韩国水质环境标准

合集下载

全球饮用水标准中消毒副产物管控指标对比与启示

全球饮用水标准中消毒副产物管控指标对比与启示

第34卷㊀第6期2021年6月环㊀境㊀科㊀学㊀研㊀究ResearchofEnvironmentalSciencesVol.34ꎬNo.6Juneꎬ2021收稿日期:2020 ̄08 ̄06㊀㊀㊀修订日期:2020 ̄10 ̄10作者简介:肖融(1996 ̄)ꎬ女ꎬ湖南株洲人ꎬxiaorong1996@tongji.edu.cn.∗责任作者ꎬ楚文海(1983 ̄)ꎬ男ꎬ山东嘉祥人ꎬ教授ꎬ博士ꎬ博导ꎬ主要从事饮用水与水环境水质化学风险识别与控制方面的研究ꎬ1world1water@tongji.edu.cn基金项目:国家自然科学基金项目(No.51822808)ꎻ国家重大科技专项独立课题(No.2017ZX07201005)SupportedbyNationalNaturalScienceFoundationofChina(No.51822808)ꎻNationalMajorScienceandTechnologyProjectofChina(No.2017ZX07201005)全球饮用水标准中消毒副产物管控指标对比与启示肖㊀融ꎬ楚文海∗同济大学环境科学与工程学院ꎬ上海㊀200092摘要:饮用水水质安全是关乎千家万户的重大民生问题ꎬ其中消毒工艺是保障饮用水微生物安全不可或缺的重要措施ꎬ然而由消毒剂与前体物反应生成的DBPs(消毒副产物)被发现具有潜在的健康风险ꎬ如致癌及引起发育副作用等.随着对饮用水中DBPs的重视程度不断提高ꎬ世界上多个国家㊁地区或组织将DBPs指标纳入标准.为对我国饮用水水质标准中DBPs指标的制定和修订提出可参考的建议ꎬ比较了国内外饮用水和再生水饮用回用水质标准中的DBPs指标ꎬ包括DBPs种类㊁对应的浓度限值和监测要求等.结果表明:①我国饮用水水质标准中涵盖的DBPs种类较多ꎬ其中地方标准相较于国标而言对DBPs指标的要求更为严格ꎬ但较少考虑综合性指标(如总有机卤素)和高毒性含氮DBPs(如卤乙腈)ꎻ②国外多部饮用水水质标准或准则中包含一些无浓度限值规定但已知具有较高健康风险的DBPsꎬ此举可指导有关部门进一步开展浓度调研和毒性试验ꎬ为未来水质标准的制定提供参考依据.研究显示ꎬ我国饮用水标准中DBPs指标需要考虑综合性指标的选取与管控以及高风险指标的甄别和筛查ꎬ另外还需因地制宜加强地方性标准的建设工作.关键词:消毒副产物ꎻ饮用水ꎻ再生水饮用回用ꎻ水质标准中图分类号:X52㊀㊀㊀㊀㊀文章编号:1001 ̄6929(2021)06 ̄1328 ̄10文献标志码:ADOI:10 13198∕j issn 1001 ̄6929 2020 10 26DisinfectionBy ̄ProductRegulatoryComplianceinGlobalDrinkingWaterStandards:ComparisonandEnlightenmentXIAORongꎬCHUWenhai∗CollegeofEnvironmentalScienceandEngineeringꎬTongjiUniversityꎬShanghai200092ꎬChinaAbstract:Drinkingwatersafetyisamajorissuerelatedtothelivesofmillionsoffamilies.Disinfectionisanindispensablemeasuretoensurethemicrobiologicalsafetyofdrinkingwater.Howeverꎬitisreportedthatdisinfectionby ̄products(DBPs)formedbythereactionofdisinfectantswithprecursorsareassociatedwithpotentialhealthriskssuchascanceranddevelopmentaleffects.WiththegrowingconcernaboutDBPsindrinkingwaterꎬmanycountriesꎬregionsandorganizationsintheworldhaveconsideredDBPsintheirdrinkingwaterqualitystandards.InordertoprovidesuggestionsfortheformulationandrevisionofdomesticdrinkingwaterqualitystandardsrelatedtoDBPsꎬthisstudycomparesDBPsregulatorycompliance(e.g.ꎬDBPspeciesꎬregulatorylimitsorguidelinevaluesꎬmonitoringrequirementsꎬetc.)mentionedindrinkingwaterstandardsinChinaandabroad.Theresultsshowthat:(1)ThereareavarietyofDBPsindomesticdrinkingwaterqualitystandards.ComparedtonationalstandardsꎬlocalstandardshavestricterrequirementsforDBPsꎬbutonlyafewdomesticstandardsconsidercollectiveparameters(e.g.ꎬtotalorganichalogen)andhighlytoxicDBPs(e.g.ꎬhaloacetonitrile).(2)SeveralforeignstandardsorguidelineslistsomeDBPsthathavenoregulatorylimitsbutareknowntoposehealthrisksꎬwhichcanprovideguidanceforrelevantdepartmentstoconductfurtheroccurrencesurveysandtoxicitytestsꎬandmakeregulatorydecisionsinthefuture.AsfortheenlightenmentꎬitissuggestedtoselectandregulatecollectiveparametersandconsidertheidentificationofpriorityDBPs.Besidesꎬitisnecessarytofocusonestablishinglocalstandardsbasedonlocalconditions.Keywords:disinfectionby ̄productsꎻdrinkingwaterꎻpotablereuseꎻwaterqualitystandards第6期肖㊀融等:全球饮用水标准中消毒副产物管控指标对比与启示㊀㊀㊀㊀㊀饮用水消毒是20世纪人类公共健康领域最大成就之一ꎬ在水传播疾病的控制和饮用水安全的保障方面ꎬ消毒工艺发挥了不可替代的作用.但是在灭活病原微生物㊁抑制供水管网中细菌滋生的同时ꎬ消毒剂会与水中天然有机物㊁人为污染物或无机卤素原子发生化学反应ꎬ进而产生多种具有潜在健康风险的DBPs(消毒副产物)[1 ̄2].毒理学研究显示ꎬ大部分已被识别的DBPs具有细胞毒性㊁神经毒性㊁基因毒性以及致癌㊁致畸和致突变的特性[3 ̄4].