2013重庆市中考数学专项训练:三角形、四边形

合集下载

2013年中考数学试卷分类汇编-四边形(正方形)

2013年中考数学试卷分类汇编-四边形(正方形)

正方形1、(2013•昆明)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有()∴PE=EM=FP=FN=NP又∵PE=EM=PM FP=FN=NP ACO 48816t(s)S (2cm (B )(C )O488 16t(s)S (2cm (D )2、(2013年临沂)如图,正方形ABCD 中,AB=8cm,对角线AC,BD 相交于点O,点E,F 分别从B,C 两点同时出发,以1cm/s 的速度沿BC,CD 运动,到点C,D 时停止运动,设运动时间为t(s),△OE 的面积为s(2cm ),则s(2cm )与t(s)的函数关系可用图像表示为答案:B解析:经过t 秒后,BE =CF =t ,CE =DF =8-t ,1422BEC S t t ∆=⨯⨯=, 211(8)422ECF S t t t t ∆=⨯-⨯=-,1(8)41622ODF S t t ∆=⨯-⨯=-,(第12题图) BO所以,2211322(4)(162)41622OEF S t t t t t t ∆=-----=-+,是以(4,8)为顶点,开口向上的抛物线,故选B 。

3、(8-3矩形、菱形、正方形²2013东营中考)如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE =DF ,AE 、BF 相交于点O ,下列结论:(1)AE =BF ;(2)AE ⊥BF ;(3)AO =OE ;(4)AOB DEOF S S ∆=四边形中正确的有( )A. 4个B. 3个C. 2个D. 1个12.B.解析:在正方形ABCD 中,因为CE=DF ,所以AF=DE ,又因为AB=AD ,所以ABF DAE ∆≅∆,所以AE=BF ,AFB DEA ∠=∠,DAE ABF ∠=∠,因为90DAE DEA ∠+∠=︒,所以90DAE ABF ∠+∠=︒,即90AOF ∠=︒,所以AE ⊥BF ,因为AOBAOF AOFS S S ∆∆∆+=+S四边形DEOF,所以AOB S ∆= S 四边形DEOF ,故(1),(2),(4)正确.4、(2013凉山州)如图,菱形ABCD 中,∠B=60°,AB=4,则以AC 为边长的正方形ACEF 的周长为( )A .14B .15C .16D .17考点:菱形的性质;等边三角形的判定与性质;正方形的性质.分析:根据菱形得出AB=BC ,得出等边三角形ABC ,求出AC ,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可.解答:解:∵四边形ABCD 是菱形, ∴AB=BC, ∵∠B=60°,∴△ABC 是等边三角形, ∴AC=AB=4,∴正方形ACEF 的周长是AC+CE+EF+AF=4³4=16, 故选C .点评:本题考查了菱形性质,正方形性质,等边三角形的性质和判定的应用,关键是求出AC 的长. 5、(2013•资阳)如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )³AE³BE³6³86、(2013•雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.,∴BC﹣BE=CD﹣DF,及CE=CF,∵AE=AF,∴AC垂直平分EF.③正确.设EC=x,由勾股定理,得EF=x,CG=x,AG=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x,④错误,∵S△CEF=,S△ABE==,∴2S△ABE==S△CEF,⑤正确.综上所述,正确的有4个,故选C.7、(2013菏泽)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.19考点:相似三角形的判定与性质;正方形的性质.专题:计算题.分析:由图可得,S1的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=;然后,分别算出S1、S2的面积,即可解答.解答:解:如图,设正方形S2的边长为x,根据等腰直角三角形的性质知,AC=x,x=CD,∴AC=2CD,CD==2,∴EC2=22+22,即EC=;∴S2的面积为EC2==8;∵S1的边长为3,S1的面积为3³3=9,∴S1+S2=8+9=17.故选B.点评:本题考查了正方形的性质和等腰直角三角形的性质,考查了学生的读图能力.8、(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()a=9、(2013台湾、30)如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?()A.∠1<∠2 B.∠1>∠2 C.∠3<∠4 D.∠3>∠4考点:正方形的性质.分析:根据正方形的每一个角都是直角求出∠BAD=∠EAG=90°,然后根据同角的余角相等可得∠1=∠2,根据直角三角形斜边大于直角边可得AE>AB,从而得到AG>AB,再根据三角形中长边所对的角大于短边所对的角求出∠3>∠4.解答:解:∵四边形ABCD、AEFG均为正方形,∴∠BAD=∠EAG=90°,∵∠BAD=∠1+∠DAE=90°,∠EAG=∠2+∠DAE=90°,∴∠1=∠2,在Rt△ABE中,AE>AB,∵四边形AEFG是正方形,∴AE=AG,∴AG>AB,∴∠3>∠4.故选D.点评:本题考查了正方形的四条边都相等,每一个角都是直角的性质,同角的余角相等的性质,要注意在同一个三角形中,较长的边所对的角大于较短的边所对的角的应用.10、(2013台湾、23)附图为正三角形ABC与正方形DEFG的重迭情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?()A.2 B.3 C.12﹣4 D.6﹣6考点:正方形的性质;等边三角形的性质.分析:过点B作BH⊥AC于H,交GF于K,根据等边三角形的性质求出∠A=∠ABC=60°,然后判定△BDE是等边三角形,再根据等边三角形的性质求出∠BDE=60°,然后根据同位角相等,两直线平行求出AC∥DE,再根据正方形的对边平行得到DE∥GF,从而求出AC∥DE∥GF,再根据等边三角形的边的与高的关系表示出KH,然后根据平行线间的距离相等即可得解.解答:解:如图,过点B作BH⊥AC于H,交GF于K,∵△ABC是等边三角形,∴∠A=∠ABC=60°,∵BD=BE,∴△BDE是等边三角形,∴∠BDE=60°,∴∠A=∠BDE,∴AC∥DE,∵四边形DEFG是正方形,GF=6,∴DE∥GF,∴AC∥DE∥GF,∴KH=18³﹣6³﹣6=9﹣3﹣6=6﹣6,∴F点到AC的距离为6﹣6.故选D.点评:本题考查了正方形的对边平行,四条边都相等的性质,等边三角形的判定与性质,等边三角形的高线等于边长的倍,以及平行线间的距离相等的性质,综合题,但难度不大,熟记各图形的性质是解题的关键.11、(2013年南京)已知如图所示的图形的面积为24,根据图中的条件,可列出方程:。

2022年人教版中考数学一轮复习:四边形综合 专项练习题2(Word版,含答案)

2022年人教版中考数学一轮复习:四边形综合 专项练习题2(Word版,含答案)

