专题 解析几何经典精讲(下) 课后练习一及详解
苏教版高中数学必修2配套练习参考答案解析几何全部

解析几何部分(共:1—17课时及每章评价)参考答案:第1课时 直线的斜率(1)1.D 2.C 3.D 4.4- 5.1k ≤ 6.可以是(2,4),不惟一. 7.由题意,()132212a -=++,∴2a =-.8.当1m =时,直线l 与x 轴垂直,此时直线斜率不存在; 当1m ≠时,直线斜率34111k m m-==--. 9.在直线斜率为0,OC 边所在直线斜率不存在,BC 边所在直线斜率为43-.10.由AB AC k k ≠,可得1112383k --≠---, ∴1k ≠.第2课时 直线的斜率(2)1.C 2.B 3.D 4.60o. 5.6 6. (0,2)7. 045α≤<o o 或135180α<<o o.8.倾斜角为45o时斜率为1,倾斜角为135o时斜率为1-.9.直线l 上任一点(,)M m n 经平移后得(3,1)N m n -+在l 上,由两点的斜率公式得(1)1(3)3l n n k m m +-==---.10.直线2l 的倾斜角为180(6015)135α=--=oooo, ∴2tan135tan 451k ==-=-oo.第3课时 直线的方程(1)1.C 2.D 3.A 4.D 5.(1)4y =-;(2)23y x =-- 6.1y +6y x =-+7.由直线1l 的方程2y =+可得1l 的倾斜角为60o ,∴直线l 的倾斜角为30o,斜率为tan 303=o,所以,直线l 的方程为12)y x -=-,即1y x =-+.8. 1:1:(2)-9.由直线1l的方程20x y -+=可求得1l 的斜率为1, ∴倾斜角为145α=o,由图可得2l 的倾斜角2115αα=+o∴直线2l 的斜率为tan 60=o, ∴直线2l 的方程为2)y x -=-0y -=.10.设直线方程为34y x b =+, 令0x =,得y b =;令0y =,得43x b =-, 由题意,14||||623b b ⨯-⨯=,29b =,∴3b =±, 所以,直线l 的方程为334y x =±.第4课时 直线的方程(2)1.D 2.D 3.B 4. 2y x =或1y x =+ 5.3 6. 10x y +-=或32120x y -+=7.设矩形的第四个顶点为C ,由图可得(8,5)C , ∴对角线OC 所在直线方程为005080y x --=--,即580x y -=,AB 所在直线方程为185x y+=,即58400x y +-=. 8.当截距都为0时,直线经过原点,直线斜率为43-,方程为43y x =-;当截距都不为0时,设直线方程为1x ya a +=, 将点(3,4)-代入直线方程得341a a-+=,解得1a =-, 所以,直线方程为430x y +=或10x y ++=.9.当0t =时,20Q =;当50t =时,0Q =,故直线方程是15020t Q +=.图略. 10.直线AB 的方程为3x =,直线AC 的方程为123x y+=,直线x a =与,AB AC 的交点分别为(,3)a 、63(,)2a a -,又∵92ABC S ∆=,∴1639(3)224a a -⋅⋅-=,∴a =(舍负).第5课时 直线的方程(3)1.B 2.D 3.B 4.D 5. 350x y -+= 6.24- 7.当2a =时,直线方程为2x =不过第二象限,满足题意;当20a -≠即2a ≠时,直线方程可化为1(4)2y x a a =+--, 由题意得2010240a a a -≠⎧⎪⎪>⎨-⎪-≤⎪⎩,解得24a <≤,综上可得,实数a 的取值范围是24a ≤≤. 8.(1)由题意得:22(23)(21)m m m m ---=+-, 即2340m m --=,解得43m =或1-(舍) (2)由题意得:22(23)(21)260m m m m m ----+--+=,即23100m m +-=,解得2m =-或53. 9.方法1:取1m =,得直线方程为4y =-, 取12m =,得直线方程为9x =, 显然,两直线交点坐标为(9,4)P -,将P 点坐标分别代入原方程得(1)9(21)(4)5m m m -⨯+-⨯-=-恒成立,所以,不论m 取什么实数,直线(1)m x -+(21)5m y m -=-总经过点(9,4)P -.方法2:原方程可整理得(21)(5)0x y m x y +--+-=,当21050x y x y +-=⎧⎨+-=⎩成立,即94x y =⎧⎨=-⎩时,原方程对任意实数m 都成立,∴不论m 取什么实数,直线过定点(9,4)-.10.方程0x y k +-=可变形为23)9k =-, 当90k -=即9k =时,方程表示一条直线90x y +-=; 当90k -<即9k >时,方程不能表示直线;当90k ->即9k <3= ∵方程仅表示一条直线,∴30+>且30-<,即0k <.综上可得,实数k 的取值范围为9k =或0k <.第6课 两直线的交点1.D 2.D 3.B 4.B 5.-3 6.6或-6 7.10,-12,-2 8.32190x y -+=9.4m =,或1m =-,或1m =.(提示:如果三条直线不能围成三角形,则有两种情形,一是其中有平行的直线,二是三条直线交于一点.) 10.(1)表示的图形是经过两直线210x y -+=和2390x y ++=的交点(3,1)--的直线(不包括直线2390x y ++=).(2)30x y -=或40x y ++=.(提示:可设所求直线方程为21(239)0x y x y λ-++++=,即(21)(32)910x y λλλ++-++=.若截距为0,则910λ+=,即19λ=-,此时直线方程为30x y -=;若截距不为0,则21132λλ+-=--,即3λ=,此时直线方程为40x y ++=.) 11.直线l 的方程为60x y += 12.22b -≤≤(数形结合)第7课 两直线的平行与垂直(1) 1.D 2.B 3.C 4.平行, 不平行5.平行或重合 6.-2 , 0或10 7.四边形ABCD 是平行四边形. 8.32A C =≠-且9.2,2m n == 10.20x y += 11. 3440x y +-=12.860860x y x y -+=--=或(提示:Q 所求直线与已知直线l :8610x y -+=平行,∴设所求直线的方程为860x y λ-+=,与两坐标轴的交点为λ(-,0)8,λ(0,)6.