.某校数学兴趣小组学完“三角函数的应用”后,在校园内利用三角尺测量教学楼AB的高度.如图,小明同学站在点D处,将含45°角三角尺的一条直角边水平放置,此时三角尺的斜边刚好落在视线CA上.沿教学楼向前走7.7米到达点F处,将含30°角三角尺的短直角边水平放置,此时三角尺的斜边也刚好落在视线EA上.已知小明眼睛到地面的距离为1.6米,求教学楼AB的高度.(点D,F,B在同一水平线上.结果精确到0.1,参考数据:≈1.73,≈1.41)16.道闸杆,在生活中很常见.又称为八角杆,经过铝合金挤压成型.后经喷涂,贴红色反光膜而成.主要是跟道闸配套使用,广泛应用于公路收费站.停车场、小区等.用于管理车辆的出入,可单独通过无线遥控实现起落杆.也可以通过停车场管理系统实行自动管理状态.如图1,是某停车场使用的直杆型道闸杆,图2是示意图.已知道闸杆CD平行于地面且距离地面的高度BC为1米.(1)一辆长是4.20米.宽是180米高是1.80米的箱式小货车要沿宽度为3米的道路AB 的中心线进入停车场.则道闸杆CD至少需要绕点C顺时针方向旋转多少度,小货车才能安全通过?请通过计算说明.(参考数据:sin37°≈0.6,cos37°=0.8,tan37°≈0.75)(2)车辆进入该停车场时,系统会扫描车牌号码并自动起杆;而离开停车场时,需要扫码支付停车费用之后,人工遥控起杆落杆.已知车辆进入时的平均通过速度是离开时平均通过速度的2倍,20辆车组成的车队连续进入停车场比连续离开停车场所需时间少100秒,求进入停车场时平均每分钟连续通过的车辆数.17.图1是某种路灯的实物图.图2是该路灯的平面示意图.MN为立柱的一部分,灯臂AC,支架BC与立柱MN分别交于点A.B,灯臂AC与支架BC交于点C.(1)已知∠MAC=60°,∠ACB=15°.AC=40cm,求支架BC的长.(结果精确到1cm;参考数据:=1.41,=1.73,=2.45)(2)某小区第一次用8000元购进一批该型号的路灯.第二次正好赶上商家搞活动.所有商品一律八折销售.该小区仍然用8000元购进第二批该型号的路灯,但所购数量比第一次多8个,求该小区两次共购进该型号的路灯多少个.18.如图1,是某品牌的可伸缩篮球架,其侧面可抽象成图2,结点F,G,H,M,N可随着伸缩杆EF的伸缩转动,从而控制篮球圈ON离地面AB的高度,ON∥AB,主杆AH⊥AB,G,C,D均在主干AH上,结点N,G,F共线,DE∥AB,经测量,AD=150cm,DC=CG=GH=MN=GF=50cm,MH=NG=GD,∠NGD=33°,此时,EF∥AH.(结果保留小数点后一位)(1)①∠M=°,EF与AB的位置关系;②求EF的长度.(2)在图1的基础上,调节伸缩杆EF,得到图3,图4是图3的示意图,经测量,此时,篮球圈ON离地面AB的高度刚好达到国际标准305cm,求NF绕着G点顺时针旋转的度数.(参考数据:sin57°≈0.84,cos57°≈0.55,tan57°≈1.54)19.随着我国首艘自主建造航母“山东舰”的正式服役,标志者我国已进入“双航母”时代.已知“山东舰”舰长BD为315m,航母前端点E到水平甲板BD的距离DE为6m,舰岛顶端A到BD的距离是AC,经测量,∠BAC=71.6°,∠EAC==80.6°.(参考数据:sin71.6°≈0.95,cos71.6°≈0.32,tan71.6°≈3.01,sin80.6°≈0.99,cos80.6°≈0.16,tan80.6°≈6.04)(1)若设AC=xm,用含x的代数式表示BC与CD的长度.(2)请计算舰岛AC的高度(结果精确到1m).20.小聪家想在某市买一套能全年正午都有太阳照射的新房.勤于思考的小聪通过查阅资料发现:我们北半球冬至日正午太阳高度角(太阳光线与水平线的夹角)最小,楼房的影子会最长,如果这一天正午有太阳照射,那么整年都不会有问题.(1)五一假期他们来到正在销售的A楼盘.该楼盘每幢楼均为17层,层高3米,南、北楼的间距为60米.小聪爸妈想在中间这幢楼购房.如果是你,你将建议父母选择第几(该市区所在纬度约是32.5°N,冬至日的正午太阳高度角为90°层以上?说明你的理由.﹣32.5°﹣23.5°=34°,sin34°≈0.6,cos34°≈0.8,tan34°≈0.7)(2)假如每平方米单价y元与楼层n层之间满足关系y=﹣60(n﹣15)2+16375.小聪爸妈期望每平方米单价不超过13000元,请你帮助小聪家设计一下购买商品房楼层的方案.参考答案1.解:过点D作DE⊥AC于点E,由题意,∠DBC=60°,∠BAD=30°,AB=1.5m,∵∠DBC=∠BAD+∠ADB=60°,∴∠BDA=∠ADB=30°,∴AB=BD=1.5m,∴BE=BD•cos60°=0.75(m),DE=BE=0.75(m),∵∠BCD=75°,∠CAD=30°,∴∠ADC=180°﹣75°﹣30°=75°,∴AD=AC=2DE=1.5,∴EC=AC﹣AE=1.5﹣1.5﹣0.75=1.5﹣2.25,∴CD===.2.解:由题意可得,在Rt△ABE中,∵AB=120米,∠ABE=60°,∴BE===60(米),AE=sin60°•AB=(米),在Rt△CDE中,∵∠DCE=30°,CE=BE+CB=60+30=90(米),∴DE=tan30°•CE==30(米),∴AD=AE﹣DE=60=30≈52(米).答:万楼主楼AD的高度约为52米.3.解:(1)由图1可知,P A=AB=10(cm),图3中,PG=PC=40(cm),∴ME=40+10+10﹣40=20(cm),∴ME的长为20cm;(2)①如图2,过点P作PQ⊥AC于点Q.∵∠A=53°,AP=10cm,∴PQ=PQ⋅sin53°≈10×0.8=8cm,AQ=AP⋅cos53°≈10×0.6=6cm.∴.∴AC=45.2cm,∴C上升了4.8cm.②根据题意如图:当P点转动到射线BA上时(如图3),FG落在MN上,此时点D与点E重合,点I与点H重合,根据勾股定理得:DF=(cm),∵C上升了4.8cm,∴FS=4.8cm,∴EF=(cm),∵EH∥DI,∴△FES∽△FDT,∴,∴,∴DT≈7.7cm,由对称性可知:DI=2DT+FG=2×7.7+4=19.4(cm),∴点D与点I之间的距离为19.4cm.4.解:∵金字塔正方形底座的边长为230米,∴0B==115(米),∴OA=0B+AB=115+22.2=137.2(米),根据题意可得Rt△AOP是等腰直角三角形,∴OA=PO=137.2米.答:该金字塔的高度为137.2米.5.解:(1)过点C作CE⊥OA,垂足为E,作CD⊥AM,垂足为D.∵旋转1周用时24min,∴4min后∠AOC的度数为:360°×=60°,在Rt△OCE中,OC=60m,∠AOC=60°,∵cos∠AOC=,∴OE=120×cos60°=30m.∴AE=OA﹣OE=60.5﹣30=30.5(m).∵四边形AECD是矩形,∴CD=AE=30.5m.即4min后小明离地面30.5m.(2)延长AO交圆上点G,过OG的中点H作PQ⊥AG,连接PO、PQ.∵OB=60m,AB=0.5m,OH=30m,∴AH=90.5m.∴PQ上的点都距离地面90.5m,弧PGQ上的点都大于90.5m.在Rt△OPH中,∵OP=60m,OH=30m,∴∠P=30°.∴∠POH=60°.同理∠QOH=60°.∴∠POQ=120°.∵摩天轮旋转1周用时24min,∴摩天轮旋转120°用时:24×=8(min).即摩天轮转动1周,小明有8min在离地面90.5m以上的空中.6.解:(1)如图,线段AC即为所求.(2)如图,点E即为所求.(3)如图,点P即为所求.7.解:过点D作DH⊥AC于点H,延长EB交AC于T,过点D作DG⊥EB于点G,在Rt△BCT中,BT=BC•sin50°≈61.6(cm),∵EG=170×0.6=102cm,∴GT=EG﹣ET=102﹣61.6﹣30=10.4(cm),∵四边形DHTG是矩形,∴DH=GT=10.4(cm),在Rt△ADH中,AD==≈12.0(cm)答:AD的长约为12.0cm.8.解:根据题意,可知∠AOB=37°,OA=20cm,OB=7cm.过点A作AH⊥OF,垂足为点H.在Rt△OAD中,∵sin∠AOD=,∴AD=AO⋅sin∠AOD=20×sin37°≈12(cm).同理可得OD=16(cm).由OB=7,得BD=9(cm).在Rt△ABD中,.答:窗钩AB的长度约等于15cm.9.