2022年人教版中考数学一轮复习:四边形综合专项练习题21.如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC=BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是(限填序号).2.如图1,平行四边形纸片ABCD的面积为120,AD=15.今沿两对角线将四边形ABCD剪成甲、乙.丙、丁四个三角形纸片.若将甲、丙合并(AD、CB重合)形成一个对称图形戊,如图2所示.则图形戊的两条对角线长度之和为.3.如图,菱形ABCD的两条对角线AC,BD交于点O,BE⊥AD于点E,若AC=8,BD=6,则BE的长为.4.如图,在▱ABCD中,∠A=70°,DB=DC,CE⊥BD于E,则∠BCE=.5.如图,在菱形ABCD中,AB=BD,点E、F分别在AB、AD上,且AE=DF,连接BF与DE交于点H,若CG=1,则S=.四边形BCDG6.如图,正方形瓷砖图案是四个全等且顶角为45°的等腰三角形.已知该瓷砖的面积是1m2,则中间小正方形的面积为m2.7.如图所示,在Rt△ABC外作等边△ADE,点E在AB边上,AC=5,∠ABC=30°,AD=3.将△ADE沿AB方向平移,得到△A′D′E′,连接BD′.给出下列结论:①AB=10;②四边形ADD′A′为平行四边形;③AB平分∠D′BC;④当平移的距离为4时,BD′=3.其中正确的是(填上所有正确结论的序号).8.如图,菱形ABCD的对角线AC,BD相交于点O,P为AB边上一动点(不与点A,B重合),PE⊥OA于点E,PF⊥OB于点F,若AB=4,∠BAD=60°,则EF的最小值为.9.如图,在正方形ABCD中,点E为BC边上一点,且CE=2BE,点F为对角线BD上一点,且BF=2DF,连接AE交BD于点G,过点F作FH⊥AE于点H,若HG=2cm,则正方形ABCD 的边长为cm.10.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为.11.如图,在正方形ABCD内有一点P,若AP=4,BP=7,DP=9,则∠APB的度数为.12.如图是两个边长分别为2a,a的正方形,则△ABC的面积是.13.如图,点P是正方形ABCD内一点,连接AP、BP、DP,若AP=1,PD=,∠APB=135°,则正方形ABCD的面积为.14.如图,正三角形ABC与正方形CDEF的顶点B,C,D三点共线,动点P沿着CA由C向A 运动.连接EP,若AC=10,CF=8.则EP的最小值是.15.如图,正方形ABCD中,H为CD上一动点(不含C、D),连接AH交BD于G,过点G作GE⊥AH交BC于E,过E作EF⊥BD于F,连接AE,EH.下列结论:①AG=EG;②∠EAH=45°;③BD=2GF;④GE平分∠FEC.正确的是(填序号).16.如图,平面内三点A、B、C,AB=4,AC=3,以BC为对角线作正方形BDCE,连接AD,则AD的最大值是.17.如图,在正方形ABCD中,点E在对角线AC上,EF⊥AB于点F,EG⊥BC于点G,连接FG,若AB=8,则FG的最小值为.18.如图,正方形ABCD的边长为2,点E是BC的中点,连接AE与对角线BD交于点G,连接CG并延长,交AB于点F,连接DE交CF于点H,连接AH.以下结论:①CF⊥DE;②=;③GH=;④AD=AH,其中正确结论的序号是.19.如图,矩形ABCD中,对角线AC、BD交于点O,AE⊥BD于E,若∠DAE=3∠BAE.则的值为.20.将矩形ABCD按如图所示的方式折叠,BE、EG、FG为折痕,若顶点A、C、D都落在点O 处,且点B、O、G在同一条直线上,同时点E、O、F在另一条直线上.(1)的值为.(2)若AD=4,则四边形BEGF的面积为.参考答案1.解:①∵四边形ABCD是平行四边形,AB=AD,∴平行四边形ABCD是菱形;②∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形;③∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,因此∠ABC=∠ADC时,四边形ABCD还是平行四边形;故答案为:①.2.解:如图,连接AD、EF,则可得对角线EF⊥AD,且EF与平行四边形的高相等.∵平行四边形纸片ABCD的面积为120,AD=1520,∴BC=AD=15,EF×AD=×120,∴EF=8,又BC=15,∴则图形戊中的四边形两对角线之和为20+3=23,故答案为23.3.解:∵四边形ABCD是菱形,∴AO=CO=4,BO=DO=3,AC⊥BD,∴AD===5,=AD×BE=×AC×BD,∵S菱形ABCD∴BE=,故答案为:.4.解:∵四边形ABCD是平行四边形,∴∠BCD=∠A=70°,∵DB=DC,∴∠DBC=∠BCD=70°,∵CE⊥BD,∴∠CEB=90°,∴∠BCE=20°.故答案为:20°.5.解:过点C作CM⊥GB于M,CN⊥GD,交GD的延长线于N.∵四边形ABCD为菱形,∴AB=AD=CD=BC,∵AB=BD,∴AB=BD=AD=CD=BC,∴△ABD为等边三角形,△BCD是等边三角形,∴∠A=∠BDF=60°,∠ADC=60°,在△ADE和△DBF中,,∴△ADE≌△DBF(SAS),∴∠ADE=∠DBF,∵∠FBC =60°+∠DBF ,∠NDC =180°﹣(120°﹣∠ADE )=60°+∠ADE ,∴∠NDC =∠FBC ,在△CDN 和△CBM 中,,∴△CDN ≌△CBM (AAS ),∴CM =CN ,在Rt △CBM 与Rt △CDN 中,,∴Rt △CBM ≌Rt △CDN (HL ),∴S 四边形BCDG =S 四边形CMGN .S 四边形CMGN =2S △CMG ,∵∠CGM =60°,∴GM =CG =,CM =CG =,∴S 四边形BCDG =S 四边形CMGN =2S △CMG =2×××=, 故答案为:.6.解:如图,作大正方形的对角线,作小正方形的对角线并延长交大正方形各边于中点, 设小正方形的边长为xm , 则大正方形的边长为x +x x =(1)xm , ∵瓷砖的面积是1m 2,∴大正方形的边长为1m ,即(1)x =1, 解得x =﹣1, ∴中间小正方形的面积为()2=3﹣2, 故答案为:3﹣2.7.解:∵∠ACB=90°,AC=5,∠ABC=30°,∴AB=2AC=10,故①正确;由平移的性质得:A'D'=AD,A'D'∥AD,∴四边形ADD′A′为平行四边形,故②正确;当平移的距离为4时,EE'=4,∴BE'=AB﹣AE﹣EE'=10﹣3﹣4=3,由平移的性质得:∠A'D'E'=∠A'E'D'=∠AED=60°,A'D'=D'E'=DE=AD=3,∴BE'=D'E',∴∠E'BD'=∠E'D'B=∠A'E'D'=30°,∴∠A'D'B=60°+30°=90°,∴BD'=A'D'=3,故④正确;由④得:当平移的距离为4时,∠E'BD'=∠ABC=30°,故③错误;故答案为:①②④.8.解:连接OP,∵四边形ABCD是菱形,∴AC⊥BD,∠CAB=DAB=30°,∵PE⊥OA于点E,PF⊥OB于点F,∴∠EOF=∠OEP=∠OFP=90°,∴四边形OEPF是矩形,∴EF=OP,∵当OP取最小值时,EF的值最小,∴当OP⊥AB时,OP最小,∵AB=4,∴OB=AB=2,OA=AB=2,∴S=OA•OB=AB•OP,△ABO∴OP==,∴EF的最小值为,故答案为:.9.解:如图,过F作FI⊥BC于I,连接FE,FA,∴FI∥CD,∵CE=2BE,BF=2DF,∴设BE=EI=IC=a,CE=FI=2a,AB=3a,∴则FE=FC=FA=a,∴H为AE的中点,∴AH=HE=AE=a,∴AG=AH+GH=a+2,∵四边形ABCD是正方形,∴BE∥AD,∴==,∴GE=AG=(a+2),∵GE=HE﹣GH=a﹣2,∴(a+2)=a﹣2,解得,a=,∴AB=3a=.故答案为:.10.解:设图1中分成的直角三角形的长直角边为a,短直角边为b,,得,∴图1中菱形的面积为:×4=48,故答案为48.11.解:∵四边形ABCD为正方形,∴∠ABC=90°,BA=BC,∴△BAP绕点A逆时针旋转90°可得△ADE,连接PE,由旋转的性质得,ED=BP=7,AE=AP=4,∠PBE=90°,∠AED=∠APB,∴△APE为等腰直角三角形,∴PE=AP=4,∠AEP=45°,在△PED中,∵PD=9,ED=7,PE=4,∴DE2+PE2=DP2,∴△PED为直角三角形,∠PED=90°,∴∠AED=90°+45°=135°,∴∠APB=135°,故答案为:135°.12.解:∵两个正方形的边长分别为2a,a,∴△ABC的的高为:2a+a,底边为:BC=a,∴△ABC的面积是:(2a+a)•a=a2.故答案为:a2.13.解:如图,将△APB绕点A逆时针旋转90°得到△AHD,连接PH,过点A作AE⊥DH交DH的延长线于E,∴△APB≌△AHD,∠PAH=90°,∴PB=DH,AP=AH=1,∠APB=∠AHD=135°,∴PH=AP=,∠APH=∠AHP=45°,∴∠PHD=90°,∴DH===2,∵∠AHD=135°,∴∠AHE=45°,∵AE⊥DH,∴∠AHE=∠HAE=45°,∴AE=EH,AH=AE,∴AE=EH=,∴DE=,∵AD2=AE2+DE2=13,∴正方形的面积为13,故答案为:13.14.解:如图,过点E作EP⊥AC,交FC于点G,当EP⊥AC时,EP取得最小值,∵正三角形ABC与正方形CDEF的顶点B,C,D三点共线,∴∠ACB=60°,∠FCD=90°,∴∠ACF=30°,∴∠CGP=∠EGF=60°,∵∠F=90°,∴∠FEG=30°,设PG=x,则CG=2x,∴FG=CF﹣CG=8﹣2x,∴EG=2FG=2(8﹣2x),∵FG=EF,∴8﹣2x=8×,∴x=4﹣,∴EP=EG+PG=2(8﹣2x)+x=16﹣3x=4+4.故答案为:4+4.15.解:连接GC,延长EG交AD于点L,∵四边形ABCD为正方形,∴AD∥CB,AD=CD,∠ADG=∠CDG=45°,∵DG=DG,∴△ADG≌△CDG(SAS),∴AG=GC,∠HCG=∠DAG,∵∠HCG+∠GCB=90°,∴∠DAG+∠GCB=90°,∵GE⊥AH,∴∠AGL=90°,∴∠ALG+∠LAG=90°,∵AD∥CB,∴∠ALG=∠GEC,∴∠GEC+∠LAG=90°,∴∠GEC=∠GCE,∴GE=GC,∴AG=EG,故①正确;∵GE⊥AH,∴∠AGE=90°,∵AG=EG,∴∠EAH=45°,故②正确;连接AC交BD于点O,则BD=2OA,∵∠AGF+∠FGE=∠GEF+∠EGF=90°,∴∠AGF=∠GEF,∵AG=GE,∠AOG=∠EFG=90°,∴△AOG≌△GFE(AAS),∴OA=GF,∵BD=2OA,∴BD=2GF,故③正确.过点G作MN⊥BC于点N,交AD于点M,交BC于点N,∵G是动点,∴GN的长度不确定,而FG=OA是定值,∴GE不一定平分∠FEC,故④错误;故答案为:①②③.16.解:将△ABD绕点D顺时针旋转90°,得△MCD,如图:由旋转不变性可得:CM=AB=4,AD=MD,且∠ADM=90°,∴△ADM是等腰直角三角形,∴AD=AM,AD最大,只需AM最大,而在△ACM中,AM<AC+CM,∴当且仅当A、C、M在一条直线上,即不能构成△ACM时,AM最大,且最大值为AC+CM =AC+AB=7,此时AD=AM=,故答案为:.17.解:连接BE,如图:∵四边形ABCD是正方形,∴∠ABC=90°,又EF⊥AB于点F,EG⊥BC,∴四边形FBGE是矩形,∴FG=BE,所以当BE最小时,FG就最小,根据垂线段最短,可知当BE⊥AC时,BE最小,当BE⊥AC时,在正方形ABCD中,△AEB是等腰直角三角形,在Rt△ABE中,根据勾股定理可得2BE2=AB2=64,解得BE=4,∴FG最小为4;故答案为4.18.解:∵四边形ABCD是边长为2的正方形,点E是BC的中点,∴AB=AD=BC=CD=2,BE=CE=,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,∴△ABE≌△DCE(SAS),∴∠CDE=∠BAE,DE=AE,∵AB=BC,∠ABG=∠CBG,BG=BG,∴△ABG≌△CBG(SAS),∴∠BAE=∠BCF,∴∠BCF=∠CDE,又∵∠CDE+∠CED=90°,∴∠BCF+∠CED=90°,∴∠CHE=90°,∴CF⊥DE,故①正确;∵CD=2,CE=,由勾股定理得,DE===5,=CD×CE=DE×CH,∵S△DCE∴CH=2,∵∠CHE=∠CBF,∠BCF=∠ECH,∴△ECH∽△FCB,∴=,∴=,∴CF=5,∴HF=CF﹣CH=3,∴=,故②正确;如图,过点A作AM⊥DE于点M,∵DC=2,CH=2,由勾股定理得,DH===4,∵∠CDH+∠ADM=90°,∠DAM+∠ADM=90°,∴∠CDH=∠DAM,又∵AD=CD,∠CHD=∠AMD=90°,∴△ADM≌△DCH(AAS),∴CH=DM=2,AM=DH=4,∴MH=DM=2,又∵AM⊥DH,∴AD=AH,故④正确;∵DE=5,DH=4,∴HE=1,∴ME=HE+MH=3,∵AM⊥DE,CF⊥DE,∴∠AME=∠GHE,∵∠HEG=∠MEA,∴△MEA∽△HEG,∴=,∴=,∴HG=,故③错误.综上,正确的有:①②④.故答案为:①②④.19.解:∵四边形ABCD是矩形,∴∠BAD=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∴∠OAB=∠OBA,∵∠DAE=3∠BAE,∴∠BAE=×90°=22.5°,∵AE⊥BD,∴∠OAB=∠OBA=90°﹣22.5°=67.5°,∴∠OAE=67.5°﹣22.5°=45°,∴△AOE是等腰直角三角形,∴OA=OE,设OE=a,则OB=OA=a,∴BE=OB﹣OE=(﹣1)a,BD=2OB=2a,∴DE=BD﹣BE=2a﹣(﹣1)a=(+1)a,∴==,故答案为:.20.解:(1)由折叠可得,AE=OE=DE,CG=OG=DG,∴E,G分别为AD,CD的中点,设CD=2a,AD=2b,则AB=OB=2a,DG=OG=CG=a,BG=3a,BC=AD=2b,∵∠C=90°,在Rt△BCG中,CG2+BC2=BG2,∴a2+(2b)2=(3a)2,∴b=a,∴===,由折叠可得:∠ABE=∠EBG,∠AEB=∠BEO,∠DEG=∠GEO,∵∠AEB=∠BEO+∠DEG=∠GEO=180°,∴∠BEG=90°,∵∠A=∠BEG=90°,∠ABE=∠EBG,∴△ABE∽△EBG,∴==,故答案为:;(2)∵AD=BC=2b=4,∴b=2,a=2,∴AB=OB=4,CG=2,AE=OE=2,∴BG=6,∵∠OBF =∠CBG ,由折叠可得∠BOF =∠BCG =90°, ∴△BOF ∽△BCG , ∴=, 即=,∴OF =,∴S 四边形EBFG =S △BEG +S △BFG =×6×2+×6×=9. 故答案为:9.。

中考数学解答题压轴题突破 重难点突破十一 三角形、四边形综合题 类型三:与平移有关的问题

中考数学解答题压轴题突破 重难点突破十一 三角形、四边形综合题 类型三:与平移有关的问题
11 ∴△ENP≌△HGP(AAS),∴PG=PN=2NG=2AB=3.
证明:如答图①,过点 B 作 BC⊥AO 于点 ቤተ መጻሕፍቲ ባይዱ,则四边形 OCBM 为矩形, ∴BC=OM,∠CBM=∠ABP=∠ACB =∠PMB=90°. ∴∠CBP+∠PBM=∠ABC+∠CBP=90°, ∴∠ABC=∠PBM,
AB OM ∴△ABC∽△PBM,∴PB=BM.
(3)若 AO=2 6,且当 MO=2PO 时,请直接写出 AB 和 PB 的长. 【分层分析】 由于点 P 的位置不确定,故需要分情况进行讨论,共两种情况,第一种 情况是点 P 在点 O 的左侧,第二种情况是点 P 在点 O 的右侧,然后利用 相似三角形的性质即可求出答案.
Ⅱ)若∠HEF=30°,求 EH 的长; 解:作 HI⊥EF 于点 I, ∵∠HEF=30°=∠HFE, ∴IE=IF,由(1)知 EF=2AB=12,∴IE=6, ∴IH=2 3,∴EH=4 3.
Ⅲ)判断 PG 的长度在等边三角形 ABC 平移的过程中是否会发生变化?如 果不变,请求出 PG 的长;如果变化,请说明理由. 解:不变.由Ⅰ)知△EBN≌△HAG,∴NE=GH,
解:分两种情况:Ⅰ)如答图②,当点 P 在点 O 左边时,设 PO=x, 则 BC=MO=2x,PM=PO+MO=3x, 由(2)知△ABC∽△PBM,
AC BC 6 2x ∴PM=BM,即3x= 6. 解得 x1=1,x2=-1(舍去), ∴AB= AC2+BC2= 10,PB= PM2+BM2= 15;
类型三:与平移有关的问 题
(贵港:2022T26, 2018T26)
(2018·贵港)如图,已知:A,B 两点在直线 l的同一侧,线段 AO,BM
均是直线 l的垂线段,且 BM 在 AO 的右边,AO=2BM,将 BM 沿直线 l 向右 平移,在平移过程中,始终保持∠ABP=90°不变,BP 边与直线 l 相交于 点 P.

中考数学直角三角形与勾股定理专题训练(含答案)

中考数学直角三角形与勾股定理专题训练(含答案)