此外ꎬ流行病学研究表明ꎬ长期饮用含高浓度THMs(三卤甲烷)的饮用水可能致使多种健康问题产生ꎬ包括膀胱癌㊁幼儿发育问题和孕妇流产等[5 ̄7].自1974年TCM(三氯甲烷)在加氯消毒的水中被发现后[8 ̄9]ꎬDBPs相关领域研究快速发展.随着对饮用水安全的重视程度不断提高ꎬ世界上多个国家㊁地区或组织制定了饮用水水质标准ꎬ并在持续进行更新与修订(见图1)ꎬ包括多种DBPs在内的新兴微污染物被纳入管控范围[10 ̄11].此外ꎬ全球水资源短缺和水环境污染问题日益加剧ꎬ再生水饮用回用作为一种现实可靠的饮用水补充方式受到了广泛关注ꎬ其中污水处理后排放至饮用水水源及其他再生水饮用回用方式也对DBPs类水质指标进行了限值要求或风险值建议[12].一个国家或地区对饮用水安全的重视程度与其发展水平有很大关联ꎬ且相关水质标准的制定会受经济水平和水质监测能力影响.国内外饮用水水质标准对微生物指标㊁感官指标㊁化学指标及放射性核素指标的要求不尽相同ꎬ该文的主要比较对象选定为DBPs指标ꎬ对比分析了全球各大洲多个国家㊁地区或国际性组织颁布的数十部饮用水及再生水饮用回用水质标准ꎬ旨在通过比较国内外有关规定为我国未来相关标准的制定㊁修订以及饮用水安全的保障提供可参考的建议.图1㊀多个国家、地区或组织饮用水水质标准设立的时间轴Fig.1Timelineofdrinkingwaterstandardssetbyvariouscountriesꎬregionsororganizations1㊀全球饮用水水质标准中的消毒副产物管控指标㊀㊀表1列举了本文涉及的国家㊁地区或组织颁布的数十部相应的水质标准或指南ꎬ主要涉及亚洲㊁欧洲㊁美洲㊁大洋洲㊁非洲等国家和WHO(世界卫生组织)等.1 1㊀亚洲国家1 1 1㊀中国就我国饮用水国标而言ꎬ1985年发布的«生活饮用水卫生标准»(GB5749 1985)仅考虑了TCM1种DBPꎬ而后续修订的«生活饮用水卫生标准»(GB5749 2006)对多种DBPs进行了规定ꎬ包括4种THMs㊁2种HAAs(卤乙酸)㊁1种HAL(卤乙醛)和3种无机DBPs[13].我国台湾地区现行的饮用水水质标准是以 台湾 行政院 环境保护署 于1998年颁布的环署毒字第0004428号令为基础㊁经历约6次修订后得到ꎬ其中最新一次修订于2017年完成ꎬ现9231㊀㊀㊀环㊀境㊀科㊀学㊀研㊀究第34卷㊀㊀㊀表1㊀该文涉及的国家、地区或组织以及相应水质标准或指南类型行标准中涵盖的DBPs指标包括THM4㊁HAA5㊁溴酸盐及亚氯酸盐[14].上海市于2018年出台了我国第一部饮用水地方标准上海市«生活饮用水水质标准»(DB31∕T1091 2018)ꎬ该地标一方面对一些国标内原有DBPs进行了更严格的规定ꎬ另一方面还新增了高风险NAs(亚硝胺)类DBPs指标NDMA(N ̄亚硝基二甲胺)[15].2019年ꎬ江苏省发布了«江苏省城市自来水厂关键水质指标控制标准»(DB32∕T3701 2019)ꎬ针对不同水源和处理工艺对自来水厂出水中的DBPs进行规定[16].2020年ꎬ深圳市«生活饮用水水质标准»(DB4403∕T60 2020)正式发布ꎬ该地标同样对国标内原有DBPs进行了更严格规定并将NDMA列为水质非常规指标ꎬ此外还将两种高毒性碘代DBPs IAA(碘乙酸)和DCIM(二氯一碘甲烷) 纳入生活饮用水水质参考指标[17].1 1 2㊀日本日本现行饮用水水质标准是以2003年厚生劳动省颁布的第101号厚生省令为基础ꎬ经历约7次修订后形成ꎬ该标准将水质指标分为 法定标准项目 水质管理需设目标限值的补充项目 以及 需进一步研究的项目 三类[18].其中ꎬ 法定标准项目 内的水质指标必须满足规定的限值要求ꎻ 水质管理需设目标限值的补充项目 是一系列由于浓度较低或暂有毒性数据不充分而未被列入法定标准的物质ꎬ这些物质可能会在天然水体或饮用水中存在ꎬ在供水时需要引起关注ꎻ而 需进一步研究的项目 是一些在饮用水中浓度水平或毒性风险未知ꎬ未被纳入法定标准和补充项目ꎬ但在未来研究中有必要关注的物质.表2列出了日本现行饮用水水质标准中的DBPs指标以及对应标准值或目标值.1 1 3㊀亚洲其他国家新加坡[19]和菲律宾[20]对DBPs指标的规定几乎与WHO现行饮用水水质准则一致ꎬ仅有个别指标存在差异.韩国[21]和马来西亚[22]饮用水水质标准均包含对3种HANs指标的限值规定ꎬ但两国标准未考虑无机DBPs指标.印度[23]饮用水标准将THMs归类为有毒化学物质并分别为其设置了饮用水中可接受限值ꎻ以色列[24]饮用水标准要求THMs总浓度㊁溴酸盐浓度以及氯酸盐和亚氯酸盐浓度加和不能超过规定限值ꎻ另外ꎬ沙特阿拉伯[25]为TCM和TCAL(三氯乙醛)设置了饮用水中的浓度限值.1 2㊀欧洲国家1 2 1㊀欧盟成员国欧洲共同体官方杂志于1998年颁布针对欧盟成员国的饮用水水质指令(98∕83∕EC)ꎬ随后于2003年㊁2009年和2015年分别进行修订ꎬ现行的饮用水水质标准对各污染物指标限值仍沿用欧盟指令98∕83∕EC中的规定ꎬ涵盖的DBPs指标包括溴酸盐和4种THMs总浓度[26].值得说明的是ꎬ欧盟饮用水指令还对需要满足水质要求的用水类型做出了规定ꎬ其中必0331第6期肖㊀融等:全球饮用水标准中消毒副产物管控指标对比与启示㊀㊀㊀㊀㊀㊀表2㊀日本现行饮用水水质标准中的DBPs指标须满足DBPs浓度限值要求的用水类型包括配水管网供水㊁水箱供水以及食品生产用水.除欧盟颁布的饮用水水质指令外ꎬ部分欧盟国家对饮用水水质的要求更高.例如ꎬ欧盟规定4种THMs总浓度不能超过100μg∕Lꎬ而德国的要求则为50μg∕L[27].1 2 2㊀俄罗斯俄罗斯生活饮用水水质标准于2001年发布ꎬ2002年1月开始实施ꎬ迄今经历了约3次修订.该标准不仅对水质指标进行限值规定ꎬ还会依据该种物质的毒性㊁蓄积性及远期效应等危害程度对其进行分类ꎬ其中1级㊁2级㊁3级和4级分别代表非常危险㊁高危险㊁危险和轻危险ꎬ标准中DBPs指标的水质特性及危害等级如表3所示[28].值得关注的是ꎬ碘代THMs早在20世纪70年代就被识别为饮用水中的DBPsꎬ但早期有关其对水质的影响主要关注碘代THM引发的嗅味问题ꎬ其中TIM(三碘甲烷)的嗅阈值(0 03~1μg∕L)在所有碘代THMs中最低[2ꎬ29].近年来ꎬ毒理学研究结果显示碘代DBPs具有高毒性ꎬ所有被测碘代THMs中TIM的细胞毒性潜力最高[30].表3㊀被列入俄罗斯饮用水标准中DBPs的特性及危害等级1 3㊀美洲国家1 3 1㊀美国1979年ꎬUSEPA(美国环境保护局)首次对饮用水中4种THMs的年均总浓度进行了规定ꎻ1998年ꎬUSEPA更改了THM4指标的MCL(最大污染物水平)ꎬ同时首次将5种HAAs以及两种无机物(溴酸盐和亚氯酸盐)纳入标准[31].2006年ꎬ为进一步保证每个用户点的供水安全ꎬUSEPA在保持标准内DBPs种类和对应MCL不变的情况下修改了对水质监测取样位置的要求[32].总的来说ꎬ现行美国国家饮用水水质标准(EPA816 ̄F ̄09 ̄004)中包含的DBPs指标有THM4㊁HAA5㊁溴酸盐和亚氯酸盐[33].USEPA的安全饮用水法于1974年颁布ꎬ并于1986年和1996年各修订一次.其中1996年的修订要求USEPA基于健康影响和浓度信息于每5年更新一次CCL(污染物候选名单)ꎬ筛选出需优先控制的污染物进而进行信息收集和法规制定.由此可见ꎬ列于CCL上的污染物虽暂未被纳入饮用水水质标准ꎬ但其已被证明或被认为存在于饮用水中且具有极高的健康风险ꎬ将来可能被纳入标准.