解:(1)过点A作AH⊥BC于点H,∵AB=AC,BC=60cm,∴BH=HC=BC=30(cm),在Rt△ABH中,∠BAC=100°,∴∠B=40°,∴AB=≈≈38.9(cm);(2)在Rt△ABH中,∴AH=AB sin B=50sin40°≈38.9×0.64=24.896(cm),∴24.896<26,∴当车位锁上锁时,这辆汽车能进入该车位.10.解:(1)如图1中,结论:BF=CG,BF∥CG.理由:∵四边形EFGH是矩形,∴EH∥FG,∵四边形ABCD是正方形,∴AB=BC,∵AB=FG,∴FG=BC,FG∥BC,∴四边形BCGF是平行四边形,∴BF=CG,BF∥CG.故答案为:BF=CG,BF∥CG.(2)如图2中,过点A作AW⊥GM于W,过点D作DQ⊥AW于Q,过点C作CT⊥DM于T,过点H作HJ⊥GM于J,交CT于K.∵BE=EC=20cm,BC=EH=40cm,∴CH=20(cm),在Rt△HGJ中,HJ=GH•sin50°≈12.26(cm),在Rt△CKH中,KH=CH•cos50°≈12.86(cm),在Rt△CDT中,DT=CD•sin50°≈30.64(cm),在Rt△AQD中,AQ=AD•cos50°≈25.72(cm),∵四边形DQWM,四边形MTKJ都是矩形,∴QW=DM,TM=JK=HJ+KH,∴QW=DM=DT+KH+HJ=12.26+12.86+30.64=55.76(cm),∴AW=AQ+QW=55.76+25.72≈81.5(cm).11.解:(1)初始位置时,∠ABO=90°,故OB=,完成翻转时,OB=OA+AB=80,∴40≤d≤80,故答案为40≤d≤80;(2)由(1)知,初始位置时OB=40cm,所以向右滑动10cm时,OB=50cm,如图,作AH⊥OM,垂足为H,设HB=xcm,∵OA2﹣OH2=AB2﹣HB2=AH2,∴502﹣(50﹣x)2=302﹣x2,解得:x=9,∴,∴∠ABH≈72.5°,∴∠CBM=90°﹣72.5°=17.5°.12.解:(1)∵∠BOC=120°,∠BOM=20°,∴∠COM=∠BOC﹣∠COM=120°﹣20°=100°,过点B作OM的垂线,交OM于点E,在Rt△OBE中,OB=20m,∴OE=OB•cos∠BOE=20cos20°,∴EM=OM﹣OE=60﹣20cos20°,故答案为:100°,60﹣20cos20°;(2)如图,当风车的三个叶片顺时针旋转90°后,∠AOM=130°,∠BOM=110°,∠COM=10°,∴此时点A最高,过点A作AD⊥MO,交MO的延长线于点D,则∠AOD=180°﹣∠AOM=50°,在Rt△AOD中,,即OD=20×cos50°≈12.86(m),∴DM=12.86+60≈72.9(m),∴风车最高点到地面的距离约为72.9m.13.解:(1)如图2中,过点D作DH⊥AC于H.∵∠B=90°,∠A=46°,∴∠ACB=44°,∴∠DCH=180°﹣∠ACB﹣∠DCG=41°,在Rt△DCH中,DH=CD•sin41°=60×0.66≈40(cm),∴点D到AC的距离为40cm.(2)如图3中,过点D作DH⊥AC于H.∵DE=DC,DH⊥EC,∴EH=CH=CD•cos41°=60×0.75≈45(cm),∵CE′=120cm,EC=90cm,∴时点E上升的竖直高度=(120﹣90)•sin44°≈21(cm).14.解:(1)如图2﹣1中,结论:∠ABC+∠BCD+∠CDE=360°.理由:过点C作CT∥DE,∵AB∥DE,∴CT∥AB∥DE,∴∠CDE+∠DCT=180°,∠ABC+∠BCT=180°,∴∠ABC+∠BCD+∠CDE=∠ABC+∠BCT+∠DCT+∠CDE=360°.(2)如图2﹣2中,连接BD,过点C作CJ⊥BD于J,过点E作EH⊥AB于点H,过点F作FT⊥HE交HE的延长线于T.∵CD=CB,∠BCD=120°,∴∠CDB=∠CBD=30°,∵∠CDE=∠ABC=120°,∴∠ABD=∠BDE=90°,∵EH⊥AB,∴∠BHE=90°,∴四边形BDEH是矩形,∴EH=BD=2DJ=2•CD•cos30°=28≈48.44(cm),在Rt△EFT中,∠FET=105°﹣90°=15°,∴TE=EF•cos15°=26×0.97≈25.43(cm),∴TH=TE+EH=48.44+25.43≈73.9(cm).∴笔记本电脑显示屏的端点F到AB的距离为73.9cm.15.解:连接CE并延长,交AB于点G,设AG=x米,由题意可知,四边形CDFE,四边形CDBG是矩形,∴BG=CD=1.6米,DF=CE=7.7米,∠CGB=90°,∴∠AGE=90°,在Rt△ACG中,∠ACG=45°,∴∠CAG=∠ACG=45°,∴CG=AG=x(米),∴EG=CG﹣CE=x﹣7.7(米),在Rt△AEG中,∠AEG=60°,tan∠AEG=,即EG=,∴x﹣7.7=,解得:x=,∴AB=AG+BG=18.2+1.6=19.8(米).16.解:(1)如图,点E为AB的中点,则BE=AB=1.5米,在BE上取点F,使EF=0.9米,则BF=BE﹣EF=1.5﹣0.9=0.6(米),过点F作FP⊥AB,交DC为点H,在FP上截取FG=1.80米,则四边形HFBC是矩形,故有HF=BC=1米,∴HG=FG﹣HF=1.8﹣1=0.8(米),在Rt△GHC中,HC=0.6米,HG=0.8米,∴tan∠CGH=,∴∠CGH=37°,即∠GCH=90°﹣37°=53°,∴道闸杆CD至少需要绕点C顺时针方向旋转53°,小货车才能安全通过.(2)设离开停车场时平均每分钟连续通过的车辆数x辆,则进入停车场时平均每分钟连续通过的车辆数为2x辆,根据题意,得:,解得:x=6,经检验,x=6是原方程的根,当x=6时,2x=12,答:进入停车场时平均每分钟连续通过的车辆数为12辆.17.解:(1)过点C作CD⊥MN于点D,则∠CDB=90°,在Rt△ACD中,∠CAD=60°,AC=40cm,∴CD=AC•sin∠CAD=40×sin60°=40×(cm),∵∠ACB=15°,∴∠CBD=∠CAD﹣∠ACB=45°,在Rt△BCD中,BC=CD=20≈49(cm),答:支架BC的长约为49cm;(2)设该小区第一次购进该型号的路灯x个,根据题意,得:,解得:x=32,经检验,x=32是原方程的解,且符合题意,∴32+32+8=72(个),答:该小区两次共购进该型号的路灯72个.18.解:(1)①∵GH=MN,MH=NG,∴四边形GHMN是平行四边形,∵∠NGD=33°,∴∠M=∠HGN=147°,∵AH⊥AB,EF∥AH,∴EF⊥AB,故答案为:147,垂直;②过G作GP⊥EF,垂足为P,∵∠NGD=33°,∴∠FGP=57°,∴FP=GF•sin57°≈50×0.84=42.0cm,∵GP⊥EF,EF⊥AB,∴GP∥AB,又∵DE∥AB,∴GP∥DE,∵EF∥AH,∴四边形GDEP为平行四边形,∴GD=PE,∴EF=DG+PF=50+50+42≈142.0cm;(2)过点G作AB的平行线PG,再过点N作PG的垂线交PG于点P.∴NP=305﹣50﹣50﹣150=55cm,∵NG=GD=100cm,∴cos∠GNP===0.55,∴∠GNP≈57°,∴∠NGP≈33°,∴∠NGD≈123°,∴∠PGD≈123°﹣33°=90°,故NF绕着G点顺时针旋转了90°.19.解:(1)作EH⊥AC于H,则四边形EHCD是矩形,在Rt△ABC中,∵tan∠BAC=,∴BC=AC•tan71.6°=3.01xm,在Rt△AHE中,∵tan∠EAC=,∴CD=EH=AH•tan80.6°=6.04(x﹣6)=(6.04x﹣36.24)m;(2)设AC=xm,∵四边形EHCD是矩形,∴DE=CH=6m,∵BD=BC+CD=315m,BC=3.01xm,CD=(6.04x﹣36.24)m,∴3.01x+6.04x﹣36.24=315,解得:x=39,∴舰岛AC的高度为:39m.20.解:(1)过点B作BE⊥MF于点E,由题意得,∠ABE=34°,BE=60米,∴tan34°=,即ME=60×0.7=42(米),∴BD=EF=17×3﹣42=9(米),9÷3=3(层),答:至少选择3层以上.(2)由题意得,﹣60(n﹣15)2+16375≤13000,解得n≤7.5,∵当n=15时,y最大,∵n>3,∴n可取4,5,6,7,∴可以购买4层到7层的楼房.。