又该直线与两坐标轴围成的三角形面积为8,∴1||||8286λλ⋅-⋅=,λ∴=±,故所求直线方程为860x y -+=或860x y --= 第8课 两直线的平行与垂直(2)1. B2. C3. C4. C5. B6. 垂直,不垂直7. 32y x =+8. 2,-2,09. 20x y -= 10. 310x y ++=和330x y -+= 11. 1a =-或92a =-12.270x y +-=,10x y -+=,250x y +-=(提示:由于点A 的坐标不满足所给的两条高所在的直线方程,所以所给的两条高线方程是过顶点B ,C 的,于是2AB k =-,1AC k =,即可求出边AB ,AC 所在的直线方程分别为270x y +-=,10x y -+=.再由直线AB 及过点B 的高,即可求出点B 的坐标(3,1),由直线AC 及过点C 的高,即可求出点C 的坐标(1,2).于是边BC 所在的直线方程为250x y +-=.)第9课 平面上两点间的距离1.C 2.C 3.C 4.A5.B 6.22y y =-=-或 7.47240x y +-= 8.23120x y +-=912|x x - 10.13410x x y =++=或 11.5150x y --=12.(1) (2,0)P -;(2) (13,0)P ,此时||PM PN -. 13.54x =(提示:y =数形结合,设(1,1),(2,3),(,0)A B P x ,则y PA PB =+)第10课时 点到直线的距离(1)1.()A 2.()C 3.()D 4.()A 5.()C 6.()A 7.58.2a =或4639.设所求直线方程为340x y m -+=,=解得:14m =或12m =-(舍),所以,所求的直线方程为:34140x y -+=.10.由题意第一、三象限角平分线的方程为y x =,设00(,)P x y ,则00x y =,即00(,)P x x .= 解得:01x =或09x =-,所以点P 的坐标为:(1,1)或(9,9)--.11.由题意:当直线l 在两坐标轴上的截距为0时, 设l 的方程为y kx =(截距为0且斜率不存在时不符合题意)=k = 122-±,所以直线l 的方程为:122y x -±=. 当直线l 在两坐标轴上的截距不为0时,设l 的方程为1x ya a+=,即0x y a +-=,=a =13或1a =, 所以直线l 的方程为:130x y +-=或10x y +-=.综上所述:直线l 的方程为:122y x -±=或130x y +-=或10x y +-=. 12.设(,1)M t t -,则M 到两平行线段的距离相等,∴43t =,即41(,)33M ∵直线l 过(1,1)P -,41(,)33M 两点,所以,l 的方程为2750x y +-=.第11课时 点到直线的距离(2)1.()B 2.()C 3.()A 4.18 5.(1,2)或(2,1)- 6.34210x y +-=7.3208.4310x y +-=9.设l :320x y C -+=则1d =2d =1221d d =,所以|1|2|13|1C C +=+,解得:25C =-或9-, 所以l 的方程为:32250x y --=或3290x y --=.10.证明:设(,)P a b ,则221a b -=P 到直线1l ,2l的距离分别为1d =,2d = ∴2212||122a b d d -==g. 11.设(,)M x y 为A ∠的平分线AD 上任意一点,由已知可求得,AC AB 边所在直线方程分别为5120x y -+=,5120x y --=,由角平分线的性质得:=∴512512x y x y -+=--或512(512)x y x y -+=---, 即6y x =-+或y x =,由图知:AC AD AB k k k <<,∴155AD k <<,∴6y x =-+不合题意,舍去,所以,A ∠的平分线AD 所在直线方程y x =. 12.设CD 所在直线方程为30x y m ++=,=,解得7m =或5m =-(舍).所以CD 所在直线方程为370x y ++=.因为AB BC ⊥所以设BC 所在直线方程为30x y n -+=,=,解得9n =或3n =-.经检验BC 所在直线方程为390x y -+=,AD 所在直线方程为330x y --=.综上所述,其它三边所在直线方程为370x y ++=,390x y -+=,330x y --=.第12课时 圆的方程(1)1.()B 2.()C 3.()B 4.()C 5.()C 6.()B 7.(1)0a =;(2)||b r =;(3)310a b +-=. 8.22(6)36x y -+=9.C e 的圆心为(3,2)C -,C 'e 的圆心与(3,2)C -关于10x y -+=对称, ∴设C 'e 的圆心为(,)C a b '则3210222113a b b a +-⎧-+=⎪⎪⎨+⎪=-⎪-⎩g ,解得:34a b =-⎧⎨=⎩,C 'e 的标准方程为:22(3)(4)36x y ++-=.10.由题意可设C e 的圆心为(,)C a b 半径为r ,则||2a =当2a =时,C e :222(2)()x y b r -+-= 因为C e 与直线20x y +-=相切于点(1,1)P , ∴222(12)(1)b r -+-= ①且1(1)112b--=--g ② 联立方程组,解得:2b =,r =所以C e 的方程为:22(2)(2)2x y -+-=同理,当2a =-时,C e 的方程为:22(2)(2)18x y +++=综上所述:C e 的方程为:22(2)(2)2x y -+-=或22(2)(2)18x y +++=11.由题意设C e 的方程为222()()x a y b r -+-=,由C e 经过点(2,1)-,得:222(2)(1)a b r -+--=①由C e 与直线10x y --=r =② 由圆心在直线2y x =-上,得:2b a =-③联立方程组,解得:918a b r ⎧=⎪=-⎨⎪=⎩,或12a b r ⎧=⎪=-⎨⎪=⎩所以,C e 的方程为:22(9)(18)338x y -++=或22(1)(2)2x y -++=.12.设⊙C 的方程为:222()()x a y b r -+-=,∵⊙C 与x 轴相切,所以22r b =①,又∵圆心(,)C a b 到直线0x y -=的距离为:d =∴222r +=,即 22()142a b r -+=②,又圆心在直线30x y -=上,所以30a b -=③联立方程组,解得133a b r =⎧⎪=⎨⎪=⎩或133a b r =-⎧⎪=-⎨⎪=⎩所以C e 的方程为:22(1)(3)9x y -+-=或22(1)(3)9x y +++=.