此外ꎬ1996年1331㊀㊀㊀环㊀境㊀科㊀学㊀研㊀究第34卷的修订还要求USEPA在已有CCL的基础上对标准外污染物进行监测ꎬUCMR(标准外污染物监测项目)也是每5年实施一次ꎬ用以了解某种污染物在饮用水中的检出频率和浓度分布ꎬ从而为新兴污染物的健康风险评估以及相关法规的制定提供数据支撑.被列入CCL和UCMR的DBPs如表4所示.值得说明的是ꎬ为更好地了解标准内HAAs(即HAA5)与现有标准外DBPs在饮用水中的共存现状ꎬHAA5指标也被纳入第4次UCMR中.表4㊀被USEPA纳入CCL和UCMR的DBPs指标Table4DBPsitemsinCCLandUCMRproposedbyUSEPA名称时间DBPs种类CCL32009年氯酸盐㊁NDEA㊁NDMA㊁NDPA㊁NDPhA㊁NPYRCCL42016年氯酸盐㊁NDEA㊁NDMA㊁NDPA㊁NDPhA㊁NPYRUCMR22007 2011年NDEA㊁NDMA㊁NDBA㊁NDPA㊁NMEA㊁NPYRUCMR32012 2016年氯酸盐UCMR42017 2021年HAA5㊁HAA6Br㊁HAA9㊀㊀注:NDEA表示N ̄亚硝基二乙基胺ꎻNDPA表示N ̄亚硝基二丙基胺ꎻNDPhA表示N ̄亚硝基二苯胺ꎻNPYR表示N ̄亚硝基吡咯烷ꎻNDBA表示N ̄亚硝基二丁基胺ꎻNMEA表示N ̄亚硝基甲基乙基胺ꎻHAA5指MCAA㊁DCAA㊁TCAA㊁MBAA㊁DBAAꎻHAA6Br指MBAA㊁DBAA㊁TBAA㊁BCAA㊁BDCAA㊁CDBAAꎻHAA9指MCAA㊁DCAA㊁TCAA㊁MBAA㊁DBAA㊁TBAA㊁BCAA㊁BDCAA㊁DBCAA.㊀㊀美国加州的卫生服务部(现饮用水部门)于1998年设置了NDMA的通知浓度ꎬ并分别于2004年和2005年设置了NDEA和NDPA的通知浓度(均为10ng∕L)ꎬ通知浓度是加州饮用水部门基于健康风险设立的建议值ꎬ当饮用水中污染物浓度高于此值时当地有关部门将采取特定措施[34].美国马萨诸塞州环境保护部官网上发布有地方性饮用水水质标准及指南ꎬ以求在美国国家安全饮用水法下进一步保障马萨诸塞州公共饮用水的水质安全ꎬ除USEPA标准内的DBPs指标需满足MCL要求外ꎬ当地环境保护部为TCM和NDMA两种DBPs设置了浓度参考值[35].1 3 2㊀加拿大加拿大饮用水水质标准及相应的技术文件由加拿大卫生部联合联邦 ̄省区饮用水委员会和其他政府部门共同颁布ꎬ自1968年颁布以来ꎬ加拿大饮用水标准定期进行修订更新.1978年ꎬ加拿大有关部门要求饮用水中4种THMs总浓度不能超过350μg∕L[36]ꎬ后于2006年修改了THM4浓度限值[37].2008年ꎬ氯酸盐㊁亚氯酸盐和HAA5成为加拿大饮用水标准内DBPs指标.随后ꎬ加拿大卫生部分别于2010年和2018年将NDMA和溴酸盐纳入标准[38].此外ꎬ加拿大安大略省[39]在2002年安全饮用水法案下制定了地方性饮用水水质标准(安大略省饮用水水质标准169∕03)ꎬ该地标中NDMA浓度限值低于加拿大国家标准ꎬ其余DBPs指标与加拿大国标一致.1 4㊀大洋洲国家1 4 1㊀澳大利亚现行的澳大利亚饮用水标准是在澳大利亚饮用水水质准则(2011版)的基础上经多次修订形成的3 5版本ꎬ该标准对一系列DBPs进行了规定ꎬ包括4种THMs(单独指标和总浓度)㊁3种氯代HAAs㊁1种HAL㊁4种HANs㊁1种HNM(卤代硝基甲烷)㊁NDMA㊁MX和3种无机DBPs[40].值得说明的是ꎬ其中HANs㊁HNM㊁MX和氯酸盐由于有效数据不足而未设定健康指导值ꎬ但水质标准中的情况说明章节介绍了该类DBPs的检测方法㊁控制技术和健康风险等内容ꎬ证明这些物质与饮用水安全息息相关.1 4 2㊀新西兰现行的新西兰饮用水标准是在新西兰饮用水标准(2005版)基础上修订得到的2018年版本ꎬ该标准为4种THMs㊁3种氯代HAAs㊁2种HANs和3种无机DBPs的浓度设置了最大可接受值[41].除设置污染物限值以保障饮用水安全和公共健康外ꎬ新西兰饮用水标准还强调应尽可能地减少不必要的水质监测ꎬ为此该标准依据健康风险对规定的水质参数进行了优先级分类ꎬ不同级别的水质参数具有相应的遵从准则㊁采样地点和监测频率.DBPs在新西兰现行标准中被归类至2b类水质参数ꎬ标准要求在整个配水管网区域对DBPs指标实施采样与监测.1 5㊀非洲国家多个非洲国家也对饮用水中的DBPs指标做出浓度限值要求ꎬ其中尼日利亚[42]㊁肯尼亚[43]㊁赞比亚[44]和南非[45]仅考虑了THMs指标ꎬ而埃及和苏丹对多种有机DBPs和无机DBPs做出了限值规定[25].值得说明的是ꎬ南非生活用水水质指南中要求THMs总浓度不得超过100μg∕L[46]ꎬ而南非饮用水标准SANS241 ̄1:2015针对THMs指标的规定与WHO饮用水水质准则(第4版)一致ꎬ需说明的是ꎬ南非饮用水标准属于强制性法律性文件.1 6㊀WHOWHO现行的饮用水标准是在2011年出版的饮用水水质准则(第4版)基础上进行的第一版增编ꎬ回顾WHO饮用水准则的发展历程可知ꎬ21世纪前仅TCM被纳入标准ꎬ但随着DBPs研究领域的不断发展以及相关研究成果的持续累积ꎬ数十种DBPs指标被2331第6期肖㊀融等:全球饮用水标准中消毒副产物管控指标对比与启示㊀㊀㊀纳入到第3版和第4版饮用水水质准则中.值得指出的是ꎬ准则中一些DBPs由于浓度水平远低于健康风险值或现有数据不足以制定指导值而没有设定的浓度限值ꎬ但情况说明章节涵盖了该类DBPs的浓度水平及健康风险等内容ꎬ证明这些物质同样需引起重视.在现行的WHO饮用水水质准则中ꎬ被列入准则但未设定指导值的DBPs包括3种溴代HAAs(BCAA㊁MBAA和DBAA)㊁1种HAL(TCAL)㊁2种HANs(BCAN㊁TCAN)㊁1种HNM和MX[47].WHO现行标准为4种THMs㊁3种HAAs㊁2种HANs㊁NDMA及3种无机DBPs设置了指导值.2㊀国内外水质标准中消毒副产物管控指标对比分析2 1㊀饮用水标准中消毒副产物管控指标对比分析表5汇总了DBPs指标在国内外饮用水标准中的限值或指导值.表5中涉及的水质标准均对THMs类DBPs做出规定ꎬ其中针对THM4的要求主要可分为两大类ꎬ第一类是规定各种THM实测浓度与对应限值的比值之和ꎬ中国㊁WHO㊁南非㊁新西兰及一些东南亚国家∕组织颁布的水质标准均是通过该方式管控饮用水中的THMsꎻ第二大类即为规定4种THM的总浓度值ꎬ采用这一方式的国家和地区有美国㊁加拿大㊁欧盟㊁澳大利亚㊁日本㊁韩国以及中国台湾地区等.总的看来ꎬ我国饮用水水质标准中涵盖的DBPs种类较多ꎬ其中地标相较于国标而言对DBPs指标的要求更为严格ꎬDCIM㊁IAA及NDMA等高毒性DBPs逐步被纳入地方标准.就HAAs而言ꎬ我国国标及地标多是针对单种氯代HAAs(除台湾地区标准外)ꎬ而非像美国㊁加拿大一样对更高毒性的溴代HAAs以及HAA5类综合性指标进行管控.近年来多篇文献强调HANs对饮用水DBPs总毒性的贡献值不容忽视[48 ̄50]ꎬ日本㊁韩国㊁新西兰等国家以及WHO均将HANs纳入标准ꎬ2020年上海在国内率先发布«饮用水中N ̄二甲基亚硝胺㊁二氯乙腈㊁二溴乙腈水质标准»(T∕SAWP0001 2020)团标ꎬ且限值要求严于WHO.值得关注的是ꎬUSEPA会定期筛选出优先控制污染物清单并对其实施调研与监测ꎬ另外在日本㊁澳大利亚以及WHO饮用水水质标准或指南中ꎬ有一部分DBPs并未设置浓度限值但由于健康风险较高而被列入标准或指南中ꎬ这一做法可以指导学者和工程技术人员开展健康效应引导的DBPs风险评估与浓度限值推导研究ꎬ为未来水质标准的制定和修订提供参考依据.2 2㊀污水排放∕再生水饮用回用标准中消毒副产物管控指标对比分析尽管现如今全球90%的人口拥有基本的饮用水源ꎬ但水源污染现象仍很普遍ꎬ世界范围内至少有20亿人使用被粪便污染的饮用水源ꎬ而由水源污染引发的水传播疾病每年影响的人数高达290万[51].