中考数学直角三角形与勾股定理专题训练一、选择题1. 如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD 的面积为()A.B.3 C.D.52. 如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.3. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米4. 如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点,则点D的个数共有()B,C),若线段AD长为正整数...A. 5个B. 4个C. 3个D. 2个5.小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O为圆心,OB的长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于A.1和2之间B.2和3之间C.3和4之间D.4和5之间6. 如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE ⊥AB,垂足为E.若DE=1,则BC的长为()A.2+B.+C.2+D.37. 如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A. x-y2=3B. 2x-y2=9C. 3x-y2=15D. 4x-y2=218. 已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为()A.32B.332C.32D. 不能确定二、填空题9. 如图所示的网格是正方形网格,则∠P AB+∠PBA=°(点A,B,P是网格线交点).10. 如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8.分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F.过点E,F作直线EF,交AB于点D,连接CD,则CD的长是________.11. 三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C 在FD 的延长线上,点B 在ED 上,AB ∥CF ,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD 的长度是 .12. 如图,△ABC中,∠ABC=90°,BA=BC=2,将△ABC 绕点C 逆时针旋转60°得到△DEC ,连接BD ,则BD 2的值是 .13. (2019•通辽)腰长为5,高为4的等腰三角形的底边长为__________.14. 如图,在Rt △ABC 中,∠BAC =90°,AB =15,AC =20,点D 在边AC 上,AD =5,DE ⊥BC 于点E ,连接AE ,则△ABE 的面积等于________.15. 在等腰直角三角形ABC 中,∠ACB =90°,AC =3,点P 为边BC 的三等分点,连接AP ,则AP 的长为________.16. (2019•伊春)一张直角三角形纸片ABC ,90ACB ∠=︒,10AB =,6AC =,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的△是直角三角形时,则CD的长为__________.点E处,当BDE三、解答题17. 如图,已知AC⊥BC,垂足为C,AC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.(1)线段DC=;(2)求线段DB的长度.18. 已知:整式A=(n2-1)2+(2n)2,整式B>0.[尝试] 化简整式A.[发现] A=B2,求整式B.[联想] 由上可知,B2=(n2-1)2+(2n)2,当n>1时,n2-1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2-1 2n B勾股数组Ⅰ8勾股数组Ⅱ3519. 如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF ∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.20. 在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完.............成解答过程.....21.如图,一艘船由A港沿北偏东60°方向航行10 km至B港,然后再沿北偏西30°方向航行10 km至C港.(1)求A,C两港之间的距离(结果保留到0.1 km,参考数据:2≈1.414,3≈1. 732);(2)确定C港在A港的什么方向.22. 已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.答案一、选择题1. 【答案】B2. 【答案】D[解析]如图,过C作CD⊥AB于D,则∠ADC=90°,∴AC===5.∴sin∠BAC==.故选D.3. 【答案】C[解析]在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A'BD中,∵∠A'DB=90°,A'D=2米,BD2+A'D2=A'B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2(米).4. 【答案】C【解析】如解图,当AD⊥BC时,∵AB=AC,∴D为BC的中点,BD=CD=12BC=4,∴AD=AB2-BD2=3;又∵AB=AC=5,∴在BD和CD之间一定存在AD=4的两种情况,∴点D的个数共有3个.5. 【答案】C【解析】由作法过程可知,OA=2,AB=3,∵∠OAB=90°,∴OB=22222313+=+=,∴P点所表示的数就是OA AB13,∵91316<<,<<,∴3134即点P所表示的数介于3和4之间,故选C.6. 【答案】A[解析]过点D作DF⊥AC于F,如图所示,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DE=DF=1.在Rt△BED中,∠B=30°,∴BD=2DE=2.在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CD=DF=,∴BC=BD+CD=2+.7. 【答案】B【解析】连接DE,过点A作AF⊥BC,垂足为F,过E作EG⊥BC,垂足为G.∵AB=AC,AF⊥BC,BC=12,∴BF=FC=6,又∵E是AC的中点,EG⊥BC,∴EG∥AF,∴CG=FG=12CF=3,∵在Rt△CEG中,tan C=EG CG,∴EG=CG×tan C=3y;∴DG=BF+FG-BD=6+3-x=9-x,∵HD是BE的垂直平分线,∴BD=DE=x,∵在Rt△EGD中,由勾股定理得,ED2=DG2+EG2,∴x2=(9-x)2+(3y)2,化简整理得,2x-y2=9.8. 【答案】B【解析】如解图,△ABC是等边三角形,AB=3,点P是三角形内任意一点,过点P分别向三边AB,BC,CA作垂线,垂足依次为D,E,F,过点A作AH⊥BC于点H,则BH=32,AH=AB2-BH2=332.连接P A,PB,PC,则S△P AB+S△PBC+S△PCA=S△ABC,∴12AB·PD+12BC·PE+12CA·PF=12BC·AH,∴PD+PE+PF=AH=332.二、填空题9. 【答案】45[解析]本题考查三角形的外角,可延长AP交正方形网格于点Q,连接BQ,如图所示,经计算PQ=BQ=,PB=,∴PQ2+BQ2=PB2,即△PBQ为等腰直角三角形,∴∠BPQ=45°,∴∠P AB+∠PBA=∠BPQ=45°,故答案为45.10. 【答案】5【解析】由题意知EF垂直平分AB,∴点D是AB的中点,∵∠ACB=90°,∴CD为斜边AB的中线,∴CD=12AB.∵BC=6,AC=8,∴AB=AC2+BC2=82+62=10,∴CD=5.11. 【答案】15-5[解析]过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=10.∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC×sin30°=10=5,CM=BC×cos30°=15.在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.12. 【答案】8+4[解析]如图,连接AD,设AC与BD交于点O,由题意得CA=CD,∠ACD=60°,∴△ACD为等边三角形,∴AD=CD,∠DAC=∠DCA=∠ADC=60°.∵∠ABC=90°,AB=BC=2,∴AC=CD=2.∵AB=BC,CD=AD,∴BD垂直平分AC,∴BO=AC=,OD=CD·sin60°=,∴BD=,∴BD 2=()2=8+4.13. 【答案】6或25或45【解析】①如图1,当5AB AC ==,4AD =,则3BD CD ==,∴底边长为6;②如图2,当5AB AC ==,4CD =时,则3AD =,∴2BD =,∴222425BC =+=,∴此时底边长为25;③如图3,当5AB AC ==,4CD =时,则223AD AC CD =-=,∴8BD =,∴45BC = ∴此时底边长为56或54514. 【答案】78 【解析】如解图,过A 作AH ⊥BC ,∵AB =15,AC =20,∠BAC=90°,∴由勾股定理得,BC =152+202=25,∵AD =5,∴DC =20-5=15,∵DE ⊥BC ,∠BAC =90°,∴△CDE ∽△CBA ,∴CE CA =CD CB ,∴CE =1525×20=12.法一:BC·AH =AB·AC ,AH =AB·AC BC =15×2025=12,S △ABE =12×12×13=78.法二:DE =152-122=9,由△CDE ∽△CAH 可得,CD CA =ED HA ,∴AH =9×2015=12,S △ABE =12×12×13=78.15. 【答案】13 或10 【解析】(1)如解图①所示,当P 点靠近B 点时,∵AC =BC =3,∴CP =2,在Rt △ACP 中,由勾股定理得AP =13;(2)如解图②所示,当P 点靠近C 点时,∵AC =BC =3,∴CP =1,在Rt △ACP 中,由勾股定理得AP =10.综上可得:AP 长为13 或10.16. 【答案】3或247【解析】分两种情况:①若90DEB ∠=︒,则90AED C ∠=︒=∠,CD ED =,连接AD ,则Rt Rt ACD EAD △≌△,∴6AE AC ==,1064BE =-=,设CD DE x ==,则8BD x =-,∵Rt BDE △中,222DE BE BD +=,∴2224(8)x x +=-,解得3x =,∴3CD =;②若90BDE ∠=︒,则90CDE DEF C ∠=∠=∠=︒,CD DE =,∴四边形CDEF 是正方形,∴90AFE EDB ∠=∠=︒,AEF B ∠=∠, ∴AEF EBD △∽△,∴AF EF ED BD=, 设CD x =,则EF DF x ==,6AF x =-,8BD x =-, ∴68x x x x -=-,解得247x =,∴247CD =, 综上所述,CD 的长为3或247,故答案为:3或247.三、解答题17. 【答案】解:(1)4(2)∵AC=AD ,∠CAD=60°,∴△CAD 是等边三角形,∴CD=AC=4,∠ACD=60°.过点D 作DE ⊥BC 于E ,∵AC ⊥BC ,∠ACD=60°,∴∠BCD=30°.在Rt △CDE 中,CD=4,∠BCD=30°,∴DE=CD=2,CE=2,∴BE=,在Rt△DEB中,由勾股定理得DB=.18. 【答案】解:[尝试] A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2. [发现] ∵A=B2,B>0,∴B==n2+1.[联想] ∵2n=8,∴n=4,∴B=n2+1=42+1=17.∵n2-1=35,∴B=n2+1=37.∴填表如下:直角三角形三n2-1 2n B边勾股数组Ⅰ8 17勾股数组Ⅱ35 3719. 【答案】解:(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F.∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF.(2)∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3.∵AD⊥BC,BD=CD,∴AC=AB=3.20. 【答案】解:如解图,过点A作AD⊥BC,垂足为点D,设BD=x,则CD=14-x,根据勾股定理可得:AD2=AB2-BD2=AC2-CD2,即152-x2=132-(14-x)2,解得x=9.(3分)∴AD2=152-x2=152-92=144.(5分)∵AD>0,∴AD=12.(8分)∴S△ABC=12BC·AD=12×14×12=84.(10分)21. 【答案】(1)由题意可得,∠PBC=30°,∠MAB=60°,∴∠CBQ=60°,∠BAN=30°,∴∠ABQ=30°,∴∠ABC=90°.∵AB=BC=10,∴22AB BC102.答:A、C两地之间的距离为14.1 km.(2)由(1)知,△ABC为等腰直角三角形,∴∠BAC=45°,∴∠CAM=15°,∴C港在A港北偏东15°的方向上.22. 【答案】13证明:(1)∵△ACB 和△ECD 都是等腰直角三角形,∴CD =CE ,AC =BC ,∠ECD =∠ACB =90°,∴∠ECD -∠ACD =∠ACB -∠ACD ,即∠ACE =∠BCD ,(1分) 在△ACE 与△BCD 中,⎩⎪⎨⎪⎧EC =DC ∠ACE =∠BCD AC =BC,(3分)∴△ACE ≌△BCD(SAS ).(4分)(2)∵△ACE ≌△BCD ,∴AE =BD ,∠EAC =∠B =45°,(6分)∴∠EAD =∠EAC +∠CAD =90°,在Rt △EAD 中,ED 2=AD 2+AE 2,∴ED 2=AD 2+BD 2,(8分)又ED 2=EC 2+CD 2=2CD 2,∴2CD 2=AD 2+DB 2.(10分)。

中考数学二轮复习拔高训练卷专题6三角形附解析

中考数学二轮复习拔高训练卷专题6三角形附解析

15.如图,Rt△ABC 中,∠C=90°,AC=12,点 D 在边 BC 上,CD=5,BD=13.点 P 是线段 AD 上一动点,当半径为 6 的 OP 与△ABC 的一边相切时,AP 的长为________.
16.如图,

点 F、M ,


;②
都是等边三角形,且点 A、C、E 在同一直线上, 与 、 分别交于 交于点 N . 下列结论正确的是________(写出所有正确结论的序号).
相平行得出 OP∥AC,根据平行线等分线段定理得出

= , 根据比例式即可算出 OP 的长
;根据切线的性质得出 OD⊥AC,根据同一平面内垂直于同一直线的两条直线互相平行得出 OD∥BC,根据平
行线等分线段定理得出

= ,根据比例式算出 OD 的长,即可算出 MN 最小值;如图,
当 N 在 AB 边上时,M 与 B 重合时,MN 经过圆心,经过圆心的弦最长,从而算出 MN 的最大值,综上所
A.
B.
C.
D. 10
6.如图,△ACB 和△ECD 都是等腰直角三角形,CA=CB,CE=CD,△ACB 的顶点 A 在△ECD 的斜边 DE 上,若 AE=
,AD= ,则两个三角形重叠部分的面积为( )
A.
B.
C.
D.
7.如图,∠B=∠C=90°,M 是 BC 的中点,DM 平分∠ADC,且∠ADC=110°,则∠MAB=( )
∴y=
= ×(2 -x)×1=

观察只有 B 选项的图象符合题意。 故答案为:B。 【分析】连接 B′C,作 AH⊥B′C′,垂足为 H,根据等边对等角得出∠C=∠B=30°,根据旋转的性质得出 AB′=AB=AC=AC′=2,∠AB′C′=∠C′=30°,根据含 30°直角三角形的边之间的关系得出 AH=1,根据勾股定理算出 C'H 的长,根据等边对等角及等量减去等量差相等得出∠DB′C=∠DCB′,故 B′D=CD,根据线段的和差及等量代换 得出 B′E=x,进而根据线段的和差由 C′E=B′C′-B′E 表示出 C'E,然后根据三角形的面积计算方法建立出 y 与 x 的 函数关系式,根据所得函数的图象与系数的关系即可作出判断得出答案。 5.【解析】【解答】如图,作 DH⊥AB 于 H,CM⊥AB 于 M.