第13课时 圆的方程(2)1.()C 2.()D 3.()B 4.12k <-5.2 6.2π7.5,5 8.2或23-9.圆方程为220x y Dx Ey F ++++=,将(0,0),(1,1)两点坐标代入方程分别得0F = ①20D E F +++= ②又∵圆心(,)22D E--在直线30x y --=上,∴60E D --= ③解由①②③组成的方程组得4,2,0D E F =-==,∴所求圆方程为22420x y x y +-+=,圆心(2,1)-10.证明:将034222=+--+y x y x 化为22(1)(2)2x y -+-= 则点与圆心之间的距离的平方为222(41)(2)17125m m m m -+-=-+ 又∵圆的半径的平方为2,∴2171252m m -+-217123m m =-+ 令2()17123f x m m =-+0∆<,即2()17123f x m m =-+恒大于0,即点与圆心之间的距离恒大于圆的半径,所以无论实数m 如何变化,点(4,)m m 都在圆034222=+--+y x y x 之外.11.设所求圆的方程为: 022=++++F Ey Dx y x令0y =,得20x Dx F ++=.由韦达定理,得12x x D +=-,12x x F =由12||x x -=6=,∴2436D F -=. 将(1,2)A ,(3,4)B 分别代入022=++++F Ey Dx y x ,得25D E F ++=-,3425D E F ++=-.联立方程组,解得12D =,22E =-,27F =或8D =-,2E =-,7F =所以所求的圆的方程为221222270x y x y ++-+=或228270x y x y +--+=12.证明:由题意22210250x y ax ay a ++---=,∴2225()()102524a a x a y a ++-=++ 令25()10254a f a a =++,则0∆<, ∴()0f a >即22(25)(210)0x y a x y +-+--=,表示圆心为(,)2a a -若22(25)(210)0x y a x y +-+--=对任意a 成立,则222502100x y x y ⎧+-=⎨--=⎩,解得34x y =⎧⎨=-⎩或5x y =⎧⎨=⎩,即圆恒过定点(3,4)-,(5,0).第14课时 直线与圆的位置关系1.C 2.C 3.D 4.B 5.34250x y +-= 6.40x y +±=7 8. 247200x y --=和2x =;7 9.22(3)(1)9x y -+-=或22(3)(1)9x y +++=. 10.16m =-.11. 4330x y ++=或3430x y +-=.第15课时 圆与圆的位置关系 ⒈B ⒉B 3.D 4.A5.20x y -+= 6.260x y -+= ,6 7.(1,1) 8.22(3)(1)5x y -+-= 9.224(1)(2)5x y ++-=10.(1)240x y -+=; (2)22(2)(1)5x y ++-=; (3)22(3)(3)10x y ++-=. 11. 3r =±.第16课时 空间直角坐标系1.B ⒉C 3.C 4.D5.(2,0,0)、(0,3,0)- 6.(0,4,2)7.442110x y z ++-=8.略 9.略10.提示(1)只要写出的三点的纵坐标和竖坐标分别相等即可;(2)只要写出的三点的竖坐标相等即可.11.111212121x x y y z z x x y y z z ---==---21(x x ≠且21y y ≠且21)z z ≠.第17课时 空间两点间的距离1.D 2.D 3.A 4.A 5.(0,2,0) 6.222(1)(2)(4)9x y z -+++-=7.7 8.(1,0,0)P ± 9.[提示]建立空间直角坐标系,由中点坐标公式求出,P Q 两点坐标,用两点间距离公式即可求得线段PQ2.10.(1)(1,2,1)[提示]设重心G 的坐标为(,,)x y z ,则222GA GB GC ++2233x y =+22236126643(1)3(2)z x y z x y +---+=-+-23(1)46z +-+.当1,2,1x y z ===时,点G 到,,A B C 三点的距离的平方和最小,所以重心的坐标为(1,2,1).(2)1,8,9x y z ===.第二章《解析几何初步》评价与检测参考答案:1.C 2.D 3.B 4.B 526.0d ≤≤ 7.4个 8.60 9.67250x y +-= 10.2750x y +-= 11.22(2)(2)25x y -++= 12.(1,0)A -,C (5,6)- 13.B14.C 15.A 16.D 17.11(,)102- 18.4a =±19.20,x y y x ++==,y x = 20.10 21.解:设与51270x y ++=平行的边所在直线方程为5120x y m ++=(7)m ≠,则=解得19m =-, ∴直线方程为512190x y +-=,又可设与51270x y ++=垂直的边所在直线方程为1250x y n -+=()n R ∈,则=解得100n=或74,∴另两边所在直线方程为1251000x y-+=,125740x y-+=22.解:设()2,1B-,()4,2C,()2,3D第四个顶点的坐标为(),A m n.则有BC所在直线的斜率为32BCk=;CD所在直线的斜率为12CDk=-;BD所在直线的斜率不存在.①若BD∥AC,BC∥AD,则AC所在直线的斜率不存在.4m∴=.又BC ADk k=,即33242n-=-,6n∴=.∴平行四边形第四个顶点的坐标为()4,6.②若BD∥AC,CD∥BA,则AC所在直线的斜率不存在.4m∴=.又CD BAk k=,即()11242n---=-,2n∴=-.∴平行四边形第四个顶点的坐标为()4,2-.③若CD∥BA,BC∥AD,则,CD BABC ADk kk k=⎧⎨=⎩()11223322nmmnnm--⎧-=⎪=⎧⎪-⇒⇒⎨⎨=-⎩⎪=⎪-⎩∴平行四边形第四个顶点的坐标为()0,0.综上所述,平行四边形第四个顶点的坐标可为()4,6或()4,2-或()0,0.23.解:设1122(,),(,)P x y Q x y,由2223060x yx y x y c+-=⎧⎨++-+=⎩消去x得2520120y y c-++=,∴由韦达定理知:12124125y y c y y +=⎧⎪⎨+=⎪⎩Q OP OQ ⊥,12121y y x x ∴⋅=-, 即12120x x y y +=,又12121212(32)(32)96()4x x y y y y y y =--=-++∴121296()50y y y y -++=, 也就是12964505c +-⨯+⨯=解之,得3c =. 从而所求圆的方程为22630x y x y ++-+=24.解:设1122(,),(,)P x y Q x y ,则1|OP x ==,2|OQ x ==.,P Q Q 为直线与圆的交点,∴ 12,x x 是方程22(1)(86)210x m m x ++-+=的两根, ∴12221,1x x m=+ ∴ 2221(1)211OP OQ m m ⋅=+=+。