再生水饮用回用作为一种现实可靠且受气候影响相对较小的饮用水补充方式受到了很多关注ꎬ其可分为直接饮用回用㊁间接饮用回用以及无计划间接补充饮用水水源3类[12].表6展示了全球多地污水排放∕再生水饮用回用水质标准中DBPs指标的规定限值或推荐风险浓度值.虽然我国的再生水回用标准主要针对工业生产㊁城市杂用和景观环境等领域ꎬ但上游城市排污单位向环境水体排放处理后的污水ꎬ随后下游城市从受纳水体中取水作为原水这种情况属于再生水饮用回用中的无计划间接补充方式.我国«城镇污水处理厂污染物排放标准»(GB18918 2002)将TCM和AOX(可吸附有机卤化物)列入选择控制项目ꎬTCM和AOX的最高允许排放浓度分别为0 3和1mg∕L[52].北京市«水污染物综合排放标准»(DB11∕307 2013)要求排入北京市GB3838 2002«地表水环境质量标准»Ⅱ类㊁Ⅲ类水体及其汇水范围的污水执行A排放限值ꎬ其中TCM和AOX的A排放限值分别为0 06和0 5mg∕L[53].此外ꎬTCM和AOX指标在上海市«污水综合排放标准»(DB31∕199 2018)中被列为第2类污染物ꎬ当排污单位向敏感水域(GB3838 2002中Ⅲ类环境功能及以上水域)直接排放水污染物时需对该类污染物执行一级标准ꎬ即当受纳水体后续作为饮用水水源时污水中TCM和AOX的排放限值分别为0 06和0 5mg∕L[54].USEPA污水再生利用指南(2012版)建议ꎬ当再生水间接饮用回用时ꎬ处理设施排放点的再生水需要满足USEPA的饮用水水质标准[55].美国NRC(国家研究理事会)列出了24种再生水回用时需关注的化学物质并基于已有的水质标准或数据库资料给出了每种物质的风险浓度值ꎬ其中包括11项DBPs指标[56].美国加州要求再生水饮用回用时的水质需满足USEPA饮用水水质标准ꎬ此外NDMA浓度不可超过10ng∕L[55ꎬ57]ꎻ而美国佛罗里达州同样要求再生水饮用回用时的水质需满足USEPA饮用水水质标准ꎬ另外TOX(总有机卤素)的月均值不可超过0 2mg∕L[55ꎬ57].考虑到澳大利亚多地面临着水资源短缺问题ꎬ澳大利亚多个委员会联合颁布了有关使用替代性水源(处理后污水㊁中水和雨水)的水循环利用指南.针对再生水补充饮用水供应ꎬ该指南列出了在处理后污水3331表5㊀DBPs在不同国家、地区或组织的饮用水水质标准中的限值或指导值汇总Table5AsummaryofDBPsregulatorylimitsorguidelinevaluesindrinkingwaterstandardsetbydifferentcountriesꎬregionsandorganizationsμg∕L项目三卤甲烷(THMs)卤乙酸(HAAs)卤乙醛(HALs)卤乙腈(HANs)亚硝胺(NAs)无机DBPsTCMBDCMDBCMTBMTHM4DCIMTIMMCAADCAATCAAHAA5IAATCALDCANDBANTCANNDMA溴酸盐亚氯酸盐氯酸盐亚洲欧洲美洲大洋洲非洲中国国标60601001001a501001010700700中国上海60601001000 5a255050 15700700中国江苏50b∕40c601001000 8ab∕0 7ac501008bc10b∕8c500bc500bc中国深圳603060801a10d253020d100 15600600中国台湾806010700日本60301009010020303020e10e60f0 1f10600e600韩国803010010010030901004马来西亚200601001001a50100901001新加坡300601001001a205020020700 110700700菲律宾300601001001a2050200207010700700印度20060100100以色列100101000g1000g沙特阿拉伯3070欧盟10010德国5010俄罗斯20030301000 250500020020020000美国8060101000美国加州80600 01h101000美国马萨诸塞州70i80600 01i101000加拿大100800 041010001000加拿大安大略省100800 0091010001000澳大利亚2501501001001000 120800新西兰400601501001a2050200208010800800埃及10010901025200苏丹150407575607517150尼日利亚1肯尼亚30赞比亚30南非300601001001aWHO300601001001a205020020700 110700700㊀㊀注:THM4指TCM㊁BDCM㊁DBCM㊁TBMꎻHAA5指MCAA㊁DCAA㊁TCAA㊁MBAA㊁DBAAꎻa表示各种THM实测浓度与对应限值的比值之和ꎻb表示自来水厂水处理工艺为常规工艺ꎻc表示自来水厂水处理工艺为常规工艺与深度处理工艺的组合ꎻd表示中国深圳地方标准中的参考指标限值ꎻe表示日本饮用水标准中的水质管理项目ꎬ对应的浓度限值为目标值ꎻf表示日本饮用水标准中的需进一步研究的项目ꎬ对应的浓度限值为目标值ꎻg表示氯酸盐和次氯酸盐的浓度之和ꎻh表示美国加州通知浓度ꎻi表示美国马萨诸塞州浓度指导值.表6㊀DBPs在不同国家、地区再生水饮用回用水质标准中的限值或指导值汇总Table6AsummaryofDBPsregulatorylimitsorguidelinevaluesinstandardsforpotablereusesetbydifferentcountriesandregionsμg∕L项目三卤甲烷(THMs)卤乙酸(HAAs)卤乙腈(HANs)亚硝胺(NAs)无机DBPs其他指标TCMBDCMDBCMTBMTHM4MBAADCAADBAATCAAHAA5DCANDBANBCANNDMANDEA溴酸盐亚氯酸盐氯酸盐TOX亚洲美洲大洋洲非洲中国国标3001000a中国上海60500a中国北京60500a美国EPA8060101000美国NRC8080808060606020700 000710美国加州80600 01101000美国佛罗里达州8060101000200澳大利亚20061001000 3510010020 70 010 01澳大利亚珀斯2000 1700南非300601001001b纳米比亚40㊀㊀注:THM4指TCM㊁BDCM㊁DBCM㊁TBMꎻHAA5指MCAA㊁DCAA㊁TCAA㊁MBAA㊁DBAAꎻa表示AOX以氯计ꎻb表示各种THM实测浓度与对应限值的比值之和.㊀㊀㊀环㊀境㊀科㊀学㊀研㊀究第34卷中检测到的上百种污染物及其最大检出浓度ꎬ其中DBPs类污染物包括4种THMs㊁3种HAAs㊁2种HANs和2种NAsꎬ指南还基于已有的污染物健康风险和毒理学信息计算得到每种物质的浓度指导值[58].此外ꎬ澳大利亚珀斯Beenyup再生水回用计划列出了10余项回用水水质指标ꎬ其中DBPs指标包括1种THM㊁1种NA和1种无机DBP[12].南非属于半干旱国家ꎬ其中南非eMalahleni的再生水回用项目是解决当地水资源短缺和水环境污染问题的一项重要举措ꎬ该项目要求每日进行现场水质监测ꎬ水质需满足南非饮用水国家标准SANS241[12].纳米比亚Windhoek早在20世纪60年代就开始实施再生水直接饮用回用项目ꎬ这是全球第一个有计划的再生水补充饮用水实例.