中考数学三角形与四边形复习题及答案

中考数学三角形与四边形复习题及答案

第二部分空间与图形第四章三角形与四边形第1讲线、角、相交线和平行线一级训练1.(2011年安徽芜湖)一个角的补角是36°35′,这个角是________.2.如图4-1-12,已知线段AB=10 cm,AD=2 cm,D为线段AC的中点,那么线段CB=________cm.图4-1-123.(2012年湖南株洲)如图4-1-13,已知直线a∥b,直线c与a,b分别交于点A,B,且∠1=120°,则∠2=()图4-1-13A.60°B.120°C.30°D.150°4.(2011年四川南充)如图4-1-14,直线DE经过点A,DE∥BC,∠B=60°,下列结论成立的是()图4-1-14A.∠C=60°B.∠DAB=60°C.∠EAC=60°D.∠BAC=60°5.下列命题中,正确的是()A.若a·b>0,则a>0,b>0 B.若a·b<0,则a<0,b<0C.若a·b=0,则a=0且b=0 D.若a·b=0,则a=0或b=06.(2012年湖北孝感)已知∠α是锐角,∠α与∠β互补,∠α与∠r互余,则∠β-∠r的值等于()A.45°B.60°C.90°D.180°7.(2011年浙江丽水)如图4-1-15,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°图4-1-158.如图4-1-16,下列条件中,不能判断l1∥l2的是()图4-1-16A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°9.(2011年湖北孝感)如图4-1-17,直线AB,CD相交于点O,OT⊥AB于点O,CE∥AB交CD于点C.若∠ECO=30°,则∠DOT=()图4-1-17A.30°B.45° C. 60° D. 120°10.(2012年湖南怀化)如图4-1-18,已知AB∥CD,AE平分∠CAB,且交CD于点D,若∠C=110°,则∠EAB=()A.30°B.35°C.40°D.45°图4-1-1811.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路变直,就能缩短路程.其中可用公理“两点之间,线段最短”来解决的现象有()A.①②B.①③C.②④D.③④12.如图4-1-19,一束光线垂直照射在水平地面,在地面上放一个平面镜,欲使这束光线经过平面镜反射后成水平光线,则平面镜与地面所成锐角的度数为()图4-1-19A.45°B.60°C.75°D.80°二级训练13.(2012年四川广元)一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度()A.先向左转130°,再向左转50°B.先向左转50°,再向右转50°C.先向左转50°,再向右转40°D.先向左转50°,再向左转40°14.如图4-1-20,在△ABC中,∠C=90°.若BD∥AE,∠DBC=20°,则∠CAE的度数是()A.40°B.60°C.70°D.80°图4-1-2015.如图4-1-21,把一张长方形纸片沿EF折叠后,点D,C分别落在点D′,C′的位置.若∠EFB=65°,则∠AED′=()图4-1-21A.70°B.65°C.50°D.25°w16.观察下图4-1-22,寻找对顶角(不含平角):(1)(2)(3)图4-1-22(1)如图4-1-22(1),图中共有______对对顶角;(2)如图4-1-22(2),图中共有______对对顶角;(3)如图4-1-22(3),图中共有______对对顶角;(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成______对对顶角;(5)若有2 008条直线相交于一点,则可形成______对对顶角.三级训练17.如图4-1-23,∠AOB=90°,∠BOC=30°,射线OM平分∠AOC,ON平分∠BOC.图4-1-23(1)求∠MON的度数;(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)、(2)、(3)的结果中,你能看出什么规律?第2讲三角形第1课时三角形一级训练1.已知在△ABC中,若∠A=70°-∠B,则∠C=()A.35°B.70°C.110°D.140°2.如图4-2-14,在△ABC中,∠A=70°,∠B=60°,点D在BC的延长线上,则∠ACD=()A.100°B.120°C.130°D.150°图4-2-143.已知如图4-2-15的两个三角形全等,则α的度数是()图4-2-15A.72°B.60°C.58°D.50°4.(2011年湖南怀化)如图4-2-16,∠A,∠1,∠2的大小关系是()图4-2-16A. ∠A>∠1>∠2B. ∠2>∠1>∠AC. ∠A>∠2>∠1D. ∠2>∠A>∠15.(2011年江西)如图4-2-17,下列条件中,不能证明△ABD≌△ACD的是()图4-2-17A.BD=DC,AB=AC B.∠ADB=∠ADC,∠BAD=∠CADC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC6.(2011年上海)下列命题中,是真命题的是()A.周长相等的锐角三角形都全等B.周长相等的直角三角形都全等C.周长相等的钝角三角形都全等D.周长相等的等腰直角三角形都全等7.(2012年山东德州)不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的中位线8.(2012年山东济宁)用直尺和圆规作一个角的平分线的示意图如图4-2-18,则能说明∠AOC=∠BOC的依据是()A.SSS B.ASAC.AAS D.角平分线上的点到角两边距离相等图4-2-189.(2011年安徽芜湖)如图4-2-19,已知在△ABC中,∠ABC=45°,F是高AD和BE 的交点,CD=4,则线段DF的长度为()图4-2-19A.2 2B.4C.3 2D.4 210.以三条线段3,4,x-5为边组成三角形,则x的取值范围为________.11.若△ABC的周长为a,点D,E,F分别是△ABC三边的中点,则△DEF的周长为__________.12.(2011年江西)如图4-2-20,两块完全相同的含30°的直角三角形叠放在一起,且∠DAB=30°.有以下四个结论:①AF⊥BC;②△ADG≌△ACF; ③O为BC的中点;④AG∶DE =3∶4.其中正确结论的序号是__________.图4-2-20二级训练13.(2011年山东威海)在△ABC中,AB>AC,点D,E分别是边AB,AC的中点,点F 在边BC上,连接DE,DF,EF,则添加下列哪一个条件后,仍无法判定△BFD与△EDF全等?()A.EF∥AB B.BF=CF C.∠A=∠DFE D.∠B=∠DEF14.(2011年浙江)如图4-2-21,点D,E分别在AC,AB上.(1)已知BD=CE,CD=BE,求证:AB=AC;(2)分别将“BD=CE”记为①,“CD=BE”记为②,“AB=AC”记为③.添加条件①、③,以②为结论构成命题1,添加条件②、③,以①为结论构成命题2.命题1是________命题,命题2是_________命题(选择“真”或“假”填入空格).图4-2-2115.(2012年湖北随州)如图4-2-22,在△ABC中,AB=AC,点D是BC的中点,点E 在AD上.求证:(1)△ABD≌△ACD;(2)BE=CE.图4-2-22三级训练16.(2011年湖南衡阳)如图4-2-23,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为________.图4-2-2317.如图4-2-24,两根旗杆间相距12 m ,某人从点B 沿BA 走向点A ,一定时间后他到达点M ,此时他仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM =DM ,已知旗杆AC 的高为3 m ,该人的运动速度为1 m/s ,求这个人运动了多长时间?图4-2-24第二部分 空间与图形 第四章 三角形与四边形第1讲 线、角、相交线和平行线 【分层训练】 1.143°25′ 2.B 3.B 4.B 5.D 6.C 7.B 8.B 9.C 10.B 11.D 12.A 解析:如图D9,过点O 作OD ⊥OC ,根据平面镜反射定律,可得∠AOD =∠BOD .又∵AO 垂直于水平面,OB 平行于水平面,∴∠AOB =90°.∴∠AOD =∠BOD =45°.又∵OD ⊥OC ,∴∠BOC =90°-∠BOD =45°.由于OB 平行于水平面,可得∠1=∠BOC =45°.图D911.D 13.B14.C 解析:由题意,可得∠EAB +∠DBA =180°,又由∠C =90°,可得∠CAB +∠CBA =90°,于是∠CAE +∠DBC =90°.故∠CAE =90°-∠DBC =70°.15.C 解析:∠D ′EF =∠DEF =∠EFB =65°,于是∠AED ′=180°-∠D ′ED =50°. 16.(1)2 (2)6 (3)12 (4)n (n -1) (5)4 030 056解析:(1)如图4-1-22(1),图中共有1×2=2对对顶角; (2)如图4-1-22(2),图中共有2×3=6对对顶角; (3)如图4-1-22(3),图中共有3×4=12对对顶角;(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点,则可形成(n -1)n 对对顶角;(5)若有2 008条直线相交于一点,则可形成(2 008-1)×2 008=4 030 056对对顶角.17.解:(1)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12×120°-12×30°=45°.(2)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12(α+30°)-12×30°=12α.(3)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12(90°+β)-12β=45°.(4)∠MON 的大小等于∠AOB 的一半,与∠BOC 的大小无关. 第2讲 三角形 第1课时 三角形 【分层训练】1.C 2.C 3.D 4.B 5.D 6.D 7.C 8.A 9.B10.6<x <12 解析:由题意,可得1<x -5<7,解得6<x <12. 11.a 2 解析:由题意,可得△DEF 的三边为△ABC 的中位线,故其周长为a 2. 12.①②③④ 13.C 14.(1)证明:连接BC ,∵ BD =CE ,CD =BE ,BC =CB , ∴ △DBC ≌△ECB (SSS). ∴ ∠DBC =∠ECB . ∴ AB =AC . (2)真 假15.证明:(1)∵D 是BC 的中点, ∴BD =CD .在△ABD 和△ACD 中, ⎩⎪⎨⎪⎧BD =CD ,AB =AC ,AD =AD (公共边),∴△ABD ≌△ACD (SSS).(2)由(1),可知:△ABD ≌△ACD , ∴∠BAD =∠CAD ,即∠BAE =∠CAE . 在△ABE 和△ACE 中, ⎩⎪⎨⎪⎧AB =AC ,∠BAE =∠CAE , AE =AE ,∴△ABE ≌△ACE (SAS).∴BE =CE (全等三角形的对应边相等).16.7 解析:因为将△ABC 折叠,使点C 与点A 重合,折痕为DE ,所以EC =AE ,故△ABE 的周长为AB +BE +AE =AB +BE +EC =AB +BC =3+4=7.17.解:∵∠CMD =90°, ∴∠CMA +∠DMB =90°. 又∵∠CAM =90°,∴∠CMA +∠ACM =90°. ∴∠ACM =∠DMB . 又∵CM =MD ,∴Rt △ACM ≌Rt △BMD . ∴AC =BM =3.∴他到达点M 时,运动时间为3÷1=3(s). 答:这人运动了3 s.。

中考数学压轴题专项训练:四边形的综合(含答案)