专题07 立体几何小题常考全归类(精讲精练)(原卷版)

专题07 立体几何小题常考全归类【命题规律】高考对该部分的考查,小题主要体现在两个方面:一是有关空间线面位置关系的命题的真假判断;二是常见一些经典常考压轴小题,难度中等或偏上.【核心考点目录】核心考点一:球与截面面积问题核心考点二:体积、面积、周长、角度、距离定值问题 核心考点三:体积、面积、周长、距离最值与范围问题 核心考点四:立体几何中的交线问题核心考点五:空间线段以及线段之和最值问题 核心考点六:空间角问题 核心考点七:轨迹问题核心考点八:以立体几何为载体的情境题 核心考点九:翻折问题【真题回归】1.(2022·北京·高考真题)已知正三棱锥-P ABC 的六条棱长均为6,S 是ABC 及其内部的点构成的集合.设集合{}5T Q S PQ =∈≤,则T 表示的区域的面积为( ) A .34π B .πC .2πD .3π2.(2022·浙江·高考真题)如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则( )A .αβγ≤≤B .βαγ≤≤C .βγα≤≤D .αγβ≤≤3.(多选题)(2022·全国·高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =4.(多选题)(2022·全国·高考真题)已知正方体1111ABCD A B C D -,则( ) A .直线1BC 与1DA 所成的角为90︒ B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒5.(多选题)(2021·全国·高考真题)在正三棱柱111ABC A B C 中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值 C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 6.(2020·海南·高考真题)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 5BCC 1B 1的交线长为________.【方法技巧与总结】1、几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和. (2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应弄清各构成部分,并注意重合部分的删、补. 2、几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉3、求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆 锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形.4、球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d .注意:解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的位置关系和数量关系;选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.5、立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.6、解决立体几何问题的思路方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题;涉及某些角的三角函数的最值,借助模型求解,如正四面体模型、长方体模型和三余弦角模θαβ=cos cos cos (θ为平面的斜线与平面内任意一条直线l 所成的角,α为该斜线与该平面所成的角,β为该斜线在平面上的射影与直线l 所成的角).7、立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.8、解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.9、以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等; (2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等; (3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.10、以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【核心考点】核心考点一:球与截面面积问题 【规律方法】 球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d . 【典型例题】例1.(2022·全国·高三阶段练习)已知四棱锥P -ABCD 的底面ABCD 是矩形,且该四棱锥的所有顶点都在球O 的球面上,P A ⊥平面ABCD , 22,PA AB BC === ,点E 在棱PB 上,且2EB PE =, 过E 作球O 的截面,则所得截面面积的最小值是____________. 例2.(2022·湖北省红安县第一中学高三阶段练习)球体在工业领域有广泛的应用,某零件由两个球体构成,球1O 的半径为10,,P Q 为球1O 表面上两动点,16,PQ M =为线段PQ 的中点.