2019中考数学解直角三角形汇编.docx

2019中考数学解直角三角形汇编.docx

WORD格式解直角三角形应用篇1.(2019 山东泰安中考)( 4 分)如图,一艘船由 A 港沿北偏东65°方向航行30km 至 B 港,然后再沿北偏西40°方向航行至 C 港, C 港在 A 港北偏东 20°方向,则A, C 两港之间的距离为()km.A. 30+30B. 30+10C. 10+30D. 302.(2019 山东淄博中考)如图,小明从 A 处沿北偏东40°方向行走至点 B 处,又从点 B 处沿东偏南 20 方向行走至点 C 处,则∠ ABC等于()A. 130° B. 120° C. 110 ° D. 100 °3(.2019 山东聊城中考)某数学兴趣小组要测量实验大楼部分楼体高度(如图①所示,CD部分),在起点 A 处测得大楼部分楼体 CD的顶端 C 点的仰角为45,底端 D 点的仰角为30°,在同一剖面沿水平地面向前走20 米到达 B 处,测得顶端 C 的仰角为63.4 (如图②所示),求大楼部分楼体CD的高度约为多少米?(精确到 1 米)(参考数据:sin63.40.89,cos63.40.45 ,tan63.42.00,21.41, 31.73 )专业资料整理WORD格式的专业资料整理WORD格式4.(题出:2进1行是1炎了某9热探方案设计 :甘住的究2肃户:阳,中数窗据收集 :光该考户,通7上与又过分学方遮)课安阳最阅题某∠ BDC最装小 ( ∠ BDC=30.56° ); 窗户的高度篷:大数研的决:限C兰学究,D度根课要的题组求夹研设角述究计∠°≈ 0.51小的A温案组查遮D暖及针研阳C的数对究篷最阳据兰既大州能(射求市最∠的遮住大A阳房限D篷窗度C C时户夏天=.刻设计遮阳篷”这 - 课7,7太.DA44°):冬至这一天的正午时刻,太DB与遮AB=2m, cos30.56 °≈ 0.86,tan30.56°≈ 0.59)专业资料整理WORD 格式5 ( 0,再往前走2 A3 米站在 C 处,看0 B≈ 0.6,cos35 01 路灯顶端O 的仰角为 65,9广 则 西≈0.8,tan35 0≈ 0.7,sin65 0≈ 0.9,cos65 0≈ 0.4,tan65 0 ≈ 2.1 )()中考 A . 3.2 米 B . 3.9 米 C . 4.7 米 D . 5.4 米) .小 上菁 ,考数据:≈ 1.414 ,≈ 1.732 .同 向学 1 在23偏数0小东学m 时6数).实 到践 达°B .求 A , B 间的距离.(≈1.73 ,≈ 1.4 ,结果保留一位小活C方 动 点向中A 在北偏东 30°方向上,求河的宽度(精确到0.1m ).参巡测 逻7量. ,路( 到 灯2 达的0 C 高 处1度5.(9 时 ,2广 接 如0西 到 图1贺 命,9州 令 已河中 在池知考 C中高 处8 考) 沿 )如 东 如图 南 图, 20 海里 / 小时的速,在在A河处对的岸正A东,方在向河有岸BB.A 在北偏东 60°方向某巡A处沿着北专业资料整理WORD格式6.(2019贵阳中考)如图所示是我国古代城市用以滞汰或分洪系统的局部截面原理图,图中OP为下水管道口直径,OB为可绕轴O自由转动的阀门,平时阀门被管道中排出的水冲开,可排出城市污水;当河水上涨时,阀门会因河水的压迫而关闭,以防止河水倒灌入城中,若阀门的直径OB=OP=100cm,OA为检修时阀门开启的位置,且OA=OB.(1)直接写出阀门被下水道的水冲开与被河水关闭过程中∠ POB的取值范围;(2)为了观测水位,当下水道的水冲开阀门到达OB位置是,在点 A 处测得俯角∠ CAB=67.5°,若此时点B 恰好与下水道的水平面齐平,求此时下水道内水的深度,(结果保留小数点后一位)21.41,sin67.50.92,cos67.50.38,tan67.52.41,()sin22.50.38,cos22.50.92,tan22.50.419.(2019 汉江油田中考)如图,为测量旗杆AB的高度,在教学楼一楼点 C 处测得旗杆顶部的仰角为60°,在四楼点 D 处测得旗杆顶部的仰角为30°,点 C 与点 B 在同一水平线上.已知CD= 9.6m,则旗杆 AB的高度为 m.专业资料整理WORD格式10.(2019 黄石中考)如图,一轮船在M处观测灯塔P 位于南偏西30°方向,该轮船沿正南方向以15 海里 / 小时的速度匀速航行 2 小时后到达N 处,再观测灯塔P 位于南偏西60°方向,若该轮船继续向南航行至灯塔 P 最近的位置 T 处,此时轮船与灯塔之间的距离PT 为海里(结果保留根号).11(。

中考数学复习:解直角三角形的应用

中考数学复习:解直角三角形的应用

解直角三角形的应用一、填空题1.如图,是一张宽的矩形台球桌,一球从点(点在长边上)出发沿虚线射向边,然后反弹到边上的点. 如果,.那么点与点的距离为().【答案】2.如图所示,小明在家里楼顶上的点A处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A处看电梯楼顶部点B处的仰角为60°,在点A处看这栋电梯楼底部点C处的俯角为45°,两栋楼之间的距离为30m,则电梯楼的高BC为()米(精确到0.1).(参考数据:)【答案】82.03.如图,从点C测得树的顶角为33º,BC=20米,则树高AB=()米(用计算器计算,结果精确到0.1米)【答案】4.如图,一艘船向正北航行,在A处看到灯塔S在船的北偏东30°的方向上,航行12海里到达B点,在B处看到灯塔S在船的北偏东60°的方向上,此船继续沿正北方向航行过程中距灯塔S的最近距离是()海里(不作近似计算)。

【答案】5.如图5,某渔船在海面上朝正方方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,航行半小时后到达B处,此时观测到灯塔M在北偏东30°方向上,那么该船继续航行()分钟可使渔船到达离灯塔距离最近的位置。

【答案】156.如图,AB是伸缩式的遮阳棚,CD是窗户,要想在夏至的政务时刻阳光刚好不能射入窗户,则AB的长度是()米。

(假设夏至的政务时刻阳光与地平面夹角为60°)【答案】7.若等腰梯形ABCD的上、下底之和为2,并且两条对角线所成的锐角为60°,则等腰梯形ABCD的面积为()。

【答案】或8.如图5,一水库迎水坡AB的坡度︰,则该坡的坡角=().【答案】30°(即小颖的眼睛距地面的距离),那么这棵树高是()A.()m B.()mC.m D.4m【答案】A9.小明沿着坡度为1:2的山坡向上走了1000m,则他升高了A.m B.500m C.m D.1000m【答案】A10.河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:(坡比是坡面的铅直高度BC与水平宽度AC之比),则AC的长是()A.5米 B.10米 C.15米 D.10米【答案】A.二、解答题11.若河岸的两边平行,河宽为900米,一只船由河岸的A处沿直线方向开往对岸的B处,AB与河岸的夹角是600,船的速度为5米/秒,求船从A到B处约需时间几分。