2020年数学中考压轴题专项训练:四边形的综合1.如图,四边形ABCD是直角梯形,AD∥BC,AB⊥AD,且AB=AD+BC,E是DC的中点,连结BE并延长交AD的延长线于G.(1)求证:DG=BC;(2)F是AB边上的动点,当F点在什么位置时,FD∥BG;说明理由.(3)在(2)的条件下,连结AE交FD于H,FH与HD长度关系如何?说明理由.(1)证明:∵AD∥BC,∴∠DGE=∠CBE,∠GDE=∠BCE,∵E是DC的中点,即DE=CE,∴△DEG≌△CEB(AAS),∴DG=BC.(2)解:当F运动到AF=AD时,FD∥BG.理由:由(1)知DG=BC,∵AB=AD+BC,AF=AD,∴BF=BC=DG,∴AB=AG,∵∠BAG=90°,∴∠AFD=∠ABG=45°,∴FD∥BG.(3)解:结论:FH=HD.理由:由(1)知GE=BG,又由(2)知△ABG为等腰直角三角形,所以AE⊥BG,∵FD∥BG,∴AE⊥FD,∵△AFD为等腰直角三角形,∴FH=HD.2.如图,在矩形ABCD中,过BD的中点O作EF⊥BD,分别与AB、CD交于点E、F.连接DE、BF.(1)求证:四边形BEDF是菱形;(2)若M是AD中点,联结OM与DE交于点N,AD=OM=4,则ON的长是多少?(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠DFO=∠BEO,∵∠DOF=∠EOB,OD=OB,∴△DOF≌△BOE(AAS),∴DF=BE,∴四边形BEDF是平行四边形,∵EF⊥BD,∴四边形BEDF是菱形.(2)解:∵DM=AM,DO=OB,∴OM∥AB,AB=2OM=8,∴DN=EN,ON=BE,设DE=EB=x,在Rt△ADE中,则有x2=42+(8﹣x)2,解得x=5,∴ON=.3.(1)如图1,四边形EFGH中,FE=EH,∠EFG+∠EHG=180°,点A,B分别在边FG,GH 上,且∠AEB=∠FEH,求证:AB=AF+BH.(2)如图2,四边形EFGH中,FE=EH,点M在边EH上,连接FM,EN平分∠FEH交FM 于点N,∠ENM=α,∠FGH=180°﹣2α,连接GN,HN.①找出图中与NH相等的线段,并加以证明;②求∠NGH的度数(用含α的式子表示).(1)证明:如图1中,延长BH到M,使得HM=FA,连接EM.∵∠F+∠EHG=180°,∠EHG+∠EHM=180°,∴∠F=∠EHM,∵AE=HE,FA=HM,∴△EFA≌△EHM(SAS),∴EA=EM,∠FEA=∠HEM,∵∠EAB=∠FEH,∴∠FEA+∠BEH=∠HEM+∠BEH=∠BEM=∠FEH,∴∠AEB=∠BEM,∵BE=BE,EA=EM,∴△AEB≌△MEB(SAS),∴AB=BM,∵BM=BH+HM=BH+AF,∴AB=AF+BH.(2)解:①如图2中,结论:NH=FN.理由:∵NE平分∠FEH,∴∠FEN=∠HEN,∵EF=EH,EN=EN,∴△ENF≌△ENH(SAS),∴NH=FN.②∵△ENF≌△ENH,∴∠ENF=∠ENH,∵∠ENM=α,∴∠ENF=∠ENH=180°﹣α,∴∠MNH=180°﹣α﹣α=180°﹣2α,∵∠FGH=180°﹣2α,∴∠MNH=∠FGH,∵∠MNH+∠FNH=180°,∴∠FGH+∠FNH=180°,∴F,G,H,N四点共圆,∵NH=NF,∴=,∴∠NGH=∠NGF=∠FGH=90°﹣α.4.如图,已知△ABC中,∠ACB=90°,AC=4,BC=3,点M、N分别是边AC、AB上的动点,连接MN,将△AMN沿MN所在直线翻折,翻折后点A的对应点为A′.(1)如图1,若点A′恰好落在边AB上,且AN=AC,求AM的长;(2)如图2,若点A′恰好落在边BC上,且A′N∥AC.①试判断四边形AMA′N的形状并说明理由;②求AM、MN的长;(3)如图3,设线段NM、BC的延长线交于点P,当且时,求CP的长.解:(1)如图1中,在Rt△ABC中,∵∠C=90°,AC=4,BC=3,∴AB===5,∵∠A=∠A,∠ANM=∠C=90°,∴△ANM∽△ACB,∴=,∴=,∴AM=.(2)①如图2中,∵NA′∥AC,∴∠AMN=∠NMA′,由翻折可知:MA=MA′,∠AMN=∠NMA′,∴∠MNA′=∠A′MN,∴A′N=A′M,∴AM=A′N,∵AM∥A′N,∴四边形AMA′N是平行四边形,∵MA=MA′,∴四边形AMA′N是菱形.②连接AA′交MN于O.设AM=MA′=x,∵MA′∥AB,∴=,∴=,解得x=,∴AM=,∴CM=,∴CA′===,∴AA′===,∵四边形AMA′N是菱形,∴AA′⊥MN,OM=ON,OA=OA′=,∴OM===,∴MN=2OM=.(3)如图3中,作NH⊥BC于H.∵NH∥AC,∴==∴==∴NH=,BH=,∴CH=BC﹣BH=3﹣=,∴AM=AC=,∴CM=AC﹣AM=4﹣=,∵CM∥NH,∴=,∴=,∴PC=1.5.如图,四边形ABCD为平行四边形,AD=1,AB=3,∠DAB=60°,点E为边CD上一动点,过点C作AE的垂线交AE的延长线于点F.(1)求∠D的度数;(2)若点E为CD的中点,求EF的值;(3)当点E在线段CD上运动时,是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.解:(1)如图1中,∵四边形ABCD是平行四边形,∴AB∥CB,∠ADC+∠DAB=180°,∵∠DAB=60°,∴∠ADC=120°.(2)如图1中,作AH⊥CD交CD的延长线于H.在Rt△ADH中,∵∠H=90°,∠ADH=60°,AD=2,∴AH=AD•sin60°=,DH=AD•cos60°=,∵DE=EC=,∴EH=DH+DE=2,∴AE===,∵CF⊥AF,∴∠F=∠H=90°,∵∠AEH=∠CEF,∴△AEH∽△CEF,∴=,∴=,∴EF=.(3)如图2中,作△AFC的外接圆⊙O,作AH⊥CD交CD的郯城县于H,作OK⊥CD于K,交⊙O于M,作FP∥CD交AD的延长线于P,作MN∥CD交AD的延长线于M,作NQ⊥CD于Q.∵DE∥PF,∴=,∵AD是定值,∴PA定值最大时,定值最大,观察图象可知,当点F与点M重合时,PA定值最大,最大值=AN的长,由(2)可知,AH=,CH=,∠H=90°,∴AC===,∴OM=AC=,∵OK∥AH,AO=OC,∴KH=KC,∴OK==,∴MK=NQ=﹣,在Rt△NDQ中,DN===﹣,∴AN=AD+DN=+,∴的最大值==+.6.如图,在边长为2的正方形ABCD中,点P是射线BC上一动点(点P不与点B重合),连接AP、DP,点E是线段AP上一点,且∠ADE=∠APD,连接BE.(1)求证:AD2=AE•AP;(2)求证BE⊥AP;(3)直接写出的最小值.(1)证明:∵∠DAE=∠PAD,∠ADE=∠APD,∴△ADE∽△APD,∴=,∴AD2=AE•AP(2)证明:∵四边形ABCD是正方形,∴AD=AB,∠ABC=90°,∴AB2=AE•AP,∴=,∵∠BAE=∠PAB,∴△ABE∽△APB,∴∠AEB=∠ABP=90°,∴BE⊥AP.(3)∵△ADE∽△APD,∴=,∴=,∵AD=2,∴DE最小时,的值最小,如图,作△ABE的外接圆⊙O,连接OD,OE,易知OE=1,OD=,∴DE≥OD﹣OE=﹣1,∴DE的最小值为﹣1,∴的最小值=.7.在正方形ABCD中,点E是BC边上一点,连接AE.(1)如图1,点F为AE的中点,连接CF.已知tan∠FBE=,BF=5,求CF的长;(2)如图2,过点E作AE的垂线交CD于点G,交AB的延长线于点H,点O为对角线AC 的中点,连接GO并延长交AB于点M,求证:AM+BH=BE.解:(1)Rt△ABE中,BF为中线,BF=5,∴AE=10,FE=5,作FP⊥BC于点P,Rt△BFP中,,∴BP=3,FP=4,在等腰三角形△BFE中,BE=2BP=6,由勾股定理求得,∴CP=8﹣3=5,∴;(2)∵∠ACD=∠BAC=45°,AO=CO,∠AOM=∠COG,∴证明△AMO≌△CGO(ASA),∴AM=GC,过G作GP垂直AB于点P,得矩形BCGP,∴CG=PB,∵AB=PG,∠AEB=∠H,∠ABE=∠GPH,∴△ABE≌△GPH(ASA),∴BE=PH=PB+BH=CG+BH=AM+BH.8.阅读理解:如图1,若一个四边形的两条对角线互相垂直,则称这个四边形为垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,试在垂美四边形ABCD中探究AB2,CD2,AD2,BC2之间的关系,并说明理由;(3)解决问题:如图3,分别以Rt△ABC的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连结CE、BG、GE、CE交BG于点N,交AB于点M.已知AC=,AB=2,求GE的长.解:(1)如图2,四边形ABCD是垂美四边形;理由如下:连接AC、BD交于点E,∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)猜想结论:AB2+CD2=AD2+BC2,证明:如图1,在四边形ABCD中,∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得:AB2+CD2=AO2+BO2+OD2+OC2AD2+BC2=AO2+BO2+OD2+OC2∴AB2+CD2=AD2+BC2,(3)如图3,连接CG,BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,FMNG图 3EDCAB∴△GAB≌△CAE(SSS),∴∠ABG=∠AEC,∵∠AEC+∠AME=90°,∴∠ABG+∠BMN=90°,∴∠BNC=90°,即BG⊥CE,∴四边形CGEB是垂美四边形,由(2)得:EG2+BC2=CG2+BE2∵,AB=2,∴BC=1,,,∴EG2=CG2+BE2﹣BC2=6+8﹣2=13,∴.9.已知:如图,长方形ABCD中,∠A=∠B=∠B=∠D=90°,AB=CD=4米,AD=BC=8米,点M是BC边的中点,点P从点A出发,以1米/秒的速度沿AB方向运动再过点B沿BM方向运动,到点M停止运动,点O以同样的速度同时从点D出发沿着DA方向运动,到点A停止运动,设点P运动的时间为x秒.(1)当x=2秒时,线段AQ的长是 6 米;(2)当点P在线段AB上运动时,图中阴影部分的面积发生改变吗?请你作出判断并说明理由.(3)在点P,Q的运动过程中,是否存在某一时刻,使得BP=DQ?若存在,求出点P 的运动时间x的值;若不存在,请说明理由.解:(1)∵四边形ABCD是矩形,∴AD=BC=8,∵DQ=2,∴AQ=AD﹣DQ=8﹣2=6,故答案为6.(2)结论:阴影部分的面积不会发生改变.理由:连结AM,作MH⊥AD于H.则四边形ABMH是矩形,MH=AB=4.∵S阴=S△APM+S△AQM=×x×4+(8﹣x)×4=16,∴阴影面积不变;(3)当点P在线段AB上时,BP=4﹣x,DQ=x.∵BP=DQ,∴4﹣x=x,∴x=3.当点P在线段BM上时,BP=x﹣4,DQ=x.∵BP=DQ,∴x﹣4=x,∴x=6.所以当x=3或6时,BP=DQ.10.A,B,C,D是长方形纸片的四个顶点,点E、F、H分别是边AB、BC、AD上的三点,连结EF、FH.(1)将长方形纸片ABCD按图①所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',点B'在FC'上,则∠EFH的度数为90°;(2)将长方形纸片ABCD按图②所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',若∠B'FC'=18°,求∠EFH的度数;(3)将长方形纸片ABCD按图③所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',若∠EFH=m°,求∠B'FC'的度数为180°﹣2m°.解:(1)∵沿EF,FH折叠,∴∠BFE=∠B'FE,∠CFH=∠C'FH,∵点B′在FC′上,∴∠EFH=(∠BFB'+∠CFC')=×180°=90°,故答案为:90°;(2)∵沿EF,FH折叠,∴可设∠BFE=∠B'FE=x,∠C'FH=∠CFH=y,∵2x+18°+2y=180°,∴x+y=81°,∴∠EFH=x+18°+y=99°;(3)∵沿EF,FH折叠,∴可设∠BFE=∠B'FE=x,∠C'FH=∠CFH=y,∴∠EFH=180°﹣∠BFE﹣∠CFH=180°﹣(x+y),即x+y=180°﹣m°,又∵∠EFH=∠EFB'﹣∠B'FC'+∠C'FH=x﹣∠B'FC'+y,∴∠B'FC'=(x+y)﹣∠EFH=180°﹣m°﹣m°=180°﹣2m°,故答案为:180°﹣2m°.11.勾股定理是数学史上非常重要的一个定理.早在2000多年以前,人们就开始对它进行研究,至今已有几百种证明方法.在欧几里得编的《原本》中证明勾股定理的方法如下,请同学们仔细阅读并解答相关问题:如图,分别以Rt△ABC的三边为边长,向外作正方形ABDE、BCFG、ACHI.(1)连接BI、CE,求证:△ABI≌△AEC;(2)过点B作AC的垂线,交AC于点M,交IH于点N.①试说明四边形AMNI与正方形ABDE的面积相等;②请直接写出图中与正方形BCFG的面积相等的四边形.(3)由第(2)题可得:正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积,即在Rt△ABC中,AB2+BC2=AC2.(1)证明:∵四边形ABDE、四边形ACHI是正方形,∴AB=AE,AC=AI,∠BAE=∠CAI=90°,∴∠EAC=∠BAI,在△ABI和△AEC中,,∴△ABI≌△AEC(SAS);(2)①证明:∵BM⊥AC,AI⊥AC,∴BM∥AI,∴四边形AMNI的面积=2△ABI的面积,同理:正方形ABDE的面积=2△AEC的面积,又∵△ABI≌△AEC,∴四边形AMNI与正方形ABDE的面积相等.②解:四边形CMNH与正方形BCFG的面积相等,理由如下:∵Rt△ABC中,AB2+BC2=AC2,∴正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积,由①得:四边形AMNI与正方形ABDE的面积相等,∴四边形CMNH与正方形BCFG的面积相等;(3)解:由(2)得:正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积;即在Rt△ABC中,AB2+BC2=AC2;故答案为:正方形ACHI,AC2.12.在长方形纸片ABCD中,点E是边CD上的一点,将△AED沿AE所在的直线折叠,使点D 落在点F处.(1)如图1,若点F落在对角线AC上,且∠BAC=54°,则∠DAE的度数为18 °.(2)如图2,若点F落在边BC上,且AB=6,AD=10,求CE的长.(3)如图3,若点E是CD的中点,AF的沿长线交BC于点G,且AB=6,AD=10,求CG 的长.解:(1)∵四边形ABCD是矩形,∴∠BAD=90°,∵∠BAC=54°,∴∠DAC=90°﹣54°=36°,由折叠的性质得:∠DAE=∠FAE,∴∠DAE=∠DAC=18°;故答案为:18;(2)∵四边形ABCD是矩形,∴∠B=∠C=90°,BC=AD=10,CD=AB=6,由折叠的性质得:AF=AD=10,EF=ED,∴BF===8,∴CF=BC﹣BF=10﹣8=2,设CE=x,则EF=ED=6﹣x,在Rt△CEF中,由勾股定理得:22+x2=(6﹣x)2,解得:x=,即CE的长为;(3)连接EG,如图3所示:∵点E是CD的中点,∴DE=CE,由折叠的性质得:AF=AD=10,∠AFE=∠D=90°,FE=DE,∴∠EFG=90°=∠C,在Rt△CEG和△FEG中,,∴Rt△CEG≌△FEG(HL),∴CG=FG,设CG=FG=y,则AG=AF+FG=10+y,BG=BC﹣CG=10﹣y,在Rt△ABG中,由勾股定理得:62+(10﹣y)2=(10+y)2,解得:y=,即CG的长为.13.如图,矩形ABCD中,AB=6cm,AD=8cm,点P从点A出发,以每秒一个单位的速度沿A→B→C的方向运动;同时点Q从点B出发,以每秒2个单位的速度沿B→C→D的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t秒.(1)当t=7 时,两点停止运动;(2)设△BPQ的面积面积为S(平方单位)①求S与t之间的函数关系式;②求t为何值时,△BPQ面积最大,最大面积是多少?解:(1)∵四边形ABCD是矩形,∴AD=BC=8cm,AB=CD=6cm,∴BC+AD=14cm,∴t=14÷2=7,故答案为7.(2)①当0<t<4时,S=•(6﹣t)×2t=﹣t2+6t.当4≤t<6时,S=•(6﹣t)×8=﹣4t+24.当6<t≤7时,S=(t﹣6)•(2t﹣8)=t2﹣10t+24.②当0<t<4时,S=•(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+9,∵﹣1<0,∴t=3时,△PBQ的面积最大,最小值为9.当4≤t<6时,S=•(6﹣t)×8=﹣4t+24,∵﹣4<0,∴t=4时,△PBQ的面积最大,最大值为8,当6<t≤7时,S=(t﹣6)•(2t﹣8)=t2﹣10t+24=(t﹣5)2﹣1,t=7时,△PBQ的面积最大,最大值为3,综上所述,t=3时,△PBQ的面积最大,最大值为9.14.综合实践:问题情境数学活动课上,老师和同学们在正方形中利用旋转变换探究线段之间的关系探究过程如下所示:如图1,在正方形ABCD中,点E为边BC的中点.将△DCE以点D为旋转中心,顺时针方向旋转,当点E的对应点E'落在边AB上时,连接CE'.“兴趣小组”发现的结论是:①AE'=C'E';“卓越小组”发现的结论是:②DE=CE',DE⊥CE'.解决问题(1)请你证明“兴趣小组”和“卓越小组”发现的结论;拓展探究证明完“兴趣小组”和“卓越小组”发现的结论后,“智慧小组”提出如下问题:如图2,连接CC',若正方形ABCD的边长为2,求出CC'的长度.(2)请你帮助智慧小组写出线段CC'的长度.(直接写出结论即可)(1)证明:①∵△DE'C'由△DEC旋转得到,∴DC'=DC,∠C'=∠DCE=90°.又∵四边形ABCD是正方形,∴DA=DC,∠A=90°,∴DA=DC',∵DE'=DE',∴Rt△DAE≌Rt△DC'E′(HL),∴AE'=C'E'.②∵点E为BC中点,C'E'=AE'=CE,∴点E'为AB的中点.∴BE′=CE,又∵DC=BC,∠DCE=∠CBE'=90°,∴△DCE≌△CBE'(SAS),∴DE=CE',∠CDE=∠E'CB,∵∠CDE+∠DEC=90°,∴∠E'CB+∠CED=90°,∴DE⊥CE'.(2)解:如图2中,作C′M⊥CD于M,交AB于N.∵AB∥CD,C′M⊥CD,∴C′M⊥AB,∴∠DMC′=∠C′NE′=∠DC′E′=90°,∴∠MDC′+∠DC′M=90°,∠DC′M+∠E′CN=90°,∴∠MDC′=∠E′C′N,∴△DMC′∽△C′NE′,∴===2,设NE′=x,则AM=AN=1+x,C′M=2x,C′N=(1+x),∵MN=AD=2,∴2x+(1+x)=2,解得x=,∴CM=2﹣(1+)=,MC=,∴CC′===.15.在△ABC中,AD平分∠BAC交BC于D,∠MDN的两边分别与AB,AC相交于M,N两点,且DM=DN.(1)如图甲,若∠C=90°,∠BAC=60°,AC=9,∠MDN=120°,ND∥AB.①写出∠MDA=90 °,AB的长是18 .②求四边形AMDN的周长.(2)如图乙,过D作DF⊥AC于F,先补全图乙再证明AM+AN=2AF.解:(1)①∵AD平分∠BAC,∴∠BAD=∠CAD=∠BAC=30°,∵ND∥AB,∴∠NDA=∠BAD=30°,∴∠MDA=∠MDN﹣∠NDA=120°﹣30°=90°,∵∠C=90°,∠BAC=60°,∴∠ABC=30°,∴AC=AB,∴AB=2AC=18,故答案为:90,18;②∵∠ABC=30°,ND∥AB,∴∠NDC=30°,又∵∠MDN=120°,∴∠MDB=30°,∴∠MAD=∠NAD=∠ADN=∠MBD=30°,∴BM=MD,DN=AN,∵DM=DN,∴BM=MD=DN=AN,在Rt△ADM中,设MD=x,则AM=2x,BM=MD=DN=AN=x,∵AB=18,∴3x=18,∴x=6,∴AM=12,MD=DN=AN=6,∴四边形AMDN的周长=AM+MD+DN+AN=12+6+6+6=30;(2)补全图如图乙所示:证明:过点D作DE⊥AB于E,如图丙所示:∵DE⊥AB,DF⊥AC,AD平分∠BAC,∴∠DEM=∠DFN=90°,DE=DF,在Rt△DEA和Rt△DFA中,,∴Rt△DEA≌Rt△DFA(HL),∴AE=AF,在Rt△DEM和Rt△DFN中,,∴Rt△DEM≌Rt△DFN(HL),∴EM=FN,∴AM+AN=AE+EM+AF﹣NF=2AF.。

重庆市2001-2012年中考数学试题分类解析专题9:三角形

一、选择题1. (重庆市2001年4分)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是【 】.A .带①去B .带②去C .带③去D .带①和②去2. (重庆市2002年4分)如图,⊙O 为△ABC 的内切圆,∠C=90度,OA 的延长线交BC 于点D ,AC=4,CD=1,则⊙O 的半径等于【 】A54 B45 C43 D65【答案】A 。