半径为2的球2O 在球1O 的内壁滚动,点,,A B C 在球2O 表面上,点2O 在截面ABC 上的投影H 恰为AC 的中点,若21O H =,则三棱锥M ABC -体积的最大值是___________. 例3.(2022·江西·高三阶段练习(理))如图,正方体1111ABCD A B C D -的棱长为6,11113C E CD =,点F 是CD 的中点,则过1B ,E ,F 三点的平面α截该正方体所得截面的面积为_________.例4.(2022·北京市十一学校高三阶段练习)如图,在棱长为2的正方体1111ABCD A B C D -中,,M N 分别是棱1111,A B A D 的中点,点P 在线段CM 上运动,给出下列四个结论:①平面CMN 截正方体1111ABCD A B C D -所得的截面图形是五边形; ②直线11B D 到平面CMN 2; ③存在点P ,使得1190B PD ∠=; ④1PDD △45. 其中所有正确结论的序号是__________.核心考点二:体积、面积、周长、角度、距离定值问题 【规律方法】几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥, 有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉【典型例题】例5.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关例6.(2022·山西运城·模拟预测(文))如图,正方体1111ABCD A B C D -的棱长为1,线段1CD 上有两个动点E ,F ,且12EF =,点P ,Q 分别为111A B BB ,的中点,G 在侧面11CDD C 上运动,且满足1B G ∥平面1CD PQ ,以下命题错误的是( )A .1AB EF ⊥B .多面体1AEFB 的体积为定值C .侧面11CDD C 上存在点G ,使得1B G CD ⊥ D .直线1B G 与直线BC 所成的角可能为6π例7.(2022·全国·高三专题练习)如图所示,在正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交1AA 于E ,交1CC 于F ,给出下面几个命题:①四边形1BFD E 一定是平行四边形; ②四边形1BFD E 有可能是正方形;③平面1BFD E 有可能垂直于平面1BB D ;④设1D F 与DC 的延长线交于M ,1D E 与DA 的延长线交于N ,则M 、N 、B 三点共线; ⑤四棱锥11B BFD E -的体积为定值. 以上命题中真命题的个数为( ) A .2B .3C .4D .5核心考点三:体积、面积、周长、距离最值与范围问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例8.(2022·全国·高三专题练习)如图,正方形EFGH 的中心为正方形ABCD 的中心,22AB =P EFGH -(A ,B ,C ,D 四点重合于点P ),则此四棱锥的体积的最大值为( )A 1286B 1285C .43D 15例9.(2022·江西南昌·三模(理))已知长方体1111ABCD A B C D -中,2AB =,22BC =13AA =,P 为矩形1111D C B A 内一动点,设二面角P AD C --为α,直线PB 与平面ABCD 所成的角为β,若αβ=,则三棱锥11P A BC -体积的最小值是( ) A 2 B .321C 2D 32例10.(2022·浙江·高三阶段练习)如图,在四棱锥Q EFGH -中,底面是边长为22方形,4QE QF QG QH ====,M 为QG 的中点.过EM 作截面将此四棱锥分成上、下两部分,记上、下两部分的体积分别为1V ,2V ,则12V V 的最小值为( )A .12 B .13C .14D .15例11.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关核心考点四:立体几何中的交线问题 【规律方法】 几何法 【典型例题】例12.(2022·浙江宁波·一模)在棱长均相等的四面体ABCD 中,P 为棱AD (不含端点)上的动点,过点A 的平面α与平面PBC 平行.若平面α与平面ABD ,平面ACD 的交线分别为m ,n ,则m ,n 所成角的正弦值的最大值为__________.例13.(2022·全国·高三专题练习)已知一个正四面体的棱长为2,则其外接球与以其一个顶点为球心,1为半径的球面所形成的交线的长度为___________.例14.(2022·福建福州·三模)已知正方体1111ABCD A B C D -31A 为球心,半径为2的球面与底面ABCD 的交线的长度为___________.例15.(2022·陕西·武功县普集高级中学高三阶段练习(理))如图,在四面体ABCD 中,DA ,DB ,DC 两两垂直,2DA DB DC ===D 为球心,1为半径作球,则该球的球面与四面体ABCD 各面交线的长度和为___.核心考点五:空间线段以及线段之和最值问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例16.(2022·全国·高三专题练习)已知正三棱锥S ABC -2,外接球表面积为3π,2SA <点M ,N 分别是线段AB ,AC 的中点,点P ,Q 分别是线段SN 和平面SCM 上的动点,则AP PQ +的最小值为( ) A 262-B 62+C 32D 2例17.(2022·全国·高三专题练习)在棱长为3的正方体1111ABCD A B C D -中,点E 满足112A E EB =,点F 在平面1BC D 内,则1A F EF +的最小值为( )A 29B .6C 41D .7例18.(2022·全国·高三专题练习)如图所示,在直三棱柱111ABC A B C -中,11AA =,3AB BC ==1cos 3ABC ∠=,P 是1A B 上的一动点,则1AP PC +的最小值为( )A 5B 7C .13+D .3核心考点六:空间角问题 【规律方法】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的. (3)计算:在证明的基础上计算得出结果. 简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin hl,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°. 