解直角三角形及其应用(解析版)2019数学全国中考真题

解直角三角形及其应用(解析版)2019数学全国中考真题

2019全国中考数学真题知识点37解直角三角形及其应用(解析版)一、选择题 8.(2019·苏州)如同,小亮为了测量校园里教学楼AB 的高度.将测角仪CD 竖直放置在与教学楼水平距离为m 的地面上,若测角仪的高度是1.5m ,测得教学楼的顶部A 处的仰角为30°,则教学楼的高度是 ( ) A . 55.5 mB .54 mC .19. 5 mD .18 m(第8题)【答案】C【解析】过D 作DE ⊥AB ,∵在D 处测得旗杆顶端A 的仰角为30°,∴∠ADE =30°,∵BC =DE =m ,∴AE =DE •tan30°=18m ,∴AB =AE +BE =AE +CD =18+1.5=19.5m ,故选C .8.(2019·温州)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB 的长为( ) A .95sin α米 B .95cos α米 C .59sin α米 D .59cos α米【答案】B【解析】如图,过点A 作AD ⊥BC ,垂足为点D ,则BD=1.5+0.3=1.8(米).在Rt △ABD 中,∠ADB=90°,cosB=BDAB,所以AB =cos BD α= 1.8cos α=95cos α.故选B.10.(2019·长沙)如图,一艘轮船从位于灯塔C 的北偏东60°方向,距离灯塔60 n mile 的小岛A 出发,沿正南方向航行一段时间后,到达位于灯塔C 的南偏东45°方向上的B 处,这时轮船B 与小岛A 的距离是 【 】A ..60 n mile C .120 n mile D .(30+ n mile【答案】D【解析】过C 作CD ⊥AB 于D 点,∴∠ACD=30°,∠BCD=45°,AC=60.在Rt △ACD 中,cos ∠ACD=CDAC,∴CD=AC •cos ∠ACD=60在Rt △DCB 中,∵∠BCD=∠B=45°,∴∴答:此时轮船所在的B 处与灯塔P 的距离是()nmile .故本题选:D .8.(2019·益阳)南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图1,在桥外一点A 测得大桥主架与水面的交汇点C 的俯角为α,大桥主架的顶端D 的仰角为β,已知测量点与大桥主架的水平距离AB =a ,则此时大桥主架顶端离水面的高CD 为() A. asin α+asin β B. acos α +a cos β C. atan α+atan β D.βαtan tan aa +第8题图【答案】CD B A【解析】在Rt △ABD 中,∵tan β=ABBD,∴BD=atan β. 在Rt △ABD 中,∵tan α=ABBC,∴BC=atan α. ∴CD=BD+BC=atan α+atan β.1.(2019·泰安)如图,一艘船由A 港沿北偏东65°方向航行至B 港,然后再沿北偏西40°方向航行至C港,C 港在A 港北偏东20°方向,则A,C 两港之间的距离为________km.【答案】B 【解析】如图,由题中方位角可知∠A =45°,∠ABC =75°,∠C =60°,过点B 作BD ⊥AC 于点D,在Rt △ABD 中,∠A =45°,AB =∴AD =ABcosA =30,BD =ABsinA =30,在Rt △BCD 中,∠C =60°,∴CD =tan BDC=,∴AC =AD+CD =故选B.2.(2019·重庆B 卷)如图,AB 是垂直于水平面的建筑物,为测量AB 的高度,小红从建筑物底端B 出发,沿水平方向行走了52米到达点C ,然后沿斜坡CD 前进,到达坡顶D 点处,DC=BC.在点D 处放置测角仪,测角仪支架DE 高度为0.8米,在E 点处测得建筑物顶端A 点的仰角∠AEF 为27°(点A ,B ,C ,D 在同一平面内).斜坡CD 的坡度(或坡比)i=1:2.4,那么建筑物AB 的高度约为( )【答案】B【解析】作EN ⊥AB 于N,EM ⊥BC 交BC 的延长线于M . ∵斜坡CD 的坡度(或坡比)i=1:2.4,DC=BC =52米,设DM =x 米,则CM =2.4x 米,在Rt △ECM 中,∵2DM + 2CM =2DC ,∴2x +()22.4x =252解得x =20 ∴CM =48米,EM =20+0.8=20.8米,BM =ED +DM =52+48=100米∵EN ⊥AB,EM ⊥BC ,AB ⊥BC ∴四边形ENBM 是矩形. ∴EN=BM=100米,BN=EM =20.8米. 在Rt △AEN 中,∵∠AEF =27°∴AN=EN ﹒tan 27°≈100×0.51=51米 ∴AB=AN +BN =51+20.8=71.8米.故选B .3.(2019·重庆A 卷)为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i =1:2.4的山坡AB 上发现有一棵古树CD .测得古树底端C 到山脚点A 的距离AC =26米,在距山脚点A 水平距离6米的点E 处,测得古树顶端D 的仰角∠AED =48°(古树CD 与山坡AB 的剖面、点E 在同一平面上,古树CD 与直线AE 垂直),则古树CD 的高度约为() (参考数据:sin 48°≈0.73,cos48°≈0.67,tan48°≈1.11)A .17.0米B .21.9米C .23.3米D .33.3米【答案】C .【解析】如答图,延长DC 交EA 于点F ,则CF ⊥EA .∵山坡AC 上坡度i =1:2.4,AC =26米,∴令CF =k ,则AF =2.4k ,由勾股定理,得k 2+(2.4k )2=262,解得k =10,从而AF =24,CF =10,EF =30.在Rt △DEF 中,tan E =DFEF,故DF =EF •tan E =30×tan48°=30×1.11=33.3,于是,CD =DF -CF =23.3,故选C .二、填空题20.(2019·遂宁)汛期即将来临,为保证市民的生命和财产安全,市政府决定对一段长200米且横断面为梯形的大坝用土石进行加固,如图,加固前大坝背水坡坡面从A至B共有30级阶梯,平均每级阶梯高30cm,斜坡AB的坡度i=1:1,加固后坝顶宽度增加2米,斜坡EF的坡度i=1:5,问工程完工后,共需土石多少立方米?(计算土石时忽略阶梯,结果保留根号)解:如图,分别过点A,E作AN⊥FC于N,EM⊥F于M,则AN=EM,∵从A至B共有30级阶梯,平均每级阶梯高30cm,∴AN=9米=EM,∵斜坡AB的坡度i=1:1,∴BN=AN=9米,∵斜坡EF的坡度i=1:5,∴FM=95,∴FB=FM+MN-BN=95+2-9=95-7,S梯=EMBFAE⨯+)21(=24552819)759221-=⨯-+(,∴体积为200S梯=81005-4500(m3)答:共需土石81005-4500立方米.21.(2019·广元)如图,某海监船以60海里时的速度从A处出发沿正西方向巡逻,一可疑船只在A的西北方向的C 处,海监船航行1.5小时到达B处时接到报警,需巡查此可疑船只,此时可疑船只仍在B的北偏西30°方向的C处,然后,可疑船只以一定速度向正西方向逃离,海监船立刻加速以90海里/时的速度追击,在D处海监船追到可疑船只,D在B的北偏西60°方向.(以下结果保留根号)(1)求B,C两处之间的距离;(2)求海监船追到可疑船只所用的时间.第21题图解:(1)过点C 作CE ⊥AB 于点E,在Rt △BEC 中,设BC =x,∵∠BCE =30°,∴BE =12BC =12x,CE =32x,在Rt△ACE 中,AE =CE =32x,∴AB =AE -BE =32x -12x,已知AB =60×1.5=90,∴32x -12x =90,解之得,x =903+90.答:B,C 两处之间的距离(903+90)海里;(2)过点B 作BF ⊥DC 于点F,在Rt △BDF 中,∠DBF =60°,由(1)得,BF =CE =CE =32x =135+453,∴BD =2BF =270+903,∴时间为(270+903)÷90=3+3.答:海监船追到可疑船只所用的时间为(3+3)小时.16.(2019·温州)图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A 离地面的距离AM 为 分米;当OB 从水平状态旋转到OB′(在CO 延长线上)时,点E 绕点F 随之旋转至OB′上的点E′处,则B′E′-BE 为 分米. 【答案】5+53 4【解析】(1)过点O 分别作OL ⊥MD 、ON ⊥AM ,垂足分别为点L 、N ,则∠LON=90°,四边形NMLO 是矩形,∴MN=LO. ∵OC =OD=10分米,∠COD=60°,∴∠COL=30°,CL=12CD=5,OL=22-OC CL =2210-5=53,∵∠AOC=90°,∴∠AON=30°,∴AN=12AO=5,∴AM=5+53;(2)过点F 分别作FQ ⊥OB 、FP ⊥OC ,垂足分别为点Q 、N. 在Rt △OPQ 中,∠OQP=90°,∠BOD=60°,∴OQ=2,FQ=23,在Rt △EFQ 中,∠EQF=90°,FQ=23,EF=6,∴QE=26,BE=10-2-26=8-26;同理可得PE ′=26,∴B ′E ′=2+10-26=12-26,∴B′E′-BE=(12-26)-(8-26)=4. 故填:5+53 4.FE15.(2019·盐城)如图,在△ABC 中,BC=,∠C =45°,AB =AC ,则AC 的长为________.【答案】2【解析】如图,过点A 作AD ⊥BC 于点D ,又∠C =45°,故sin 2AD C AC==,tan 1AD C CD==,设AD x =,则AC ==,CD=x ,2AB x ==,在Rt △ACD 中,∠ADB=90°,由勾股定理可得:AD 2+BD 2=AB 2,得BD =,所以BC BD CD x =+==1)x =,故AC =2.1.