在经历多次回用水系统改造和相关水质标准修订后ꎬ如今当地MarkVI水厂要求出厂水中THMs总浓度不可超过40μg∕L[12].3㊀结论与建议a)综合性指标.考虑到分析识别饮用水中所有卤代DBPs并在进行毒性测试和浓度调研后制定相应标准值的难度较大ꎬ我国未来可考虑将HAA5㊁TOX等综合性指标纳入饮用水水质标准ꎬ在保证消毒效果和微生物安全的情况下对该类综合性指标进行管控ꎬ实现我国饮用水水质的进一步提升.b)高风险指标.早期有关DBPs的风险评估方法主要关注其毒性大小或浓度高低ꎬ而现如今的研究则强调需基于毒性和浓度两方面综合评价某种DBPs的健康风险ꎬ继而结合各地水质特征和水厂工艺特点提出优先控制清单.后续有关部门应开展健康效应引导的DBPs风险评估与浓度限值推导研究ꎬ并以检出率㊁浓度水平㊁水厂处理效果以及对其实施优先控制的必要性和可行性等因素作为评价指标.这些高风险指标的甄别和筛查可为未来相关水质标准的制定提供参考依据ꎬ在水源复合污染程度加剧的现状下保障饮用水的化学安全.c)地方性指标.由于国家标准需考虑各地区经济发展水平以及监测管控能力ꎬ且不同地区的水源类型和饮用水处理技术水平不尽相同ꎬ则在考虑各地可行性㊁水质特征以及水厂工艺的情况下制定地方标准也是非常必要的ꎬ因地制宜加强区域性标准的建设工作ꎬ由此推动领域发展并提升供水水质.参考文献(References):[1]㊀RICHARDSONSD.Disinfectionby ̄productsandotheremergingcontaminantsindrinkingwater[J].Trac ̄TrendsinAnalyticalChemistryꎬ2003ꎬ22(10):666 ̄684.[2]㊀RICHARDSONSDꎬPLEWAMJꎬWAGNEREDꎬetal.Occurrenceꎬgenotoxicityꎬandcarcinogenicityofregulatedandemergingdisinfectionby ̄productsindrinkingwater:areviewandroadmapforresearch[J].MutationResearch∕ReviewsinMutationResearchꎬ2007ꎬ636(1∕2∕3):178 ̄242.[3]㊀WAGNEREDꎬPLEWAMJ.CHOcellcytotoxicityandgenotoxicityanalysesofdisinfectionby ̄products:anupdatedreview[J].JournalofEnvironmentalSciencesꎬ2017ꎬ58:64 ̄76.[4]㊀GOPALKꎬTRIPATHYSSꎬBERSILLONJLꎬetal.Chlorinationbyproductsꎬtheirtoxicodynamicsandremovalfromdrinkingwater[J].JournalofHazardousMaterialsꎬ2007ꎬ140(1∕2):1 ̄6. [5]㊀HRUDEYSE.Chlorinationdisinfectionby ̄productsꎬpublichealthrisktradeoffsandme[J].WaterResearchꎬ2009ꎬ43(8):2057 ̄2092.[6]㊀CANTORKPꎬLYNCHCFꎬHILDESHEIMMEꎬetal.DrinkingwatersourceandchlorinationbyproductsⅠ.riskofbladdercancer[J].Epidemiologyꎬ1998ꎬ9(1):21 ̄28.[7]㊀HILDESHEIMMEꎬCANTORKPꎬLYNCHCFꎬetal.DrinkingwatersourceandchlorinationbyproductsⅡ.riskofcolonandrectalcancers[J].Epidemiologyꎬ1998ꎬ9(1):29 ̄35. [8]㊀BELLARTAꎬLICHTENBERGJJꎬKRONERRC.Theoccurrenceoforganohalidesinchlorinateddrinkingwaters[J].JournalAmericanWaterWorksAssociationꎬ1974ꎬ66(12):703 ̄706. [9]㊀ROOKJJ.Formationofhaloformsduringchlorinationofnaturalwaters[J].WaterTreatmentExaminationꎬ1974ꎬ23:234 ̄243. [10]㊀WANGXiaomaoꎬMAOYuqinꎬTANGShunꎬetal.Disinfectionbyproductsindrinkingwaterandregulatorycompliance:acriticalreview[J].FrontiersofEnvironmentalScience&Engineeringꎬ2015ꎬ9(1):3 ̄15.[11]㊀POLENENISR.Disinfectionby ̄productsindrinkingwater[M].OxfordꎬUnitedKingdom:Butterworth ̄Heinemannꎬ2020:305 ̄335. [12]㊀WHO.Potablereuse:guidanceforproducingsafedrinking ̄water[M].Geneva:WHOꎬ2017.[13]㊀中华人民共和国卫生部ꎬ中国国家标准化管理委员会.GB5749 2006生活饮用水卫生标准[S].北京:中国标准出版社ꎬ2006.[14]㊀ 行政院 环境保护署.饮用水水质标准[S].台北: 行政院 环境保护署ꎬ2017.[15]㊀上海市质量技术监督局.DB31∕T1091 2018生活饮用水水质标准[S].上海:中国标准出版社ꎬ2018.[16]㊀江苏省市场监督管理局ꎬ江苏省住房和城乡建设厅.DB32∕T3701 2019江苏省城市自来水厂关键水质指标控制标准[S].南京:江苏省市场监督管理局ꎬ2019.[17]㊀深圳市市场监督管理局.DB4403∕T60 2020生活饮用水水质标准[S].深圳:深圳市市场监督管理局ꎬ2020.[18]㊀MinistryofHealthꎬLabourandWelfare.DrinkingwaterqualitystandardsinJapan[S].Tokyo:MinistryofHealthꎬLabourandWelfareꎬ2015.[19]㊀MinistryoftheEnvironmentandWaterResources.Environmentalpublichealth(watersuitablefordrinking)(No.2)regulations2019[S].Singapore:MinistryoftheEnvironmentandWaterResourcesꎬ2019.[20]㊀DepartmentofHealth.Philippinenationalstandardsfordrinkingwaterof2017[S].Manila:DepartmentofHealthꎬ2017. [21]㊀MinistryofEnvironment.DrinkingWaterManagementACT[S].Seoul:MinistryofEnvironmentꎬ2020.6331。