4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【典型例题】例19.(2022·浙江金华·高三期末)已知正方体1111ABCD A B C D -中,P 为1ACD △内一点,且1113PB D ACD S S =△△,设直线PD 与11A C 所成的角为θ,则cos θ的取值范围为( )A .3⎡⎢⎣⎦B .3⎡⎤⎢⎥⎣⎦C .10,2⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦例20.(2022·浙江·效实中学模拟预测)在等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,AC 交BD 于O 点,ABD △沿着直线BD 翻折成1A BD ,所成二面角1A BD C --的大小为θ,则下列选项中错误的是( )A .1A BC θ∠≤B .1AOC θ∠≥ C .1A DC θ∠≤D .11A BC A DC θ∠+∠≥例21.(2022·浙江·湖州中学高三阶段练习)如图,ABC 中,90C ∠=︒,1AC =,3BC =D 为AB 边上的中点,点M 在线段BD (不含端点)上,将BCM 沿CM 向上折起至'B CM △,设平面'B CM 与平面ACM 所成锐二面角为α,直线'MB 与平面AMC 所成角为β,直线MC 与平面'B CA 所成角为γ,则在翻折过程中,下列三个命题中正确的是( )①3tan βα,②γβ≤,③γα>. A .①B .①②C .②③D .①③例22.(2022·浙江·高三专题练习)已知等边ABC ,点,E F 分别是边,AB AC 上的动点,且满足EF BC ∥,将AEF △沿着EF 翻折至P 点处,如图所示,记二面角P EF B --的平面角为α,二面角P FC B --的平面角为β,直线PF 与平面EFCB 所成角为γ,则( )A .αβγ≥≥B .αγβ≥≥C .βαγ≥≥D .βγα≥≥例23.(2022·全国·高三专题练习)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B --的平面角是γ则三个角α,β,γ中最小的角是( ) A .αB .βC .γD .不能确定核心考点七:轨迹问题 【规律方法】解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.【典型例题】例24.(2022·北京·昌平一中高三阶段练习)设正方体1111ABCD A B C D -的棱长为1,E ,F 分别为AB ,1BD 的中点,点M 在正方体的表面上运动,且满足FM DE ⊥,则下列命题:①点M 可以是棱AD 的中点; ②点M 的轨迹是菱形; ③点M 轨迹的长度为25 ④点M 5. 其中正确的命题个数为( ) A .1B .2C .3D .4例25.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D -的边长为2,点E ,F 分别为棱CD ,1DD 的中点,点P 为四边形11CDD C 内(包括边界)的一动点,且满足1B P ∥平面BEF ,则点P 的轨迹长为( ) A 2B .2C 2D .1例26.(2022·全国·模拟预测(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,P A ⊥平面ABCD ,且2PA =,点E ,F ,G 分别为棱AB ,AD ,PC 的中点,下列说法错误的是( )A .AG ⊥平面PBDB .直线FG 和直线AC 所成的角为π3C .过点E ,F ,G 的平面截四棱锥P ABCD -所得的截面为五边形D .当点T 在平面ABCD 内运动,且满足AGT △的面积为12时,动点T 的轨迹是圆例27.(2022·浙江温州·高三开学考试)如图,正方体1AC ,P 为平面11B BD 内一动点,设二面角11A BD P --的大小为α,直线1A P 与平面11BD A 所成角的大小为β.若cos sin βα=,则点P 的轨迹是( )A .圆B .抛物线C .椭圆D .双曲线例28.(2022·全国·高三专题练习)如图,正方体ABCD A B C D -''''中,M 为BC 边的中点,点P 在底面A B C D ''''和侧面CDD C ''上运动并且使MAC PAC ''∠=∠,那么点P 的轨迹是( )A .两段圆弧B .两段椭圆弧C .两段双曲线弧D .两段抛物线弧核心考点八:以立体几何为载体的情境题 【规律方法】以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【典型例题】例29.(2022·宁夏·平罗中学高三阶段练习(理))设P 为多面体M 的一个顶点,定义多面体M 在P 处的离散曲率为()()1223111 1.2,3,32k i Q PQ Q PQ Q PQ Q i k π-∠+∠+⋯+∠=⋯≥其中,为多面体M 的所有与点P 相邻的顶点,且平面12Q PQ ,23Q PQ ,……,1k Q PQ 遍及多面体M 的所有以P 为公共点的面如图是正四面体、正八面体、正十二面体和正二十面体,若它们在各顶点处的离散曲率分别是a ,b ,c ,d ,则a ,b ,c ,d 的大小关系是( )A .a b c d >>>B .a b d c >>>C .b a d c >>>D .c d b a >>>例30.(2022·广东·广州市从化区第三中学高三阶段练习)北京大兴国际机场的显著特点之一是各种弯曲空间的运用,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是3π,所以正四面体在每个顶点的曲率为233πππ-⨯=,故其总曲率为4π.给出下列三个结论:①正方体在每个顶点的曲率均为2π; ②任意四棱锥的总曲率均为4π;③若某类多面体的顶点数V ,棱数E ,面数F 满足2V E F -+=,则该类多面体的总曲率是常数.其中,所有正确结论的序号是( ) A .①②B .①③C .②③D .①②③例31.(2022·辽宁·沈阳二十中三模)我国南北朝时期的著名数学家祖暅原提出了祖暅原理:“幂势既同,则积不容异.”意思是,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等,即2311122323V R R R R R πππ=⋅-⋅=球.