(2019·枣庄)如图,小明为了测量校园里旗杆AB 的高度,将测角仪CD 竖直放在距旗杆底部B 点6m 的位置,在D 处测得旗杆顶端A 的仰角为53°,若测角仪的高度是1.5m,则旗杆AB 的高度约为________m(精确到0.1m).(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)ABCDABC【答案】9.5【解析】由题可知BC=6m,CD=1.5m,过D作DE∥BC交AB于点E,易知四边形BCDE是矩形,∴DE=BC=6m,在Rt△ADE中,AE=DE·tan53°=7.98m,EB=CD=1.5m,∴AB=AE+EB=9.48m≈9.5m.第15题答图2.有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度. 图2是支撑杆的平面示意图,AB和CD分别是两根不同长度的支撑杆,夹角∠BOD=α. 若AO=85cm,BO=DO=65cm. 问: 当α=74°,较长支撑杆的端点A离地面的高度h约为________cm.(参考数据: sin37≈0.6,cos3≈0.8,sin53≈0.8,cos53≈0.6.)图1 图2【答案】120.【解析】如图,过点A作AE⊥BD于点E,则∠AEB=90°.∵AO =85cm ,BO =DO =65cm α=74°, ∴∠ODB =∠B =53°,AB =150cm . 在Rt △ABE 中,sin B =h AB, 故h =AB •sin B =150×sin53°≈150×0.8=120.3.(2019·金华)如图,在量角器的圆心O 处下挂一铅锤,制作了一个简易测倾仪,量角器的0刻度线AB 对准楼顶时,铅垂线对应的度数是50°,则此时观察楼顶的仰角度数是___________.【答案】40°.【解析】量角器的0刻度线AB 对准楼顶时,铅垂线对应的度数是50°,则过AB 中点的水平线对应的是140°,所以此时观察楼顶的仰角度数是40°. 4.(2019·金华)图2,图3是某公共汽车双开门的俯视示意图,ME 、EF 、FN 是门轴的滑动轨道,∠E =∠F =90°,两门AB 、CD 的门轴A 、B 、C 、D 都在滑动轨道上,两门关闭时(图2),A 、D 分别在E 、F 处,门缝忽略不计(即B 、C 重合);两门同时开启,A 、D 分别沿E→M ,F →N 的方向匀速滑动,带动B 、C 滑动;B 到达E 时,C 恰好到达F ,此时两门完全开启,已知AB =50cm ,CD =40cm. (1)如图3,当∠ABE =30°时,BC =_______cm.(2)在(1)的基础上,当A 向M 方向继续滑动15cm 时,四边形ABCD 的面积为_______cm 2.【答案】(1)(90-;(2)2256.图3图2图1B (C )E (A )EF (D )BA【解析】(1)利用直角三角形的性质先求得EB ,CF ,然后进行线段加减即可; (2)根据题意,得S 四边形ABCD =S 梯形AEFD -S △ABE -S △CDF ,计算可得. 解:(1)∵ AB =50,CD =40,∴AB +CD = EB +CF =EF =90.在Rt △ABE 中,∵∠E =90°,∠ABE =30°,∴EB =同理可得CF =∴BC =90-cm ).(2)根据题意,得AE =40, DF =32, EB 30,CF 24, ∴S 四边形ABCD =S 梯形AEFD -S △ABE -S △CDF=12(AE +DF )·EF -12AE ·EB -12CF ·DF =12(40+32)×90-12×40×30-12×24×32 =2256.5. (2019·宁波)如图,某海防哨所O 发现在它的西北方向,距离哨所400米的A 处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B 处,则此时这艘船与哨所的距离OB 约为________米.【答案】566【解析】在Rt △AOH 中,OH =AOcos45°=在Rt △BOH 中,BO =566cos60OH=≈.6.(2019·衢州)如图,人字梯AB ,AC 的长都为2米,当α=50°时,人字梯顶端离地面的高度AD 是米_________(结果精确到0.1m 参考数据;sin50°≈0.77,cos50°≈0.64,tan50°≈1.19).【答案】1.5【解析】由三角函数的定义得:sin α= sin50°=AD AC =2AD≈0.77,所以AD ≈2×0.77=1.54≈1.5米. 三、解答题20.(2019年浙江省绍兴市,第20题,8分 如图1为放置在水平桌面l 上的台灯,底座的高AB 为5cm ,长度均为20cm 的连杆BC ,CD 与AB 始终在同一平面上.(1)转动连杆BC ,CD ,使∠BCD 成平角,∠ABC =150°,如图2,求连杆端点D 离桌面l 的高度DE . (2)将(1)中的连杆CD 再绕点C 逆时针旋转,使∠BCD =165°,如图3,问此时连杆端点D 离桌面l 的高度是增加还是减少?增加或减少了多少?(精确到0.1cm ,参考数据:73.13,41.12≈≈)解:(1)如图2中,作BO ⊥DE 于O .∵∠OEA =∠BOE =∠BAE =90°,∴四边形ABOE 是矩形,∴∠OBA =90°, ∴∠DBO =150°﹣90°=60°,∴OD =BD •sin60°=20(cm ),∴DF =OD +OE =OD +AB =20+5≈39.6(cm ).(2)作DF ⊥l 于F ,CP ⊥DF 于P ,BG ⊥DF 于G ,CH ⊥BG 于H .则四边形PCHG 是矩形, ∵∠CBH =60°,∠CHB =90°,∴∠BCH =30°, ∵∠BCD =165°,∠DCP =45°,∴CH =BC sin60°=10(cm ),DP =CD sin45°=10(cm ),∴DF =DP +PG +GF =DP +CH +AB =(10+10+5)(cm ), ∴下降高度:DE ﹣DF =20+5﹣10﹣10﹣5=10﹣10=3.2(cm ).22.(2019·嘉兴)某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD=140°.初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得∠CDE=70°(示意图2).工作时如图3,动臂BC会绕点B转动,当点A,B,C在同一直线时,斗杆顶点D升至最高点(示意图4).(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC的度数.(2)问斗杆顶点D的最高点比初始位置高了多少米(精确到0.1米)?(参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34, 1.73)【解题过程】(1)如图2-1,过点C作CG⊥AM于点G,∵AB⊥AM,DE⊥AM,∴AB//DE//CG∴∠DCG=180°-∠CDE=110°.∴∠BCG=∠BCD -∠DCG=30°.∴∠ABC=180°-∠BCG=150°.∴动臂BC与AB的夹角为150°.(2)如图2-2,过点C作CP⊥DE于点P,过点BQ⊥DE于点Q交CG于点N.在Rt△CPD中,DP=CD×cos70°=0.51(米)在Rt△BCN中,CN=BC×sin60°≈1.04(米)∴DE=DP+PQ+QE=DP+CN+AB≈2.35(米)如图3,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K.在Rt△CKD中,DK=CD×sin5°≈1.16(米)∴DH=DK+KH≈3.16(米)∴DH-DE≈0.8(米).所以斗杆顶点D的最高点比初始位置高了约0.8米.23.(2019浙江省杭州市,23,12分)(本题满分12分)如图,已知锐角三角形ABC内接于⊙O,OD⊥BC于点D.连接0A.(1)若∠BAC=60°,①求证:OD=12 OA.②当OA=1时,求△ABC面积的最大值.(1)点E在线段0A上.OE=OD.连接DE,设∠ABC=m∠OED.∠ACB=n∠OED(m,n是正数).若∠ABC<∠ACB.求证:m-n+2=0【解题过程】(1)①连接OB、OC,则∠BOD=BOC=∠BAC=60°,∴∠OBC=30°,∴OD=12OB=12OA;②∵BC长度为定值,∴△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD=32,△ABC面积的最大值=12×BC×AD=12×2OBsin60°×32(2)如图2,连接OC,设∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°-∠ABC-∠ACB=180°-mx-nx=12∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°-mx-nx+2mx=180°+mx-nx,∵OE=OD,∴∠AOD=180°-2x,即:180°+mx-nx=180°-2x,化简得:m-n+2=0.23.(2019山东烟台,23,10分)如图所示,一种适用于笔记本电脑的铝合金支架,边OA,OB可绕点O开合,在OB边上有一固定点P,支柱PQ可绕点P转动,边OA上有六个卡孔,其中离点O最近的卡孔为M,离点O最远的卡孔为N.当支柱端点Q 放入不同卡孔内,支架的傾斜角发生変化.将电脑放在支架上,电脑台面的角度可达到六档调节,这样更有利于工作和身体健康.现测得OP 的长为12 cm ,OM 为10cm ,支柱PQ 为8cm .(1)当支柱的端点Q 放在卡孔M 处时,求AOB ∠的度数.(2)当支柱的端点Q 放在卡孔N 处时,20.5AOB ∠=︒,若相邻两孔的距离相等,求此间距.(结果精确到十分位).