锅炉用水标准

锅炉用水标准

锅炉用水标准时间:2007年11月2日一、范围本标准规定了工业锅炉运行时的水质要求。

本标准适用于额定出口蒸汽压力小于等于2.5MPa,以水为介质的固定式蒸汽锅炉和汽水两用锅炉也适用于以水为介质的固定式承压热水锅炉和常压热水锅炉。

二、水质标准1、蒸汽锅炉和汽水两用锅炉的给水一般应采用锅外化学水处理,水质应符合表1规定表1国家质量技术监督局2001-01-10批准 2001-10-01实施1) 硬度mmol/L的基本单元为c(1/2Ca2+、1/2Mg2+),下同。

2) 碱度mmo1/L的基本单元为c(OH-、1/2CO2-3、HC03-),下同。

对蒸汽品质要求不高,且不带过热器的锅炉,使用单位在报当地锅炉压力容器安全监察机构同意后,碱度指标上限值可适当放宽。

3) 当锅炉额定蒸发量大于等于6t/h时应除氧,额定蒸发量小于6t/h的锅炉如发现局部腐蚀时,给水应采取除氧措施,对于供汽轮机用汽的锅炉给水含氧量应小于等于0.05mg/L。

4) 如测定溶解固形物有困难时,可采用测定电导率或氯离子(C1-)的方法来间接控制,但溶解固形物与电导率或与氯离子(Cl-)的比值关系应根据试验确定。

并应定期复试和修正此比值关系。

5) 全焊接结构锅炉相对碱度可不控制。

6) 仅限燃油、燃气锅炉2、额定蒸发量小于等于2t/h,且额定蒸汽压力小于等于1.0MPa的蒸汽锅炉和汽水两用锅炉(如对汽、水品质无特殊要求)也可采用锅内加药处理。

但必须表23 、承压热水锅炉给水应进行锅外水处理,对于额定功率小于等于4.2MW非管架式承压的热水锅炉和常压热水锅炉,可采用锅内加药处理,但必须对锅炉的结垢、腐蚀和水质加强监督,认真做好加药工作,其水质应符合表3的规定。

表31)通过补加药剂使锅水pH值控制在10一12。

2)额定功率大于等于4.2MW的承压热水锅炉给水应除氧,额定功率小于4.2MW的承压热水锅炉和常压热水锅炉给水应尽量除氧。

4、直流(贯流)锅炉给水应采用锅外化学水处理,其水质按表1中额定蒸汽压力为大于1.6Mpa、小于等于2.5Mpa的标准执行。

编者按

编者按

编者按“京城环保第一大案”让污泥处置再次进入人们的视线。

“中国城市污泥已造成二次污染”,北京大学环境科学与工程学院教授刘阳生和中国科学院地理科学与资源研究所环境修复中心主任陈同斌等专家都表达了相同的忧虑。

污泥如何才能减量化、无害化和资源化妥善处理?中国的污泥处理有何特殊之处?近日,在由北京大学环境科学与工程学院主办的中韩活性污泥处理共同技术开发研讨会上,中韩专家各抒己见。

专家认为,从城市污泥中提取氨基酸微肥可以实现污泥中部分组分的资源化,是污泥资源化方面的一项重要尝试。

但是从固废的减量化方面来看效果不理想,从污泥中提取的氨基酸毕竟仅占污泥的一小部分,处理后还会遗留大量固体废物,需要进一步处置……“本周聚焦”关注“污泥的中国式处理”。

中国城市污泥已造成二次污染□本报记者易蓉蓉10月22日,“京城环保第一大案”终于尘埃落定。

北京市门头沟法院作出一审判决,承包北京市清河、酒仙桥污水处理厂污泥无害化处置的北京环兴园环保科技有限公司法人何涛等人均被法院认定犯重大环境污染罪,何涛被判有期徒刑3年6个月,罚金3万元,刘永祥和蒋小兵被处以缓刑,吴建华和刘书力则被免予刑事处罚。

此前,何涛等人将北京市清河、酒仙桥污水处理厂6500吨含有多种重金属和大量细菌的污泥,倒进北京地下水水源保护区的永定河旧河床沙坑内,造成重大污染事故,损失高达上亿元。

污泥处置再一次进入人们的视线——鼎沸京城的“京城环保第一大案”是偶然还是必然?至少30多个城市先后爆发过污泥污染事件,广州《万吨污泥埋进林场》、《深圳污泥坑管涌威胁自然生态》等报道一再见诸媒体。

由此引发出的我国污泥处理处置面临哪些问题?污泥的破解之道又是什么?!污水处理厂遭遇污泥尴尬上世纪90年代,中国40个城市有78个污水处理厂。

1995年,污水处理厂增加到122个。

2000年,超过400个污水处理厂如雨后春笋般冒出来。

今年6月,这个数字变成惊人的2389个。

污水处理量增加后,随之而来的是产生的大量污泥。

水资源核算

水资源核算

一、国内外水资源核算研究概况目前世界上有两大国民经济核算体系:一是由联合国制订、西方国家普遍采用的国民经济核;二是前苏联、东欧国家和我国采用的国民经济平衡体系(算体系年是联合国于制定的。

它只限于核算生产、消费、积累、国外(进出口)这四个阶段上产品和劳务的流动情况,即只限于记录“物的流量”。

但是,国民经济核算应是以经济为主体的经济活动的货币评价,所以,联合国又组织各国专年的研究、制家经过定,并,现已被许多国家采用。

新年发表了新的国民经济核算体系(新于把整个经济循环划分为期初资产、生产、消费、积累、国外、调整、期末资产等七个过程。

它不仅说明产品和劳务等“物”的流量,而且说明金融交易等“钱”的流量。

还说明实物资产和金融资产的存量,以及流量和存量的关系。

其特点就是把作为对象的“国民收入帐户”在生产过程中同投入产出表联系起来,在积累过程中同资金循环表联系起来,在“国外”过程中同国际收支平衡表联系起来,在期初期末资产过程中同国民资产负债表联系起来,从而组合成了一种新的国民经济核算体系。