【考点】三角形的内切圆与内心,相似三角形的判定和性质。

【分析】设圆O 与AC 的切点为M ,圆的半径为r ,如图,连接OM 。

∵∠C=90°,∴CM=r。

∵△AOM∽△ADC,∴OM:CD=AM :AC ,即r:1=(4-r):4,解得r=45。

故选A。

3. (重庆市2003年4分)如图,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,则BC的长度为【】A.152B.154C.3 D.834. (重庆市2003年4分)如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC=15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为【】A.1个 B.2个 C.3个 D.4个5. (重庆市2003年4分)如图,在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=15,则AD 的长是【 】A B .2 C .1 D .6. (重庆市2004年4分)如图,CD 是平面镜,光线从A 点出发经CD 上点E 反射后照射到B 点,若入射角为α (入射角等于反射角),AC⊥CD,BD⊥CD,垂足分别为C 、D ,且AC =3,BD =6,CD =11,则tan α的值为【 】A 、311 B 、113 C 、119 D 、9117. (重庆市2004年4分)秋千拉绳长3米,静止时踩板离地面0.5米,某小朋友荡该秋千时,秋千在最高处踩板离地面2米(左右对称),则该秋千所荡过的圆弧长为【 】A 、π米B 、π2米C 、π34米 D 、π23米8. (重庆市大纲卷2005年4分)如图,DE 是△ABC 的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,则DMN S ∆∶ANMES 四边形等于【 】A 、1∶5 B、1∶4 C、2∶5 D、2∶7 【答案】A 。