【解题过程】(1)解:当支柱的端点Q 放在卡孔M 处时,作出该支架的截面图如图(1),过点P 作PE OA ⊥,垂足为E ,此时,12OP =,10OM OQ ==,8PQ =, 因为PE OA ⊥,所以90OEP PEQ ∠=∠=︒,OA设OE x =,所以10EQ OQ OE x =-=-, 在Rt △OPE 中,由勾股定理得,222PE OP PE =-2212x =-,在Rt △PEQ 中,由勾股定理得,222PE PQ EQ =-228(10)x =--, 所以2222128(10)x x -=--,解得9x =,所以9OE =,在Rt △OPE 中,9cos 0.4512OE AOB OP ∠===, 由参考数据表,可得,41AOB ∠=︒.(2)解:当支柱的端点Q 放在卡孔N 处时,作出该支架的截面图如图(2),过点P 作PE OA ⊥,垂足为F ,此时,12OP =,ON OQ =,8PQ =,20.5AOB ∠=︒, 因为PE OA ⊥,所以90OEP PEQ ∠=∠=︒, 在Rt △OPE 中,sin PEAOB OP∠=, 所以sin sin 20.5120.45 4.2PE OP AOB OP =⨯∠=⨯︒=⨯=, 在Rt △PEQ 中,由勾股定理得,6.8FQ ====,在Rt △OPE 中,由勾股定理得,11.24OF ====2212x =-,所以11.24 6.818.04ON OF FQ =+=+=,所以18.04101.655ON OM d --==≈, 所以相邻两孔的距离为1.6cm .22(2019山东威海,22,9分)如图是把一个装有货物的长方体形状的木箱沿着坡面装进汽车货厢的示意图.已OA知汽车货厢高度BG =2米,货厢底面距地面的高度BH =0.6米,坡面与地面的夹角∠BAH =α,木箱的长(FC )为2米,高(EF )和宽都是1.6米.通过计算判断:当sinα=,木箱底部顶点C 与坡面底部点A 重合时,木箱上部顶点E 会不会触碰到汽车货厢顶部.【解题过程】∵BH =0.6,sinα=, ∴AB ==1, ∴AH =0.8,∵AF =FC =2,∴BF =1,作FQ ⊥BG 于点Q ,作EP ⊥FQ 于点P ,∵EF =FB =AB =1,∠EPF =∠FQB =∠AHB =90°,∠EFP =∠FBQ =∠ABH , ∴△EFP ≌△FBQ ≌△ABH , ∴EP =FQ =AH ,BQ =BH ,∴BQ +EP =0.6+0.8=1.4(米)<2米,∴木箱上部顶点E 不会触碰到汽车货厢顶部.20.(2019江西省,20,8分)图1是一台实物投影仪,图2是它的示意图,折线B —A —O 表示固定支架,AO 垂直水平桌面OE 于点O ,点B 为旋转点,BC 可转动,当BC 绕点B 顺时针旋转时,投影探头CD 始终垂直于水平桌面OE ,经测量:AO =6.8cm ,CD =8cm ,AB =30cm ,BC =35cm.(结果精确到01) (1)如图2,∠ABC =70°,BC ∥OE. ①填空:∠BAO = °; ②求投影探头的端点D 到桌面OE 的距离.(2)如图3,将(1)中的BC 向下旋转,当投影探头的端点D 到桌面OE 的距离为6cm 时,求∠ABC 的大小. (参考数:sin70°≈0.94,cos20°≈0.94,sin36.8°≈0.60,cos53.2°≈0.60)35350.63sin 5BH α=【解题过程】解:(1)①如图所示,延长OA 交BC 于点F ,∵BC ∥OE ,OA ⊥OE , ∴∠BFA=∠AOE=90°,∴∠BAO=∠BFA+∠ABC=90°+70°=160°. 答案:160②∵∠BFA=90°,∠ABC=70°,AB =30cm ,sin70°≈0.94, ∴AF=AB ·sin70°≈30×0.94=28.2(cm ). ∵OA=6.8cm ,∴OF=AF+OA=28.2+6.8=35(cm ).又∵CD 始终垂直于水平桌面OE ,且CD =8cm , ∴点D 到桌面OE 的距离为:OF-CD=35-8=27(cm ). (2)如图所示,作BH ⊥CD 于点H ,∵D 到桌面OE 的距离为6cm ,H 到桌面OE 的距离为35cm ,CD =8cm , ∴CH=35-8-6=21(cm ), 又∵BC =35cm ,∠H=90°, ∴sin ∠CBH=6.0533521===BC CH , ∵sin36.8°≈0.60, ∴∠CBH=36.8°. 又∵∠ABH=70°,∴∠ABC=∠ABH-∠CBH=70°-36.8°=33.2°. 20.(2019·山西)某"综合与实践"小组开展了测量本校旗杆高度的实践活动.他们制定了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取他们的平均值作为测量结果,测量数据如下表(不完整).课题测量旗杆的高度任务二:根据以上测量结果,请你帮助该"综合与实践"小组求出学校旗杆GH的高度.(参考数据:sin25.7°≈0.43,cos25.7°≈0.90,tan25.7°≈0.48,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)任务三:该"综合与实践"小组在制定方案时,讨论过"利用物体在阳光下的影子测量旗杆的高度"的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)【解题过程】任务一:平均值=(5.4+5.6)÷2=5.5m任务二:由题意可得,四边形ACDB,ACEH都是矩形,∴EH=AC=1.5,CD=AB=5.5,设EG=xm,在Rt△DEG中,∠DEG=90°,∠GDE=31°,∵tan31°=EGDE,∴DE=tan31x,在Rt△CEG中,∠CEG=90°,∠GCE=25.7°,∵tan25.7°=EGCE,∴CE=tan25.7x,∵CD=CE-DE,∴tan25.7x-tan31x=5.5,∴x=13.2,∴GH=GE+EH=13.2+1.5=14.7.答:旗杆GH的高度为14.7m.任务三:答案不唯一:没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等.22.(2019·娄底)如图(11),某建筑物CD高96米,它的前面有一座小山,其斜坡AB的坡度为i=1:1.为了测量山顶A的高度,在建筑物顶端D处测得山顶A和坡底B的俯角分别为α,β.已知tan2α=,tan4β=,求山顶A的高度AE(C、B、E在同一水平面上).解:如图(11-1),设DA与CB的交点为O.∵96tan tan2DCOOC OCα∠====,∴48OC=同理,∵96tan tan4DCDBCBC BCβ∠====∴24BC=.∴482424OB OC BC=-=-=.设AE x=米,则则由i=1:1得BE x=,12OE x=;∴1242x x+=,∴16x=∴山顶A的高度AE为16米.22.(2019·衡阳)如图,在一次综合实践活动中,小亮要测量一楼房的高度,先在坡面D处测得楼房顶部A的仰角为30°,沿坡面向下走到坡脚C处,然后向楼房方向继续行走10米到达E处,测得楼房顶部A的仰角为60°,已知坡面CD=10米,山坡的坡度i=1,(坡度i是指坡面的铅直高度与水平宽度的比),求楼房AB高度.(结果精确到0.1≈1041)解:设楼房AB的高为x米,则EBx,∵坡度i=1: CD的铅直高度为5米,坡面的水平宽度为米,∴105)x x=-,解得x=15+≈237(米).所以楼房AB的高度约为237米.21.(2019·泰州,21题,10分)某体育看台侧面的示意图如图所示,观众区AC的坡度i为1∶2,顶端C离水平地面AB的高度为10m,从顶棚的D处看E处的仰角α=18°30′,竖直的立杆上C、D两点间的距离为4m,E处到观众区底端A处的水平距离AF为3m,求:⑴观众区的水平宽度AB;⑵顶棚的E处离地面的高度EF.(sin18°30′≈0.32,tan18°30′≈0.33,结果精确到0.1m)第21题图【解题过程】(1)因为AC的坡度i为1∶2,所以12CBAB=,因为BC=10m,所以AB=20m;(2)在Rt△DEG中,∠EDG=18°30′,tan∠EDG=EGGD,GD=FB=FA+AB=23m,所以EG=7.59m,所以EF=EG+GF =EG+DB=EG+DC+CB=21.59≈21.6m,顶棚的E处离地面的高度EF为21.6m.E第21题答图22.(2019·黄冈)如图,两座建筑物的水平距离BC为40m,从A点测得D点的俯角α为45°,测得C点的俯角β为60°.求这两座建筑物AB,CD的高度.≈1.414)【解题过程】22.(2019·陇南)图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,灯臂与底座构成的∠CAB=60°.CD可以绕点C上下调节一定的角度.使用发现:当CD与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为49.6cm.请通过计算说明此时台灯光线是否为最佳?(参考数据:取1.73).解:如图,作CE⊥AB于E,DH⊥AB于H,CF⊥DH于F.∵∠CEH=∠CFH=∠FHE=90°,∴四边形CEHF是矩形,∴CE=FH,在Rt△ACE中,∵AC=40cm,∠A=60°,∴CE=AC•sin60°=34.6(cm),∴FH=CE=34.6(cm)∵DH=49.6cm,∴DF=DH﹣FH=49.6﹣34.6=15(cm),在Rt△CDF中,sin∠DCF===,∴∠DCF=30°,∴此时台灯光线为最佳.21.(2019·株洲)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A处测得汽车前端F的俯角为α,且tanα=13,若直线AF与地面l1相交于点B,点A到地面l1的垂线段AC的长度为1.6米,假设眼睛A处的水平线l2与地面l1平行.(1)求BC的长度;(2)假如障碍物上的点M正好位于线段BC的中点位置(障碍物的横截面为长方形,且线段MN为此长方形前端的边),MN⊥l1,若小强的爸爸将汽车沿直线l1后退0.6米,通过汽车的前端F点恰好看见障碍物的顶部N点(点D为点A的对应点,点F1为点F的对应点).求障碍物的高度.【解题过程】(1)如图,∵l1∥l2∴∠ABC=α∴tan∠ABC=ACBC=tanα=13,∴BC=3AC==⨯3 1.6 4.8(米)∴BC的长度为4.8米。