新是依据西方经济学中的“三要素”理论,在凯恩斯宏观经济理论指导下形成的,比较符合实际经济活动的运行情况,所以比有了很大的进步。

但是,它仍然是不完善的。

因为它没有把资源、环境的核算问题包括在内。

为此,联合国又在继续组织专家进行新的研究和探索。

年所则是前苏联和东欧国家组成的经互会于制定的《国民经济平衡表体系的基本原理》。

年经互会进行了修订,改称《国民经济平衡表体系的基本原则》,并请联合国审定后,代替了前者。

是适应产品经济体制的需要,在集中计划经济模式中脱胎出来的。

它坚持只有创造物质产品和增加产品价值的劳动才是生产劳动的原则,不加区别地把一切非物质性服务视为非生产性劳动,不仅与实际经济运行不符,也不符合马克思的本意。

我国长时期内采用的基本核算体系渊源于。

在以往经济建设中出现的重速度、轻比例(结构),重多快、轻好省,重积累、轻消费,重生产、轻生活等的指导思想和实践形活动,既是成的原因,也是造成的结果。

韩国环境保护法律机制研究

韩国环境保护法律机制研究

国总统 李明博 受到联合 国的表 彰 。但是 ,韩 国的环境保 护 法律机制仍有 改善 的 空间
和 余 地 ,尤其 环 境 诉 讼 制度 有待 完善 。
【 关键词 】 韩 国 环境政策
环境 立法
环境行政
环境诉讼
二战后 的 4 0多年 间 ,韩 国确 立 出 口型 经济 发展 战 略 ,实 现 了经 济 增 长 ,创 造 了 “ 汉江奇 迹 ” 。然 而 ,这 种 经 济 奇 迹 是 典 型 的以牺 牲 环 境 为代 价 的 经 济 发展 模 式 。近 2 O年 来 ,韩 国不 断调 整 环 境政 策 ,构 筑 了 由环境立法 、环境行 政 、环境诉讼等组成 的 环保 法 律 机 制 ,最 终 确立 了 “ 低碳 绿 色经 济增 长 ” 的可 持续 发展 模 式 目标 。本 文 在 归纳 “ 江奇 迹 ” 负 效 应 的前 提 下 ,重 点 汉 解析韩 国环境保护法律机制 的 内在构成 ,对 其做 出总体评价 。
流 出 、船舶废 油 的非 法 废 弃 等 ,大 部 分 流 向南 海 ( 马海 峡 ) 对 。加 之 南海 水 温适 宜 , 盛行 海上 栽培 及 渔 业 生产 ,饲 料 的大 量 投
辆 , O年间增加 了约 9 3 3倍 ,汽 车尾气 排放
导致大气污染程度加深 。 2 .水质污染 。2 0世纪 7 0年代 ,蔚 山工 业 园地 发 生饮 用 水 污染 。18 9 3年仁 川 沿 岸 I 发生镉 、铅污染 ,鱼类 贝类大量 死亡 ;18 94 年汉 江也 发 生大 量 鱼类 死 亡事 件 。8 0年 代 后半期 ,在始舆郡 的水井 中检测 出砒 霜 ,出 现群体 性 皮肤 病 。18 9 9年 因重 金属 污 染 自 来 水 水 道 ,出 现 第 一 次 “自来 水 危 机 ” , 19 、19 9 0 9 1年 相 继 出 现 第 二 次 、第 三 次 “ 自来水 危 机 ” 。需 要 强 调 的是 ,水 污 染是

年产万吨丙烯酸及丙烯酸酯扩建项目环境影响报告书

年产万吨丙烯酸及丙烯酸酯扩建项目环境影响报告书

目录前言丙烯酸(AA)及丙烯酸酯类(AE) 工业为民生基础工业极重要的一环,日常生活中处处与其发生密不可分的关系,工业发达国家均将丙烯酸及丙烯酸酯工业列为工业发展的重要项目之一,合成纤维、树脂、乳化油漆、水性涂料、高吸水性树脂等均为丙烯酸及丙烯酸酯工业之下游产业。

其次丙烯酸及丙烯酸酯制品在工程、纤维、建筑及民生工业领域里亦为不可或缺的产品,如丙烯酸乳胶建筑涂料、密封胶等,丙烯酸酯类建筑乳液产品因性能优异和对环境友好,可用作内、外墙涂料,深受用户青睐。

根据预测,综上所述,预计2010年我国丙烯酸及酯需求量将达116万吨,同时丙烯酸酯需求仍将以每年5%的速度增长。

宁波市位于中国大陆海岸线中部,经济发达的长江三角洲南翼,毗邻上海、杭州,是中国十大工业城市之一,被国务院定位为重要的化工、能源、原材料及产品生产基地,是国家化工项目的重点投资区域和出口贸易加工区。

全市已形成以石油及精细化工、纺织服装、机械、电子、冶金、食品、医药等各行业协调发展的工业体系。

宁波市利用其沿海北仑深水良港的有利条件,在宁波经济技术开发区规划建设发展需要大进大出的临港性工业,目前已有多家大型化工生产厂家在此投资,已经形成台塑工业园区、青峙化工区和大榭化工专区组成的大型化工基地。

台塑丙烯酸酯(宁波)有限公司坐落于宁波经济技术开发区内的台塑工业园区内,是由属于台塑关系企业的台湾塑胶工业(开曼)股份有限公司投资组建,为外(台)商独资企业,注册资本15357万美元,主要经营范围是丙烯酸(AA)及其酯类(AE)的生产销售,是台塑关系企业宁波石化项目中的一个子项目,为30个系列工程项目之一。

该公司现有规模为年产丙烯酸16万吨和丙烯酸酯20万吨,工程于2003年8月开工建设,2006年1月建成,2006年2月申请进行了试生产,并于2008年8月通过了环保竣工验收。

为满足日益增长的国内对丙烯酸及酯类的市场需求,提升企业竞争力,台塑丙烯酸酯(宁波)有限公司拟投资25620.9万美元,于现有厂区预留用地建设实施“年产16/20万吨丙烯酸及丙烯酸酯扩建项目”,本项目年产丙烯酸16万吨和丙烯酸酯20万吨,待项目建设完成后,台塑丙烯酸酯(宁波)有限公司将会形成年产丙烯酸32万吨和丙烯酸酯40万吨的生产规模。

【最新精选】PCF纤维过滤器

PCF纤维过滤器PCF空隙调节型纤维过滤器采用一种特殊的新型柔软纤维作为滤元,过滤精度高可达几微米,具有比表面积大,过滤阻力小的优点。

过滤过程:对纤维丝施以向上拉紧,使其纤维丝纵向之间空隙变小,水中的悬浮物均被挡住留在纤维丝外,过滤后得到清洁的处理水;反洗过程:反洗时让过滤器的纤维丝放松,使过滤纤维的空隙在舒张的状态下,用压缩空气(罗茨风机)和处理水反冲洗。

性能:1.韩国环境部新技术(NET)认证2.原水:守荣污水处理厂排放水标准区分原水处理水过滤效率(%) SS10.1 (3.0 ~ 53.0)0.8 (0.4 ~ 1.5)88.2 (80.0 ~ 97.2) BOD13.6 (9.6 ~ 23.4) 5.9 (3.5 ~ 10.9)54.1 (27.1 ~ 78.5) COD12.6 (9.3 ~ 18.8)9.1 (7.4 ~11.9)25.3 (7.4 ~ 54.3) T-N21.0 (15.7 ~ 24.7)19.9 (14.1 ~ 24.0) 5.6 (0.5 ~ 19.2)T-P 1.8 (1.2 ~ 2.5) 1.6 (0.9 ~ 1.9)11.8 (1.0 ~ 36.8)色度29.8 (10.9 ~ 51.4)26.5 (10.3 ~ 48.3)11.1 (0.4 ~ 26.3)浊度(NTU)7.1 (2.5 ~ 28.5)0.8 (0.7 ~ 0.9)81.1 (67.9 ~ 97.2)大肠杆菌(个/ml)2,139 (300 ~ 9,500)1,127 (210 ~ 5,000)44.0 (24.0 ~ 72.7)特点:高过滤精度/水质好:2~5µm,出水水质好,SS 3pmm以下(平均1以下)彻底解决过滤器反洗难题:用于中水、废水等恶劣水质时反洗依然彻底过滤速度突破传统概念:达到100m/h占地面积小/费用低:与沙滤器比较体积1/5、重量(含滤料)1/10、价格2/3单机出力大:单机450m3/h,直径仅2400mm反冲洗时间短/节水、节能:反冲洗时间3分钟左右,低自用水率(1%)、低压差(1.5kg/cm2)含油废水过滤:专门亲水憎油纤维丝滤料寿命长/更换简便:PP,绵纶材质/纤维丝更换在30分以内(小型)。