相似三角形中的“8”字模型(3种题型)(解析版)--中考物理数学专项训练

相似三角形中的“8”字模型(3种题型)一、【知识梳理】8字_平行型条件:CD∥AB,结论:ΔPAB∼ΔPCD(上下相似);左右不一定相似,不一定全等,但面积相等;四边形ABCD为一般梯形.条件:CD∥AB,PD=PC.结论:ΔPAB∼ΔPCD∼ΔPDC(上下相似)ΔPAD≅ΔPBC左右全等;四边形ABCD为等腰梯形;8字_不平行型条件:∠CDP=∠BAP.结论:ΔAPB∼ΔDPC(上下相似);ΔAPD∼ΔBPC(左右相似);二、【考点剖析】8字-平行型1.直接利用“8”字型解题1如图,在平行四边形ABCD 中,点E 在边DC 上,若DE :EC =1:2,则BF :BE =.【答案】3:5.【解析】DE :EC =1:2,可知CE CD =CE AB =23,由CE ⎳AB ,可知BF EF =AB CE=32,故BF :BE =3:5.【总结】初步认识相似三角形中的“8”字型.2如图,P 为▱ABCD 对角线BD 上任意一点.求证:PQ ∙PI =PR ∙PS .【解析】证明:∵四边形ABCD 为平行四边形,∴AB ⎳CD ,AD ⎳BC ,∴RB ⎳DI ,SD ⎳BQ .根据三角形一边平行线的性质定理,则有PI PR =PD PB =PS PQ,∴PQ ⋅PI =PR ⋅PS .【总结】初步认识相似三角形中的“8”字型,一个图形中存在往往不只一个,可用来进行等比例转化.3如图,在平行四边形ABCD 中,CD 的延长线上有一点E ,BE 交AC 于点F ,交AD 于点G .求证:BF 2=FG ∙EF .【解析】证明:∵四边形ABCD 为平行四边形,∴AB ⎳CD ,AD ⎳BC ,∴AB ⎳CE ,AG ⎳BC .根据三角形一边平行线的性质定理,则有:EF BF =CF AF=BF FG ,∴BF 2=FG ∙EF .【总结】初步认识相似三角形中的“8”字型,一个图形中存在往往不只一个,可用来进行等比例转化.4如图,点C 在线段AB 上,ΔAMC 和ΔCBN 都是等边三角形.求证:(1)MD DC =AM CN;(2)MD ∙EB =ME ∙DC .【解析】证明:(1)∵ΔAMC 和ΔCBN 是等边三角形,∴∠ACM =∠NCB =∠AMC =60°.∵点C 在线段AB 上,∴∠MCN =180°-∠ACM -∠NCB =60°=∠AMC .∴AM ⎳CN ,∴MD DC =AM CN.(2)同(1)易证得CM ⎳BN ,则有ME EB =MC NB.∵ΔAMC 和ΔCBN 是等边三角形,∴MC =AM ,NB =CN ,∴MD DC=ME EB ,∴MD ∙EB =ME ∙DC .【总结】初步认识相似三角形中的“8”字型,一个图形中存在往往不只一个,可用来进行等比例转化.5如图,已知AB ⎳CD ⎳EF .AB =m ,CD =n ,求EF 的长.(用m 、n 的代数式表示).【答案】mn m +n .【解析】由AB ⎳CD ⎳EF ,则有EF AB =CF BC ,EF CD =BF BC ,即EF m +EF n =1,得EF =mn m +n.【总结】考查相似三角形中“8”字型的综合应用,得到比例关系.6如图,E 为平行四边形ABCD 的对角线AC 上一点,AE EC=13,BE 的延长线交CD 的延长线于点G ,交AD 于点F ,求BF :FG 的值.【答案】1:2.【解析】由AF ⎳BC ,可得AF BC =AE EC =13,即AF AD=13,故AF FD =12,由AB ⎳DG ,可得:BF :FG =AF :FD =1:2.【总结】考查相似三角形中“8”字型的综合应用,得到比例关系.7如图,l 1⎳l 2,AF :FB =2:5,BC :CD =4:1,求AE :EC 的值.【答案】2:1.【解析】由l 1⎳l 2,得:AG BD =AF FB =25,又BC :CD =4:1,可得AG CD=21,故AE :EC =AG :CD =2:1.【总结】考查相似三角形中“8”字型的综合应用,得到比例关系.2.添加辅助线构造“8”字模型解题8过ΔABC 的顶点C 任作一直线,与边AB 及中线AD 分别交于点F 、E .求证:AE ED =2AF FB.【解析】过点D 作DG ⎳AB 交CF 于点G .∵DG ⎳AB ∴AE ED =AF GD ,DG BF =CD CB ;∵AD 是中线, ∴BC =2CD , ∴DG BF =12;∴AE ED =2AF BF.【总结】题考查三角形一边的平行线知识,要学会构造平行基本模型.9如图,AD 是ΔABC 的内角平分线.求证:AB AC=BD DC .【解析】过点C作CM⎳AB交AD的延长线于点M.∵CM⎳AB ∴AB CM=BDDC,∠BAD=∠M∵AD是角平分线∴∠BAD=∠DAC;∴∠M=∠DAC∴AC=CM∴AB AC=BD DC.【总结】本题考查了三角形一边的平行线、角平分线及等腰三角形的相关知识.8字-不平行型1如图,∠BEC=∠CDB,下列结论正确的是()A.EF•BF=DF•CFB.BE•CD=BF•CFC.AE•AB=AD•ACD.AE•BE=AD•DC【分析】结合图形利用8字模型相似三角形证明△EFB∽△DFC,然后利用等角的补角相等得出∠AEC=∠ADB,最后证明△ABD∽△ACE,利用相似三角形的对应边成比例逐一判断即可.【解答】解:∵∠BEC=∠CDB,∠EFB=∠DFC,∴△EFB∽△DFC,∴EF DF=FB FC,∴EF•FC=DF•FB,故A不符合题意:∵△EFB∽△DFC,∴BE CD=BF FC,∴BE•CF=CD•BF,故B不符合题意;∵∠BEC=∠CDB,∠BEC+∠AEC=180°,∠BDC+∠ADB=180°,∴∠AEC=∠ADB,∴△ABD∽△ACE,∴AB AC=AD AE,∴AB•AE=AD•AC,故C符合题意;因为:AE,BE,AD,CD组不成三角形,也不存在比例关系,故D不符合题意;故选:C.【点评】本题考查了相似三角形的判定与性质,根据题目的已知条件并结合图形分析是解题的关键.1.【过关检测】一、选择题(共3小题)1(2023•静安区校级一模)如图,在△ABC中,中线AD与中线BE相交于点G,联结DE.下列结论成立的是()A. B. C. D.【分析】由AD,BE是△ABC的中线,得到DE是△ABC的中位线,推出△DEG∽△ABG,△CDE∽△CBA,由相似三角形的性质即可解决问题.【解答】解:AD,BE是△ABC的中线,∴DE是△ABC的中位线,∴DE∥AB,DE=AB,∴△DEG∽△ABG,∴DG:AG=DE:AB=1:2,BG:EG=AB:DE,==,∴DG=AG,∵BG:EG=AB:DE=2:1,∴GB:BE=2:3,∴S△AGB:S△AEB=2:3,∵AE=EC,∴S△AEB=S△ABC,∴S△AGB=S△ABC,∵△CDE∽△CBA,∴==,∴S △CDE =S △ABC ,∴=,结论成立的是=,故选:C .【点评】本题考查相似三角形的判定和性质,关键是掌握相似三角形的性质.2(2023•徐汇区一模)如图,点D 在△ABC 边AB 上,∠ACD =∠B ,点F 是△ABC 的角平分线AE 与CD 的交点,且AF =2EF ,则下列选项中不正确的是()A. B. C. D.【分析】过C 作CG ∥AB 交AE 延长线于G ,由条件可以证明△ACF ≌△GCE (ASA ),得到AF =EG ,CF =CE ,由△ADF ∽△GCF ,再由平行线分线段成比例,即可解决问题.【解答】解:过C 作CG ∥AB 交AE 延长线于G ,∴∠G =∠BAE ,∵AE 平分∠BAC ,∴∠BAE =∠CAE ,∴∠G =∠CAE ,∴CG =CA ,∵∠ACD =∠B ,∠ECG =∠B ,∴∠ACF =∠ECG ,∴△ACF ≌△GCE (ASA ),∴CF =CE ,AF =EG ,∵AF =2FE ,∴EG =2FE ,令EF =k ,则AF =EG =2k ,AE =GF =3k ,∵△ADF∽△GCF,∴AD:CG=AF:FG=2k:(3k)=2:3,∴=,故A正确.∵AB∥CG,∴CE:BE=GE:AE=2k:(3k)=2:3,∴=,故B正确.∵∠ACD=∠B,∠DAC=∠BAC,∴△ACD∽△ABC,∴==,故C正确.∵=,AC和BD不一定相等,∴不一定等于.故选:D.【点评】本题考查角的平分线,相似三角形的判定和性质,关键是通过辅助线构造相似三角形.3(2022秋•闵行区期末)如图,某零件的外径为10cm,用一个交叉卡钳(两条尺长AC和BD相等)可测量零件的内孔直径AB.如果==3,且量得CD=4cm,则零件的厚度x为()A.2cmB.1.5cmC.0.5cmD.1cm【分析】根据相似三角形的判定和性质,可以求得AB的长,再根据某零件的外径为10cm,即可求得x的值.【解答】解:∵==3,∠COD=∠AOB,∴△COD∽△AOB,∴AB:CD=2,∵CD=4cm.∴AB=8cm.∵某零件的外径为10cm,∴零件的厚度x为:(10-8)÷2=1(cm),故选:D.【点评】本题考查相似三角形的应用,解答本题的关键是求出AB的值.二、填空题(共8小题)4(2022秋•奉贤区期中)如图,已知点D为△ABC中AC边的中点,AE∥BC,ED交AB于点G,交BC的延长线于点F,若,BC=8,则AE的长为4.【分析】由AE∥BC,可得△AEG∽△BFG,△AED∽△CFD推出==,又有BC的值,再由==1,得出AE=CF,代入即可求解AE的长.【解答】解:∵AE∥BC,∴△AEG∽△BFG,△AED∽△CFD,∴==,==1,即AE=CF,又BC=8,∴=AE=4.故答案为:4.【点评】本题主要考查了平行线分线段成比例的性质问题,应熟练掌握.5(2022•浦东新区校级模拟)如图,已知点D、E分别在△ABC的边CA、BA的延长线上,DE∥BC.DE:BC=2:3,设=,试用向量表示向量,=- .【分析】由DE∥BC可得△ADE∽△ACB,由DE:BC=2:3,可得DA=CD,即可表示,从而得出答案.【解答】解:∵DE∥BC,∴△ADE∽△ACB,∵DE:BC=2:3,∴DA:CA=DE:BC=2:3,∵CD=DA+CA,∴DA=CD,∵=,∴=,∴=-,故答案为:-.【点评】本题考查向量的运算,相似三角形的判定与性质,熟练掌握相似三角形的性质和向量的运算的解题的关键.6(2022•静安区二模)如图,在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,点E、F分别是边AB、CD的中点,AO:OC=1:4,设=,那么= .(用含向量的式子表示)【分析】由相似三角形性质可得=4=4,再根据梯形中位线定理即可求得答案.【解答】解:∵AD∥BC,∴△AOD∽△COB,∴==,∴=4=4,∵点E、F分别是边AB、CD的中点,∴=(+)=(+4)=,故答案为:.【点评】本题考查了相似三角形的判定和性质,梯形中位线定理,平面向量等,熟练掌握相似三角形的判定和性质是解题关键.7(2023•静安区校级一模)在矩形ABCD内作正方形AEFD(如图所示),矩形的对角线AC交正方形的边EF于点P.如果点F恰好是边CD的黄金分割点(DF>FC),且PE=2,那么PF= -1.【分析】先根据黄金分割的定义可得=,再利用正方形的性质可得:DF∥AE,DF=AE,从而可得=,然后证明8字模型相似三角形△CFP∽△AEP,从而利用相似三角形的性质进行计算即可解答.【解答】解:∵点F恰好是边CD的黄金分割点(DF>FC),∴==,∵四边形AEFD是正方形,∴DF∥AE,DF=AE,∴=,∵DC∥AB,∴∠FCP=∠PAE,∠CFP=∠AEP,∴△CFP∽△AEP,∴==,∵PE=2,∴PF=-1,故答案为:-1.【点评】本题考查了相似三角形的判定与性质,矩形的性质,正方形的性质,黄金分割,熟练掌握8字模型相似三角形是解题的关键.8(2022春•浦东新区校级期中)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,如果△BCD的面积是△ABD面积的2倍,那么△BOC与△BDC的面积之比是2:3.【分析】过点D作DM⊥BC,垂足为M,过点B作BN⊥AD,交DA的延长线于点N,根据已知易得DM=BN,再根据S△BCD=2S△ABD,从而可得BC=2AD,然后再证明8字模型相似三角形△AOD∽△COB,利用相似三角形的性质可得==,从而可得=,最后根据△BOC与△BDC 的高相等,即可解答.【解答】解:过点D作DM⊥BC,垂足为M,过点B作BN⊥AD,交DA的延长线于点N,∵AD∥BC,∴BN=DM,∵S△BCD=2S△ABD,∴BC•DM=2×AD•BN,∴BC=2AD,∵AD∥BC,∴∠ADB=∠DBC,∠DAC=∠ACB,∴△AOD∽△COB,∴==,∴=,∵△BOC与△BDC的高相等,∴==,故答案为:2:3.【点评】本题考查了平行线间的距离,相似三角形的判定与性质,梯形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.9(2022秋•虹口区校级月考)如图,梯形ABCD中,AD∥BC,,点E为边BC的中点,点F在边CD上且3CF=CD,EF交对角线AC于点G,则AG:GC=7:2.【分析】如图,连接DE,交AC于M,过M作MH∥EF交CD于H,首先利用AD∥BC,,点E 为边BC的中点,可以得到AD:EC=AM:CM=DM:ME=3:2,然后利用MH∥EF,DH:HF= DM:ME=3:2=6:4,最后利用又3CF=CD即可求解.【解答】解:如图,连接DE,交AC于M,过M作MH∥EF交CD于H,∵AD∥BC,,点E为边BC的中点,∴△ADM∽△CME,∴AD:EC=AM:CM=DM:ME=3:2,∵MH∥EF,∴DH:HF=DM:ME=3:2=6:4,又3CF=CD,∴DF=2CF,∴CF:HF=5:4,∴CG:MG=5:4,∴CG=CM,MG=CM,而AM:CM=3:2,∴AM=CM,∴AG=AM+MG=CM,∴AG:GC=CM:CM=7:2.故答案为:7:2.【点评】此题主要考查了相似三角形的性质于判定,同时也利用了平行线的性质,解题的关键是会进行比例线段的转换,有一定的难度.10(2022秋•黄浦区期末)如图是一个零件的剖面图,已知零件的外径为10cm,为求出它的厚度x,现用一个交叉卡钳(AC和BD的长相等)去测量零件的内孔直径AB.如果==,且量得CD的长是3cm,那么零件的厚度x是0.5cm.的值.【解答】解:∵==,∠COD=∠AOB,∴△COD∽△AOB,∴AB:CD=3,∵CD=3cm.∴AB=9cm.∵某零件的外径为10cm,∴零件的厚度x为:(10-9)÷2=0.5(cm),故答案为:0.5.【点评】本题考查相似三角形的应用,解答本题的关键是求出AB的值.11(2022春•闵行区校级月考)如图,梯形ABCD中,∠D=90°,AB∥CD,将线段CB绕着点B按顺时针方向旋转,使点C落在CD延长线上的点E处.联结AE、BE,设BE与边AD交于点F,如果AB=4,且=,那么梯形ABCD的中位线等于7.【分析】过点B作BG⊥EC,利用同高的两个三角形的面积的比先求出EF:BF,再利用相似三角形的性质求出ED、EG,最后利用梯形中位线与上下底的关系得结论.【解答】解过点B作BG⊥EC,垂足为G∵=,∴=.∵AB∥CD,∴△EDF∽△BAF.∴==,∴ED=2,=.∵AD∥BG,∴=.∴EG=6.∵CB绕着点B按顺时针方向旋转,点C落在CD延长线上的点E处,∴BE=BC.∵BG⊥EC,∴EG=GC=6.∴DC=DG+CG=4+6=10.∴梯形ABCD的中位线=(AB+CD)=(4+10)=7.故答案为:7.【点评】本题主要考查了相似三角形的性质和判定,掌握等腰三角形的三线合一、等高的两个三角形的面积比等于底边的比、梯形的中位线等于上下底的和的一半是解决本题的关键.三、解答题(共12小题)1(2023•普陀区一模)如图,已知梯形ABCD中,AD∥BC,E是BC上一点,AE∥CD,AE、BD相交于点F,EF:CD=1:3.(1)求的值;(2)联结FC,设,,那么= ,= .(用向量、表示)【分析】(1)根据题意可证明四边形AECD为平行四边形,得到AE=CD,则EF:AE=1:3,EF:AF=1:2,易证明△BEF∽△DAF,由相似三角形的性质即可求解;(2)由AF=2EF得,,由三角形法则求出和,再求出,最后利用三角形法则即可求出.【解答】解:∵AD∥BC,AE∥CD,∴四边形AECD为平行四边形,∴AE=CD,∵EF:CD=1:3,∴EF:AE=1:3,EF:AF=1:2,∵AD∥BC,∴△BEF∽△DAF,∴;(2)联结FC,如图,由(1)可得AF=2EF,∵,∴,,∴=,=,∵,AD=EC,∴,∴==,∴==.故答案为:,.【点评】本题主要考查平行四边形的判定与性质、相似三角形的判定与性质、平面向量,熟练三角形法则是解题关键.2(2023•奉贤区一模)已知:如图,在梯形ABCD中,AD∥BC,点E在对角线BD上,∠EAD=∠BDC.(1)求证:AE•BD=AD•DC;(2)如果点F在边DC上,且,求证:EF∥BC.【分析】(1)利用平行线的性质证明∠ADB=∠DBC,然后利用已知条件可以证明△ADE∽△DBC,由此即可解决问题;(2)利用(1)的结论和已知条件可以证明△DEF∽△DBC,接着利用相似三角形的在即可求解.【解答】证明:(1)∵AD∥BC,∴∠ADB=∠DBC,又∵∠EAD=∠BDC,∴△ADE∽△DBC,∴AE:AD=DC:BD,∴AE•BD=AD•DC;(2)∵AE:AD=DC:BD,且,∴=,而∠EDF=∠BDC,∴△DEF∽△DBC,∴∠DEF=∠DBC,∴EF∥BC.【点评】此题主要考查了相似三角形的性质与判定,同时也利用了平行线的性质,比例的基本性质,有一定的综合性.3(2023•青浦区一模)如图,在平行四边形ABCD中,点F在边AD上,射线BA、CF相交于点E,DF=2AF.(1)求EA:AB的值;(2)如果,,试用、表示向量.【分析】(1)根据平行四边形的性质可得AB∥CD,AB=CD,易证△AEF∽△DCF,则=,由DF=2AF即可求解;(2)先算出,再根据即可求解.【解答】解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴△AEF∽△DCF,∴,∴,∵DF=2AF,∴,∴;(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DF=2AF,∴,∵,,∴,,∴.【点评】本题主要考查相似三角形的判定与性质、平行四边形的性质、平面向量,熟练掌握平面向量的运算法则是解题关键.4(2022秋•金山区校级期末)已知:如图,在△ABC中,点D在边BC上,AE∥BC,BE与AD、AC 分别相交于点F、G,AF2=FG•FE.(1)求证:△CAD∽△CBG;(2)联结DG,求证:DG•AE=AB•AG.【分析】(1)通过证明△FAG∽△FEA,可得∠FAG=∠E,由平行线的性质可得∠E=∠EBC=∠FAG,且∠ACD=∠BCG,可证△CAD∽△CBG;(2)由相似三角形的性质可得=,且∠DCG=∠ACB,可证△CDG∽△CAB,可得=,由平行线分线段成比例可得=,可得结论.【解答】证明:(1)∵AF2=FG⋅FE.∴=,∵∠AFG=∠EFA,∴△FAG∽△FEA,∴∠FAG=∠E,∵AE∥BC,∴∠E=∠EBC,∴∠EBC=∠FAG,∵∠ACD=∠BCG,∴△CAD∽△CBG;(2)∵△CAD∽△CBG,∴=,∵∠DCG=∠ACB,∴△CDG∽△CAB,∴=,∵AE∥BC,∴=,∴=,∴=,∴DG•AE=AB•AG.【点评】本题考查了相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.5(2022•松江区二模)已知:如图,两个△DAB和△EBC中,DA=DB,EB=EC,∠ADB=∠BEC,且点A、B、C在一条直线上,联结AE、ED,AE与BD交于点F.(1)求证:;(2)如果BE2=BF•BD,求证:DF=BE.【分析】(1)根据已知易证△DAB∽△EBC,然后利用相似三角形的性质可得∠DAB=∠EBC,=,从而可得AD∥EB,进而证明8字模型相似三角形△ADF∽△EBF,最后利用相似三角形的性质可得=,即可解答;(2)根据已知易证△BFE ∽△BED ,从而利用相似三角形的性质可得∠BEF =∠BDE ,进而可得∠DAF =∠BDE ,然后利用(1)的结论可证△ADF ≌△DBE ,再利用全等三角形的性质即可解答.【解答】证明:(1)∵DA =DB ,EB =EC ,∴=,∵∠ADB =∠BEC ,∴△DAB ∽△EBC ,∴∠DAB =∠EBC ,=,∴AD ∥EB ,∴∠DAF =∠AEB ,∠ADF =∠DBE ,∴△ADF ∽△EBF ,∴=,∴;(2)∵BE 2=BF •BD ,∴=,∵∠DBE =∠EBF ,∴△BFE ∽△BED ,∴∠BEF =∠BDE ,∵∠DAF =∠AEB ,∴∠DAF =∠BDE ,∵∠ADF =∠DBE ,AD =DB ,∴△ADF ≌△DBE (ASA ),∴DF =BE .【点评】本题考查了全等三角形的判定与性质,相似三角形的判定与性质,熟练掌握全等三角形的判定与性质,以及相似三角形的判定与性质是解题的关键.6(2023•宝山区二模)如图,四边形ABCD 中,AD ∥BC ,AC 、BD 交于点O ,OB =OC .(1)求证:AB =CD ;(2)E 是边BC 上一点,联结DE 交AC 于点F ,如果AO 2=OF •OC ,求证:四边形ABED 是平行四边形.【分析】(1)由等腰三角形的性质和判定及平行线的性质,说明△AOB 和△DOC 全等,利用全等三角形的性质得结论;(2)先说明△AOB∽△FOD,再说明AB∥DE,结合已知由平行四边形的判定可得结论.【解答】证明:(1)∵OB=OC,∴∠DBC=∠ACB.∵AD∥BC,∴∠DAC=∠ACB,∠ADB=∠DBC.∴∠DAC=∠ADB.∴OA=DO.在△AOB和△DOC中,,∴△AOB≌△DOC(SAS).∴AB=CD.(2)∵AO2=OF•OC,OA=OD,OC=OB,∴AO•OD=OF•OB,即.∵∠AOB=∠DOC,∴△AOB∽△FOD.∴∠BAO=∠DFO.∴AB∥DE.又∵AD∥BC,∴四边形ABED是平行四边形.【点评】本题主要考查了三角形全等和相似,掌握全等三角形的性质和判定、相似三角形的判定和性质、平行线的性质、等腰三角形的判定和性质及平行四边形的判定是解决本题的关键.7(2022秋•徐汇区期中)如图,在四边形ABCD中,对角线AC与BD交于点E,DB平分∠ADC,且AB2=BE•BD.(1)求证:△ABE∽△DCE;(2)AE•CD=BC•ED.【分析】(1)根据相似三角形的判定可得△ABE∽△DBA;所以∠BAC=∠BDC,由此可得出△ABE ∽△DCE;(2)由(1)中的相似可得出AE:DE=BE:CE,再由∠BEC=∠AED可得△ADE∽△BCE,所以∠EAD=∠EBC,∠ADE=∠BDC=∠BCE,可得△BCD∽△ADE,进而可得结论.【解答】证明:(1)∵AB2=BE•BD,∴AB:BE=BD:AB,∵∠ABE=∠DBA,∴△ABE∽△DBA,∴∠BAC=∠BDC,∵BD平分∠ADC,∴∠ADB=∠BDC=∠BAC,∴△ABE∽△DCE;(2)由(1)中相似可得,AE:DE=BE:CE,∵∠BEC=∠AED,∴△ADE∽△BCE,∴∠EAD=∠EBC,∠ADE=∠BDC=∠BCE,∴△BCD∽△AED,∴BC:AE=CD:ED,AE•CD=BC•ED.【点评】本题主要考查相似三角形的性质与安定,涉及A字型相似,8字型相似等相关内容,熟练掌握相关判定是解题关键.8(2022春•杨浦区校级期中)如图1,在△ABC中,点E在AC的延长线上,且∠E=∠ABC.(1)求证:AB2=AC•AE;(2)如图2,D在BC上且BD=3CD,延长AD交BE于F,若=,求的值.【分析】(1)利用两角相等的两个三角形相似,证明△ABC∽△AEB,然后利用相似三角形的性质即可解答;(2)过点E作EH∥CB,交AF的延长线于点H,利用(1)的结论可得===,先AC=2a,AB=3a,从而求出AE的长,进而求出的值,再根据已知设CD=m,BD=3m,从而求出BC,BE的长,然后证明A字模型相似三角形△ACD∽△AEH,利用相似三角形的性质可得EH=m,再证明8字模型相似三角形△BDF∽△EHF,利用相似三角形的性质可得=,从而求出EF的长,进行计算即可解答.【解答】(1)证明:∵∠E=∠ABC,∠A=∠A,∴△ABC∽△AEB,∴=,∴AB 2=AC •AE ;(2)解:过点E 作EH ∥CB ,交AF 的延长线于点H ,∵△ABC ∽△AEB ,∴===,∴设AC =2a ,AB =3a ,∴=,∴AE =a ,∴==,∵BD =3CD ,∴设CD =m ,则BD =3m ,∴BC =CD +BD =4m ,∴=,∴EB =6m ,∵EH ∥CD ,∴∠ACD =∠AEH ,∠ADC =∠AHE ,∴△ACD ∽△AEH ,∴==,∴EH =m ,∵EH ∥BD ,∴∠BDF =∠DHE ,∠DBF =∠FEH ,∴△BDF ∽△EHF ,∴===,∴EF =BE =m ,∴==,∴的值为.【点评】本题考查了相似三角形的判定与性质,平行线分线段成比例,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.9(2023•崇明区二模)已知:如图,在平行四边形ABCD中,对角线AC、BD交于E,M是边DC延长线上的一点,联结AM,与边BC交于F,与对角线BD交于点G.(1)求证:AG2=GF•GM;(2)联结CG,如果∠BAG=∠BCG,求证:平行四边形ABCD是菱形.【分析】(1)由平行线的性质和相似三角形的平行判定法,可得到△ABG∽△MDG、△ADG∽△FBG,再利用相似三角形的性质得结论;(2)利用“两角对应相等”先说明△GCF∽△GMC,再利用等腰三角形的三线合一说明BD⊥AC,最后利用菱形的判定方法得结论.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DM,AD∥BC.∴△ABG∽△MDG,△ADG∽△FBG.∴=,=.∴=.∴AG2=GF•GM.(2)∵AB∥DM,∴∠BAG=∠M.∵∠BAG=∠BCG,∴∠M=∠BCG.∵∠MGC=∠FGC,∴△GCF∽△GMC.∴=,即CG2=GF•GM.∵AG2=GF•GM,∴CG2=AG2.∴CG =AG .∵四边形ABCD 是平行四边形,∴AE =CE .∴GE ⊥AC ,即BD ⊥AC .∴平行四边形ABCD 是菱形.【点评】本题主要考查了相似三角形的性质和判定,掌握相似三角形的判定和性质、平行四边形的性质、菱形的判定方法、等腰三角形的判定和性质等知识点是解决本题的关键.10(2021秋•虹口区期末)如图,在梯形ABCD 中,∠ABC =90°,AD ∥BC ,BC =2AD ,对角线AC 与BD 交于点E .点F 是线段EC 上一点,且∠BDF =∠BAC .(1)求证:EB 2=EF •EC ;(2)如果BC =6,sin ∠BAC =,求FC 的长.【分析】(1)先由AD ∥BC 得到△EAD ∽△ECB ,从而得到,然后由∠BDF =∠BAC 、∠AEB =∠DEF 得证△EAB ∽△EDF ,进而得到,最后得到结果;(2)先利用条件得到AC 、AB 的长,然后利用BC =2AD 得到AD 、BD 的长,再结合相似三角形的性质得到EB 、EC 的长,进而得到EF 的长和FC 的长.【解答】(1)证明:∵AD ∥BC ,∴△EAD ∽△ECB ,∴,即,∵∠BDF =∠BAC ,∠AEB =∠DEF ,∴△EAB ∽△EDF ,∴,∴,∴EB2=EF•EC.(2)解:∵BC=6,sin∠BAC==,BC=2AD∴AC=9,AD=3,∵∠ABC=90°,AD∥BC,∴∠BAD=90°,∴AB===3,∴BD===3,∵△EAD∽△ECB,∴,∴EC=AC=×9=6,EB=BD=×3=2,∵EB2=EF•EC,即(2)2=6EF,∴EF=4,∴FC=EC-EF=6-4=2.【点评】本题考查了直角梯形的性质、相似三角形的判定与性质、勾股定理,解题的关键是熟知“8”字模型相似三角形的判定与性质.11(2021秋•嘉定区期末)如图,在梯形ABCD中,AD∥BC,点E在线段AD上,CE与BD相交于点H,CE与BA的延长线相交于点G,已知DE:AE=2:3,BC=4DE,CE=10.求EH、GE的长.【分析】根据题目的已知并结合图形分析8字型模型相似三角形和A字型模型相似三角形,然后进行计算即可解答.【解答】解:∵AD∥BC,∴∠ADB=∠DBC,∠DEC=∠ECB,∴△DEH∽△BCH,∴,∵BC=4DE,∴,∵CE=10,∴HC=10-EH,∴,∴EH=2,∵BC=4DE,DE:AE=2:3,∴,∵AD∥BC,∴∠GAE=∠GBC,∠GEA=∠GCB,∴△GAE∽△GBC,∴,∵CE=10,∴GC=10+GE,∴,∴GE=6.【点评】本题考查了相似三角形的判定与性质,梯形,熟练掌握8字型模型相似三角形和A字型模型相似三角形是解题的关键.12(2021秋•杨浦区期末)如图,已知在Rt△ABC中,∠ACB=90°,AC=BC=5,点D为射线AB上一动点,且BD<AD,点B关于直线CD的对称点为点E,射线AE与射线CD交于点F.(1)当点D在边AB上时,①求证:∠AFC=45°;②延长AF与边CB的延长线相交于点G,如果△EBG与△BDC相似,求线段BD的长;(2)联结CE、BE,如果S△ACE=12,求S△ABE的值.【分析】(1)①如图1,连接CE,根据轴对称的性质可得:EC=BC,∠ECF=∠BCF,设∠ECF=∠BCF=α,则∠BCE=2α,∠ACE=90°-2α,再利用等腰三角形性质即可证得结论;②如图2,连接BE,CE,由△EBG∽△BDC,可得出∠G=∠BCD=22.5°,过点D作DH⊥AB交BC于点H,则△BDH是等腰直角三角形,推出CH=DH=BD,再根据CH+BH=BC=5,建立方程求解即可;(2)分两种情况:Ⅰ.当点D在AB上时,如图3,过点C作CM⊥AE于点M,连接BF,利用勾股定理、三角形面积建立方程求解即可;Ⅱ.当点D在AB的延长线上时,如图4,过点C作CM⊥AE于点M,连接BF,利用勾股定理、三角形面积建立方程求解即可.【解答】解:(1)①证明:如图1,连接CE,∵点B关于直线CD的对称点为点E,∴EC=BC,∠ECF=∠BCF,设∠ECF=∠BCF=α,则∠BCE=2α,∴∠ACE=90°-2α,∵AC=BC,∴AC=EC,∴∠AEC=∠EAC=[180°-(90°-2α)]=45°+α,∵∠AEC=∠AFC+∠ECF=∠AFC+α,∴∠AFC=45°;②如图2,连接BE,CE,∵B、E关于直线CF对称,∴CF垂直平分BE,由(1)知:∠AFC=45°,∴∠BEF=45°,∵△EBG与△BDC相似,∠BEG=∠DBC=45°,∵∠EBG与∠BDC均为钝角,∴△EBG∽△BDC,∴∠G=∠BCD=∠BAG,∵∠G+∠BAG=∠ABC=45°,∴∠G=∠BCD=22.5°,过点D作DH⊥AB交BC于点H,则△BDH是等腰直角三角形,∴DH=BD,BH=BD,∠BHD=45°,∵∠CDH=∠BHD-∠BCD=45°-22.5°=22.5°=∠BCD,∴CH=DH=BD,∵CH+BH=BC=5,∴BD+BD=5,∴BD==5-5,∴线段BD的长为5-5;(2)Ⅰ.当点D在AB上时,如图3,过点C作CM⊥AE于点M,连接BF,∵AC=EC=BC=5,∴AM=EM=AE,∴①AM2+CM2=AC2=25,∵S△ACE=AE•CM=12,∴②AM•CM=12,①+②×2,得:(AM+CM)2=49③,①-②×2,得:(AM-CM)2=49③,∵CM>AM>0,∴AM=3,CM=4,∴AE=6,由(1)知:∠AFC=45°,BE⊥CF,∴∠BEF=45°,∵∠AFC=∠ABC=45°,∴A、C、B、F四点共圆,∴∠AFB+∠ACB=180°,∴∠AFB=90°,∴△BEF是等腰直角三角形,∴EF=BF,设EF=BF=x,则AE=x+6,在Rt△ABF中,AF2+BF2=AB2,∴(x+6)2+x2=50,解得:x=1或x=-7(舍去),∴BF=1,∴S△ABE=AE•BF=×6×1=3;Ⅱ.当点D在AB的延长线上时,如图4,过点C作CM⊥AE于点M,连接BF,由(1)知:∠AFC=45°,CF垂直平分BE,∴∠BEF=45°,BF=EF,∴∠EBF=∠BEF=45°,∴∠BFE=90°,∵AC=EC=BC=5,∴AM=EM=AE,与Ⅰ同理可得:AM=EM=4,CM=3,AE=8,设BF=EF=y,则AF=8-y,在Rt△ABF中,AF2+BF2=AB2,∴(8-y)2+y2=50,解得:y=1或y=7(舍去),∴BF=1,∴S△ABE=AE•BF=×8×1=4;综上,S△ABE的值为3或4.【点评】本题考查了三角形面积,等腰直角三角形性质和判定,相似三角形的判定和性质,轴对称变换的性质,勾股定理等,解题关键是添加辅助线构造直角三角形,运用分类讨论思想和方程思想解决问题.。