现将椭圆22149x y +=绕y 轴旋转一周后得一橄榄状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于( )A .32πB .24πC .18πD .16π例32.(2022·全国·高三专题练习)将地球近似看作球体.设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度(当地夏半年取正值,冬半年取负值),ϕ为该地的纬度值,如图.已知太阳每年直射范围在南北回归线之间,即[]2326,2326δ''∈-︒︒.北京天安门广场的汉白玉华表高为9.57米,北京天安门广场的纬度为北纬395427'''︒,若某天的正午时刻,测得华表的影长恰好为9.57米,则该天的太阳直射纬度为( )A .北纬5527'''︒B .南纬5527'''︒C .北纬5533'''︒D .南纬5533'''︒核心考点九:翻折问题 【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质. 【典型例题】例33.(2022·全国·高三专题练习)如图,已知四边形ABCD ,BCD △是以BD 为斜边的等腰直角三角形,ABD △为等边三角形,2BD =,将ABD △沿对角线BD 翻折到PBD △在翻折的过程中,下列结论中不正确...的是( )A .BD PC ⊥B .DP 与BC 可能垂直C .直线DP 与平面BCD 所成角的最大值是45︒D .四面体PBCD 3例34.(2022·浙江·杭州高级中学模拟预测)如图,已知矩形ABCD 的对角线交于点,,1E AB x BC ==,将ABD △沿BD 翻折,若在翻折过程中存在某个位置,使得ABCE ,则x 的取值范围是( )A .03x <≤B .02x <≤C .01x <≤D .06x ≤<例35.(2022·全国·高三专题练习)如图1,在正方形ABCD 中,点E 为线段BC 上的动点(不含端点),将ABE 沿AE 翻折,使得二面角B AE D --为直二面角,得到图2所示的四棱锥B AECD -,点F 为线段BD 上的动点(不含端点),则在四棱锥B AECD -中,下列说法正确的是( )A .B 、E 、C 、F 四点一定共面 B .存在点F ,使得CF ∥平面BAEC .侧面BEC 与侧面BAD 的交线与直线AD 相交 D .三棱锥B ADC -的体积为定值例36.(2022·全国·高三专题练习)已知直角梯形ABCD 满足:AD ∥BC ,CD ⊥DA ,且△ABC 为正三角形.将△ADC 沿着直线AC 翻折至△AD 'C 如图,且AD BD CD '''<<,二面角D AB C '﹣﹣、D BC A '﹣﹣、D AC B '﹣﹣的平面角大小分别为α,β,γ,直线D A ',D B ',D C '与平面ABC 所成角分别是θ1,θ2,θ3,则( )A .123θθθαγβ>>,>>B .123θθθαβγ<<,>>C .123θθθαβγ>>,<<D .123θθθαβγ<<,<<【新题速递】1.(2022·安徽·高三阶段练习)如图,在棱长为a 的正四面体ABCD 中,点111,,B C D 分别在棱,,AB AC AD 上,且平面111B C D 平面1,BCD A 为BCD △内一点,记三棱锥1111A B C D -的体积为V ,设1AD x AD=,关于函数()V f x =,下列说法正确的是( )A .12220,,,133x x ⎛⎫⎛⎫∀∈∃∈ ⎪ ⎪⎝⎭⎝⎭,使得()()21f x f x =B .函数()f x 在1,12⎛⎫⎪⎝⎭上是减函数C .函数()f x 的图象关于直线12x =对称 D .()00,1x ∃∈,使得()016A BCD f x V ->(其中A BCD V -为四面体ABCD 的体积)2.(2022·重庆市长寿中学校高三阶段练习)如图所示,在直角梯形BCEF 中,90,CBF BCE A ∠∠==、D 分别是BF 、CE 上的点,//AD BC ,且22AB DE BC AF ===(如图1).将四边形ADEF 沿AD 折起,连接BE BF CE 、、(如图2).在折起的过程中,下列说法中错误的个数是( )①AC //平面BEF ; ②B C E F 、、、四点不可能共面;③若EF CF ⊥,则平面ADEF ⊥平面ABCD ; ④平面BCE 与平面BEF 可能垂直. A .1B .2C .3D .43.(2022·四川·成都市第二十中学校一模(理))如图, 在棱长为 2 的正方体1111ABCD A B C D -中,E F G H P 、、、、均为所在棱的中点, 则下列结论正确的有( )①棱 AB 上一定存在点Q , 使得1QC D Q ⊥ ②三棱锥F EPH -的外接球的表面积为8π③过点 E F G ,,作正方体的截面, 则截面面积为33④设点 M 在平面11BB C C 内, 且1//A M 平面AGH , 则1A M 与AB 所成角的余弦值的最大22A .1 个B .2 个C .3 个D .4 个4.(2022·四川·成都市锦江区嘉祥外国语高级中学有限责任公司模拟预测(文))在棱长为2的正方体1111ABCD A B C D -中,N 为11B C 的中点,点P 在正方体各棱及表面上运动且满足AP CN ⊥,则点P 轨迹所围成图形的面积为( )A .25B .42C .23D .45.(2022·上海市实验学校高三阶段练习)直线m ⊥平面α,垂足是O ,正四面体ABCD 的棱长为4,点C 在平面α上运动,点B 在直线m 上运动,则点O 到直线AD 的距离的取值范围是( )A .425425⎡-+⎢⎣⎦B .222,222⎡⎤⎣⎦C .322322⎡-+⎢⎣⎦D .322,322⎡⎤⎣⎦6.(2022·湖南·模拟预测)正三棱柱111ABC A B C 的底面边长是4,侧棱长是6,M ,N 分别为1BB ,1CC 的中点,若点P 是三棱柱内(含棱柱的表面)的动点,MP ∥平面1AB N ,则动点P 的轨迹面积为( ) A .53B .5C 39D 267.(2022·山西·高三阶段练习)已知正方体1111ABCD A B C D -的顶点都在表面积为12π的球面上,过球心O 的平面截正方体所得的截面为一菱形,记该菱形截面为S ,点P 是正方体表面上一点,则以截面S 为底面,以点P 为顶点的四棱锥的体积的最大值为( ) A .83B .73C .2D .538.