水质监测技术的国际比较分析

水质监测技术的国际比较分析水是生命之源,对于人类的生存、社会的发展以及生态环境的平衡都起着至关重要的作用。

而水质监测技术则是评估水资源质量、保障水安全的重要手段。

随着全球对水资源保护的重视不断提高,各国在水质监测技术方面不断创新和发展,呈现出多样化的特点。

一、欧美国家的水质监测技术在欧美国家,水质监测技术的发展相对较为成熟。

以美国为例,其在水质监测方面采用了一系列先进的技术和方法。

首先是传感器技术的广泛应用。

美国的科研机构和企业研发了多种高精度的水质传感器,能够实时监测水温、酸碱度(pH 值)、溶解氧、电导率等关键参数。

这些传感器具有灵敏度高、响应速度快、稳定性好等优点,能够为水质监测提供连续、准确的数据支持。

其次,美国在水质监测中重视实验室分析技术。

通过先进的化学分析仪器,如气相色谱仪、液相色谱仪、质谱仪等,可以对水中的有机污染物、重金属离子等进行精确的定性和定量分析。

同时,美国还建立了完善的水质监测网络和数据库,实现了数据的共享和综合分析,为水资源管理和决策提供了有力的依据。

欧洲国家如德国、英国等在水质监测技术方面也有突出表现。

德国注重多参数监测系统的集成,将物理、化学和生物监测指标相结合,形成全面的水质评估体系。

英国则在监测方法的标准化和规范化方面做得较为出色,制定了严格的水质监测标准和操作流程,确保监测数据的可比性和可靠性。

二、亚洲国家的水质监测技术亚洲的一些国家,如日本和韩国,在水质监测技术领域也取得了显著的进展。

日本在水质监测中突出了生物技术的应用。

利用微生物传感器和生物标志物等技术,能够快速检测水中的生物毒性和污染物的生物可降解性。

此外,日本还注重水质监测设备的小型化和便携化,便于在现场进行快速检测和应急监测。

韩国则在信息化技术与水质监测的结合方面有所建树。

通过建立智能化的水质监测平台,实现了监测数据的实时传输、分析和预警。

同时,韩国还积极开展国际合作,引进和吸收先进的水质监测技术,不断提升自身的监测水平。

企业环境管理体系标准

2)ISO/TC207是国际标准化组织于1993年6月成立的一个技术 委员会,专门负责制定环境管理方面的国际标准 世界主要环境问题
1.臭氧层破坏
6.土地退化和荒漠化
2.全球气候变暖
7.生物多样性减少
3.海洋污染严重
8.水资源短缺
4.酸雨蔓延
9.污染转移
20
可持续发展
提出 ➢ 首先提出在1980年“世界自然保护大纲中”; ➢ 1987年“我们共同的未来”报告后引起高潮; ➢ 1992年联合国环发大会上得到世界各国的普遍接受。 定义
“可持续发展是满足当代人需要,又不对后代人满足其需要 的能力构成危害的发展”。 意义 ➢ 反映两个重要概念,即“满足需要”和“限制”; ➢ 具有两层含义,“时间的公平”和“空间的公平”; ➢ 可持续性发展战略是21世纪的主题,它作为一种发展目标和模
➢ 研究表明,平流层臭氧浓度减少10%,地球表面紫外线辐射强 度增加20%,皮肤癌明显增加,动植物受到危害,农林牧渔业 大幅度减产。
(续)
7
臭氧层破坏 ➢ 破坏臭氧层主要是氯氟烃类物质,如氟利昂,哈龙(1211)灭火
器等。80年代后期,氟利昂的生产达到了高峰,产量达到了 144万吨。在对氟利昂实行控制之前,全世界向大气中排放的 氟利昂已达到了2000万吨。 ➢ 1987年9月16日加拿大蒙特利尔市签署了《关于消耗臭氧层物 质的蒙特利尔议定书》以下简称《议定书》 ,在1990年6月召 开的第二次缔约方大会上进行了修正,形成了《伦敦修正案》 。1991年6月14日,中国政府驻联合国代表处将加入修正后的 《议定书》的文件交给联合国秘书长,《议定书》修正案自 1992年8月10日开始对我国生效。
12
5.森林面积迅速减少
➢ 据联合国粮农组织报告,80年代初全世界每年毁坏热带雨林 1130万公顷,且逐年增加,每年森林减少速度从0.6%上升到 1.2%,每年造林面积仅为砍林的1/10左右。

池沼公鱼的物种多样性和地理分布

池沼公鱼的物种多样性和地理分布概述:池沼公鱼(Cyprinus carpio)是一种原产于欧洲和亚洲的淡水鱼类,被广泛饲养作为重要的食用鱼类和观赏鱼类。

本文将重点介绍池沼公鱼的物种多样性和地理分布,以便更好地了解它们在自然界中的分布情况和种群特征。

一、物种多样性:池沼公鱼是一种具有多个亚种和变种的物种,主要分为普通型(Cyprinus carpio carpio)和鳞缘型(Cyprinus carpio haematopterus)两大类。

普通型分布在欧洲和亚洲大陆,鳞缘型则主要分布在东亚地区。

1. 普通型:普通型池沼公鱼具有较广泛的分布范围,包括欧洲、亚洲和北非。

在欧洲,其分布几乎遍布整个大陆,重要的分布地包括英国、法国、德国、荷兰、意大利等。

在亚洲,普通型池沼公鱼分布相对较广,包括中国、韩国、日本、印度等地。

此外,在北非地区如埃及也发现了普通型池沼公鱼的存在。

2. 鳞缘型:鳞缘型池沼公鱼主要分布在东亚地区,包括中国、朝鲜、韩国、日本等地。

它们通常具有从背部延伸至背鳍基部两侧的明显红色边缘,因而得名。

与普通型相比,鳞缘型池沼公鱼在体型、颜色和习性方面有一些差异。

二、地理分布特点:1. 水域类型:池沼公鱼主要栖息在湖泊、河流、池塘等水域中,对生境的适应能力较强。

它们生存在淡水环境中,对于水质的要求相对较低,可以在不同的水体中繁衍生息。

2. 环境要求:池沼公鱼在生活史过程中对温度、pH 值、水流等环境因素有一定的要求。

一般而言,它们生活在温和的水温下,适应性范围为12-25℃。

对于水体的氧气含量也有一定的要求,尤其是在繁殖和生长期间。

3. 人为引入:池沼公鱼的分布范围扩大主要是由于人为引入的结果。

由于其可观赏性和食用价值,池沼公鱼被广泛引入到全球各地的水域中。

在引入过程中,它们逃逸或人为释放的个体逐渐建立了野生群体,并适应当地的环境。

4. 养殖分布:由于其适应性强和经济价值高,池沼公鱼广泛被养殖于全球各地。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档