2019届初三数学中考复习 锐角三角函数和解直角三角形 专项训练 含答案

2019届初三数学中考复习   锐角三角函数和解直角三角形  专项训练 含答案

2019届初三数学中考复习 锐角三角函数和解直角三角形 专项训练1. 在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,如果a 2+b 2=c 2,那么下列结论正确的是( )A .csinA =aB .bcosB =cC .atanA =bD .ctanB =b2. 如图,AB 是⊙O 的直径,C 是⊙O 上的点,过点C 作⊙O 的切线交AB 的延长线于点E ,若∠A =30°,则sin ∠E 的值为( )A.12B.22C.32D.333. 如图,在距离铁轨200米的B 处,观察由南宁开往百色的“和谐号”动车,当动车车头在A 处时,恰好位于B 处的北偏东60°方向上;10秒钟后,动车车头到达C 处,恰好位于B 处的西北方向上,则这时段动车的平均速度是( ).A .20(3+1)米/秒B .20(3-1)米/秒C .200米/秒D .300米/秒 4. 如图,电线杆CD 的高度为h ,两根拉线AC 与BC 相互垂直,∠CAB =α,则拉线BC 的长度为(A ,D ,B 在同一条直线上)( )A.h sin αB.h cos αC.h tan αD .h ·cos α 5. 某楼梯的侧面如图所示,已测得BC 的长约为3.5米,∠BCA 约为29°,则该楼梯的高度AB 可表示为( )A .3.5sin29°米B .3.5cos29°米C .3.5tan29°米 D. 3.5cos29°米6. 如图,一艘轮船在A 处测得灯塔P 位于其北偏东60°方向上,轮船沿正东方向航行30海里到达B 处后,此时测得灯塔P 位于其北偏东30°方向上,此时轮船与灯塔P 的距离是( )A .153海里B .30海里C .45海里D .303海里7. 如图,学校环保社成员想测量斜坡CD 旁一棵树AB 的高度,他们先在点C 处测得树顶B 的仰角为60°,然后在坡顶D 测得树顶B 的仰角为30°,已知斜坡CD 的长度为20 m ,DE 的长为10 m ,则树AB 的高度是( )A.20 3 m B.30 m C.30 3 m D.40 m8. 如图,已知点C与某建筑物底端B相距306米(点C与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处,斜坡CD的坡度(或坡比)i=1∶2.4,在D处测得该建筑物顶端A的俯视角为20°,则建筑物AB的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)( )A.29.1米 B.31.9米 C.45.9米 D.95.9米9. 计算(tan60°)2-4tan60°+4+22cos45°tan60°-tan45°=____.10. 计算sin60°cos30°-tan45°的值是____.11. 计算2cos30°-22sin60°·cos45°=____.12. 计算4cos30°sin60°+(-2)-1-( 2 017-2 016)0=____.13. 计算sin260°+cos60°-tan45°=____.14. (π-2 017)0+(sin60°)-1-|tan30°-3|+38的计算结果为____. 15. 2(2cos45°-sin60°)+244的计算结果为____. 16. |-2|+2sin30°-(-3)2+(tan45°)-1的计算结果为____. 17. (13)-1-2 0170+|-43|-tan60°的计算结果为__________.18. 如图,在四边形ABCD 中,∠BCD 是钝角,AB =AD ,BD 平分∠ABC ,若CD =3,BD =26,sin ∠DBC =33,求对角线AC 的长.19. 在△ABC 中,∠C =150°,AC =4,tanB =18. (1)求BC 的长;(2)利用此图形求tan15°的值.(精确到0.1,参考数据:2≈1.4,3≈1.7,5≈2.2).20. 如图,某校教学楼AB 的后面有一建筑物CD ,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2米的影子CE ;而当光线与地面夹角是45°时,教学楼顶A 在地面上的影子F 与墙角C 有13米的距离(B ,F ,C 在一条直线上).(1) 求教学楼AB 的高度;(2) 学校要在A ,E 之间挂一些彩旗,请你求出A ,E 之间的距离.(结果保留整数,参考数据:sin 22°≈38,cos 22°≈1516,tan 22°≈25)参考答案:1---8 AAABA BBA 9. 3 10. 0 11. 0 12. 32 13. 14 14. 3 15. 2 16. 1 17. 2+3318. 解:如图,过点D 作DE ⊥BC ,交BC 的延长线于点E ,则∠E =90°.∵sin ∠DBC =33,BD =26,∴DE =2 2.∵CD =3,∴CE =1,BE =4,∴BC =3,∴BC =CD ,∴∠CBD =∠CDB.∵BD 平分∠ABC ,∴∠ABD =∠DBC ,∴∠ABD =∠CDB ,∴AB ∥CD ,同理AD ∥BC ,∴四边形ABCD 是菱形,连结AC 交BD 于O 点,则AC ⊥BD ,AO =CO ,BO =DO =6,∴OC =BC 2-BO 2=3,∴AC =2 3.19. 解:(1) 如图,过点A 作AD ⊥BC ,交BC 的延长线于点D.在Rt △ADC 中,AC =4,∵∠ACB =150°,∴∠ACD =30°,∴AD =12AC =2,CD =AC·cos 30°=4×32=2 3.在Rt △ABD 中,tan B =AD BD =2BD =18,∴BD =16,∴BC =BD -CD =16-2 3.(2) 如图,在BC 边上取一点M ,使得CM =AC ,连结AM.∵∠ACB =150°,∴∠AMC =∠MAC =15°,∴tan 15°=tan ∠AMD =AD MD =24+23=12+3≈0.3.20. 解:(1) 如图,过点E 作EM ⊥AB ,垂足为点M.设AB 为x.在Rt △ABF 中,∠AFB =45°,∴BF =AB =x ,∴BC =BF +FC =x +13.在Rt △AEM 中,∠AEM =22°,AM =AB -BM =AB -CE =x -2,∴tan 22°=AM ME =x -2x +13=25,∴x =12.即教学楼的高度为12米.(2) 由(1)可得,ME =BC =x +13=12+13=25.在Rt △AME 中,cos 22°=MEAE ,∴AE =MEcos 22°≈27,即A ,E 之间的距离约为27米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 5
2019年中考数学专题复习第六章三角形第8课时解直角
三角形的应用单元训练