2013年中考数学模拟试题分类14:函数与四边形综合

①若 在 轴的同侧.当 时, = ,
当 时, 即 解得
②若 在 轴的异侧.当 时, ,
当 时, ,即 .解得
.故舍去.
当 或 或 或 秒时,以 为顶点的三角形与以点 为顶点的三角形相似.
6已知抛物线 ( )与 轴相交于点 ,顶点为 .直线 分别与 轴, 轴相交于 两点,并且与直线 相交于点 .
(1)填空:试用含 的代数式分别表示点 与 的坐标,则 ;
∴直线AC的解析式为y=3x+3。∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4)。
(2)抛物线上有三个这样的点Q。如图,
①当点Q在Q1位置时,Q1的纵坐标为3,代入抛物线可得点Q1的坐 标为(2,3);
②当点Q在点Q2位置时,点Q2的纵坐标为﹣3,代入抛物线可得点Q2坐标为(1+ ,﹣3);
(2)如图,将 沿 轴翻折,若点 的对应点 ′恰好落在抛物线上, ′与 轴交于点 ,连结 ,求 的值和四边形 的面积;
(3)在抛物线 ( )上是否存在一点 ,使得以 为顶点的四边形是平行四边形?若存在,求出 点的坐标;若不存在,试说明理由.
(1)
(2)由题意得点 与点 ′关于 轴对称, ,
将 ′的坐标代入 得 , (不合题意,舍去), .
△DOB的面积=- ( ),
∴四边形ABDC的面积=△AOC的面积+△DOC的面积+△DOB的面积
= = .
∴ 存在点D ,使四 边形ABDC的面积最大为 .
(4)有两种情况:
如图14(3),过点B作BQ1⊥BC,交抛物线于点Q1、交y轴于点E,连接Q1C.
∵∠CBO=45°,Байду номын сангаас∠EBO=45°,BO=OE=3.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网
重庆市中考数学专项训练
三角形、四边形专练(第10小题)
1. 如图,分别以ABCRt的斜边AB、直角边AC为边向外作等边ABD和ACE,F为AB
的中点,连接DF、EF、DE,EF与AC交于点O,DE与AB交于点G,连接OG,若∠BAC=30°,
下列结论:
①DBF≌EFA;②AD=AE;③EF⊥AC;
④AD=4AG;⑤AOG与EOG的面积比
为1:4,其中正确结论的序号是( )
A.①②③ B.①④⑤
C.①③⑤ D.①③④
2. 如图,在梯形ABCD中,//, ,ADBCEAADM是AE上一点,FG、分
别是ABCM、的中点,且, 45,BAEMCEMBE则给出以下五个结论:
;;90;;ABCMACMBMCEFEGEFG①②③④⑤
是等腰直角三角
形.上述结论中始终正确的序号有_________________.
3. 如图,四边形ABCD为一梯形纸片,AB//CD,AD=BC.翻折纸片ABCD,使点A与点C重合,
折痕为EF.连接CE、CF、BD,AC、BD的交点为O,若,7,3.CEABABCD下列结论

中:①AC=BD,②EF∥BD,③AECF=ACEFS四边形,④2527EF,⑤连接F0;则
F0//AB.正确的序号是 .
4. 如图,二次函数y=ax2+bx+c(a≠0).图象的顶点为D,
其图象与x轴的交点A、B的横坐标分别为–1、3,与y
轴负半轴交于点C.下面四个结论:①2a+b=0;②a+b+c>0;
③04cba;④只有当a= 12 时,△ABD是等腰
直角三角形;⑤使△ACB为等腰三角形的a的值可以有三个.
那么,其中正确的结论是 .
5. 如图,正方形ABCD中,在AD的延长线上取点,,EF
使,,DEADDFBD连接BF分别交,CDCE于H,

(1题图)
(第4题图)
本资料来自于资源最齐全的21世纪教育网www.21cnjy.com

21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网
.G下列结论:
;2DGEC①;GDHGHD②
;CDGDHGESS四边形③
④图中有8个等腰三角
形.其中正确的是( )
A.①③ B.②④ C.①④ D.②③
6. 如图,把矩形纸片ABCD沿EF折叠,使点B落在AD边上的点B'处,点A落在点A'处.
设AE=a,AB=b,BF=c,下列结论:
①B'E=BF; ②四边形B'CFE是平行四边形;
③222cba; ④△A'B'E∽△B'CD;
其中正确的是( )
A.②④ B.①④
C.②③ D.①③
7. 如图,在ABC中,60,A,ABCACB的平分
线分别交ACAB、于点,,DECEBD、相交于点,F连接.DE 下列结
论:
①1cos;2BFE ②;ABBC ③1;2DEBC
④点F到ABC三边的距离相等;⑤.BECDBC其中正确的结论是( ) A.②③④ B.②④⑤ C.①④⑤ D.①③④ 8. 如图,分别以RtABC的斜边AB、直角边AC为边向外作等边ABD和,ACEF为AB的中点,连接,DFEFDE、、EF与AC交于点,ODE与AB 交于点,G连接,OG若 30,BAC下列结论: ①;DBFEFA②;ADAE③;EFAC④4;ADAG ⑤AOG与EOG的面积比为1:4.其中正确结论的序号是( ) A.①②③ B.①④⑤ C.①③⑤ D.①③④ A'B'(第10题图)FDCBAE A B

C
D

E
F

(7题图)

A
D

E
F

G

O
本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网
9. 如图,在RtABC中,,ABACDE、是斜边BC上两点,且45,DAE将
ADC

绕点A顺时针旋转90°后,得到,AFB连接,EF下列结论:
①;AEDAEF ②;AEADBECD
③ABC的面积等于四边形AFBD的面积;
④222;BEDCDE ⑤BEDCDE
其中正确的是( ) A.①②④ B.③④⑤ C.①③④ D.①③⑤ A B C D E

F

(9题图)

相关文档
最新文档