[时间:45分钟]
一、选择题
1.在Rt△ABC中,cosA=,那么sinA的值是( )

A. B. C. D.
1
2
2.在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为

( )

A. B. C. D.
12
5
3.如图D4-1所示,线段AC的垂直平分线交线段AB于点D,

∠A=50°,则∠BDC=( )
A.50° B.100° C.120° D.130°
图D4-1
4.如图D4-2,在△ABC和△DEC中,AB=DE,再添加两个条件
使△ABC≌△DEC,不能添加的一组条件是( )
图D4-2
A.BC=EC,∠B=∠E
B.BC=EC,AC=DC
C.BC=EC,∠A=∠D
D.∠B=∠E,∠A=∠D
5.如图D4-3,点D,E分别为△ABC的边AB,AC的中点,则
△ADE的面积与四边形BCED的面积的比为( )
A.1∶2 B.1∶3
C.1∶4 D.1∶1
图D4-3
6.如图D4-4,在△ABC中,点D是AB边上的一点,若∠ACD=
∠B,AD=1,AC=2,△ADC的面积为1,则△BCD的面积为( )
图D4-4
A.1 B.2 C.3 D.4
二、填空题
7.若等腰三角形的一个内角为80°,则它的顶角为________.
2 / 5

8.如图D4-5,AC,BD相交于点O,∠A=∠D,请你再补充一个
条件,使得△AOB≌△DOC,你补充的条件是______________.
图D4-5
9.[2017·六盘水] 如图D4-6,在平行四边形ABCD中,对角线
AC、BD相交于点O,在BA的延长线上取一点E,连接OE交AD于点
F,若CD=5,BC=8,AE=2,则AF=________.
图D4-6
10.如图D4-7,O为数轴原点,A,B两点分别对应-3,3,作
腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数
轴正半轴于点M,则点M对应的实数为________.
图D4-7
11.一副三角板按如图D4-8所示叠放,则△AOB与△DOC的面积
之比为________.
图D4-8
12.如图D4-9,在△ABC中,按以下步骤作图:①分别以点B、
C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作
直线MN交AB于点D,连接CD.若CD=AC,∠B=25°,则∠ACB的度
数为________.
图D4-9
三、解答题
13.如图D4-10,A,C,D,B四点共线,且AC=BD,∠A=
∠B,∠ADE=∠BCF,求证:DE=CF.
图D4-10
14.如图D4-11,点D,E在△ABC的BC边上,连接AD,
AE.①AB=AC;②AD=AE;③BD=CE.以此三个等式中的两个作为命题
的题设,另一个作为命题的结论,构成三个命题:①②⇒③;
①③⇒②;②③⇒①.
(1)以上三个命题是真命题的为
_____________________________________________________________
___________
_________________________________________________________
_______________;(直接作答)
(2)请选择一个真命题进行证明.(先写出所选命题,然后证明)
图D4-11
15.如图D4-12,在大楼AB的正前方有一斜坡CD,CD=4米,
3 / 5

坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为
60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A,C,E
在同一直线上.
(1)求斜坡CD的高度DE;
(2)求大楼AB的高度.(结果保留根号)
图D4-12
16.如图D4-13,在△ABC中,D是BC边的中点,DE⊥BC交AB
于点E,AD=AC,EC交AD于点F.
求证:(1)△ABC∽△FCD;
(2)FC=3EF.
图D4-13
4 / 5

参考答案
1.B 2.B 3.B
4.C [解析] A选项,已知AB=DE,再加上条件BC=EC,∠B=
∠E可利用SAS证明△ABC≌△DEC,故不合题意;
B选项,已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证
明△ABC≌△DEC,故不合题意;
C选项,已知AB=DE,再加上条件BC=EC,∠A=∠D不能证明
△ABC≌△DEC,故符合题意;
D选项,已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用
ASA证明△ABC≌△DEC,故不合题意.故选C.
5.B
6.C [解析] ∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴
=,∴=,∴AB=4,∴=()2,∴=()2,∴S△ABC=4,∴S△BCD=
S△ABC-S△ACD=4-1=3.
7.20°或80° 8.答案不唯一,如AO=DO
9. [解析] 如图,过点O作OG∥AB交AD于G点,
平行四边形ABCD中,
AB=CD=5,BC=AD=8,BO=DO,
∵OG∥AB,
∴△ODG∽△BDA且相似比为1∶2,△OFG∽△EFA,∴OG=AB=
2.5,AG=AD=4,
∴AF∶FG=AE∶OG=4∶5,∴AF=AG=.
10.
7

11.1∶3 [解析] 首先设BC=x,根据题意可得∠ABC=∠DCB=
90°,AB=BC,∠D=30°,即可求得CD与AB的长及△AOB∽△COD,
又由相似三角形的面积比等于相似比的平方,即可求得△AOB与△DOC
的面积之比.
12.105°
13.证明:∵AC=BD,
∴AC+CD=BD+CD,∴AD=BC.

在△AED和△BFC中,




∠A=∠B,
AD=BC,
∠ADE=∠BCF,
∴△AED≌△BFC,∴DE=CF.

14.解:(1)①②⇒③;①③⇒②;②③⇒①
5 / 5

(2)选择①③⇒②.
证明:∵AB=AC,∴∠B=∠C,又∵BD=CE,
∴△ABD≌△ACE,∴AD=AE.
15.解:(1)在Rt△DCE中,DC=4米,∠DCE=30°,∠DEC=
90°,∴DE=DC=2米.
(2)过D作DF⊥AB,交AB于点F,
∵∠BFD=90°,∠BDF=45°,
∴∠FBD=45°,即△BFD为等腰直角三角形,
设BF=DF=x米,
∵四边形DEAF为矩形,
∴AF=DE=2米,∴AB=(x+2)米,
在Rt△ABC中,∠ABC=30°,
∴BC====(米).
BD=BF=x米,DC=4米,
∵∠DCE=30°,∠ACB=60°,∴∠DCB=90°,
在Rt△BCD中,根据勾股定理得
2x2=+16,
解得x=4+4 或x=4-4 (舍去),
则AB=(6+4 )米.
16.证明:(1)∵AD=AC,∴∠ADC=∠ACB,
∵BD=CD,DE⊥BC,∴∠B=∠ECB,
∴△ABC∽△FCD.
(2)∵△ABC∽△FCD,∴=,
∵D是BC边的中点,∴BC=2CD,
∴=,∴AD=AC=2FD,∴AF=AC.
∵∠ACD=∠ADC,∠B=∠FCD,∠ACF+∠FCD=∠ACD,∠EAD+
∠B=∠ADC,
∴∠EAD=∠ACE,∴△EAF∽△ECA,
∴===,∴EC=2EA=4EF,
∴FC=3EF.

相关文档
最新文档