(2022·浙江·高三阶段练习)在OAB △中,OA AB =,120OAB ∠=︒.若空间点P 满足1=2PABOABSS ,则直线OP 与平面OAB 所成角的正切的最大值是( )A .13B .12C 3D .19.(多选题)(2022·云南曲靖·高三阶段练习)已知正方体1111ABCD A B C D -的棱长为1,点P 为侧面11BCC B 内一点,则( )A .当1113C P C B =时,异面直线CP 与AD 所成角的正切值为2B .当11(01)C P C B λλ=<<时,四面体1D ACP 的体积为定值C .当点P 到平面ABCD 的距离等于到直线11A B 的距离时,点P 的轨迹为拋物线的一部分 D .当1112C P C B =时,四面体BCDP 的外接球的表面积为3π10.(多选题)(2022·辽宁·本溪高中高三阶段练习)如图,矩形BDEF 所在平面与正方形ABCD 所在平面互相垂直,2AD DE ==,G 为线段AE 上的动点,则( )A .AE CF ⊥B .多面体ABCDEF 的体积为83C .若G 为线段AE 的中点,则GB //平面CEFD .点M ,N 分别为线段AF ,AC 上的动点,点T 在平面BCF 内,则MT NT +43 11.(多选题)(2022·广东·东涌中学高三期中)如图,已知正方体1111ABCD A B C D -的棱长为1,E ,F ,G 分别为AB ,AD ,1BB 的中点,点P 在11A C 上,//AP 平面EFG ,则以下说法正确的是( )A .点P 为11A C 的中点B .三棱锥P EFG -的体积为148C .直线1BB 与平面EFG 3D .过点E 、F 、G 作正方体的截面,所得截面的面积是3312.(多选题)(2022·安徽·阜阳师范大学附属中学高三阶段练习)已知ABC 为等腰直角三角形,AB AC =,其高3AD =,E 为线段BD 的中点,将ABC 沿AD 折成大小为32ππθθ⎛⎫< ⎪⎝⎭的二面角,连接BC ,形成四面体A BCD -,动点P 在ACD 内(含边界),且//PE 平面ABC ,则在θ变化的过程中( )A .AD BC ⊥B .E 点到平面ADC 的距离的最大值为322C .点P 在ADC △2D .当BP AC ⊥时,BP 与平面ADC 所成角的正切值的取值范围为)22,⎡+∞⎣13.(多选题)(2022·江苏省泰兴中学高三阶段练习)棱长为1的正方体1111ABCD A B C D -内部有一圆柱12O O ,此圆柱恰好以直线1AC 为轴,且圆柱上下底面分别与正方体中以1A C ,为公共点的3个面都有一个公共点,以下命题正确的是( )A .在正方体1111ABCD ABCD -内作与圆柱12O O 3B .无论点1O 在线段1AC 上如何移动,都有11BO B C ⊥C .圆柱12O O 的母线与正方体1111ABCD A B C D -所有的棱所成的角都相等D .圆柱12O O 外接球体积的最小值为π6 14.(多选题)(2022·江苏盐城·高三阶段练习)已知正四面体ABCD 的棱长为2球的球心为O .点E 满足(01)AE AB λλ=<<,(01)CF CD μμ=<<,过点E 作平面α平行于AC 和BD ,平面α分别与该正四面体的棱BC ,CD ,AD 相交于点M ,G ,H ,则( )A .四边形EMGH 的周长为是变化的B .四棱锥A EMGH -的体积的最大值为6481 C .当14λ=时,平面α截球O 47 D .当12λμ==时,将正四面体ABCD 绕EF 旋转90︒后与原四面体的公共部分体积为43 15.(2022·安徽·石室中学高三阶段练习)已知三棱锥V ABC -的高为3D E F ,,,分别为VC VA VB ,,的中点,若平面ABD ,平面BCE ,平面ACF 相交于O 点,则O 到平面ABC 的距离h 为___________.16.(2022·北京八十中高三期末)如图,在正方体ABCD —1111D C B A 中,E 为棱11B C 的中点.动点P 沿着棱DC 从点D 向点C 移动,对于下列四个结论:。
37[1].平面解析几何综合分析(二) 高三数学解析几何专项训练30套试题(含例题、练习、答案) 高
![37[1].平面解析几何综合分析(二) 高三数学解析几何专项训练30套试题(含例题、练习、答案) 高](https://img.taocdn.com/s3/m/1a9dabbf336c1eb91b375dee.png)
平面解析几何综合分析(二)例 11一束光线经过A (-3,5)点,射在直线l 1:3440x y -+=上的点B (4,4),反射光线与直线l 2:y=9交于点M ,又一束光线经过A (-3,5)点射在l 1上的点C ,反射光线与l 2交于N 点,且MN C =307,求点的坐标。
分析: 光线经A 点射到直线l 1上的B点,则入射线方程可求。
于是反射线方程也可由对称性求出,M 点随之确定又 MN =307M 、N 同在直线y=9上,N 点的坐标也可以确定,再由对称性可以求出反射线的方程而后C 点可以求出解:A (-3,5),A 点关于直线l 1:3440x y A x y -+='的对称点为(,)则⎪⎪⎩⎪⎪⎨⎧=++--⋅-=⋅+-04)25(4)23(314335y x x y 解得x y ==-⎧⎨⎩33()∴'-A 33, B A B (,)44∴'直线的方程为 y x x y M A B l y x y x y M MN N l N l A N l ++=----='∴=--=⎧⎨⎩==⎧⎨⎪⎩⎪∴⎛⎝ ⎫⎭⎪='343343724097240337933793072211即点是直线与的交点点也在直线上经点反射的光线与的交点就是直线与的交点,,直线'A N 1的方程为:y x x y ---=--+-=93937337143330即143330344024133113241331131x y x y x y C +-=-+=⎧⎨⎩==⎧⎨⎪⎪⎩⎪⎪∴⎛⎝ ⎫⎭⎪解得, 直线'---=--A N y x 2939939的方程为 即290x y --=()()⎪⎭⎫ ⎝⎛∴∴⎩⎨⎧==⎩⎨⎧=+-=--133********,8780443092122,,,点的坐标分别为解得C C C C y x y x y x例 12试求圆x y x y 2220+-+=关于直线l :x y -+=10对称的园的方程 分析:此题可以求出圆C: x y x y 2220+-+=上任一点关于直线l 对称的点的轨迹方程.从对称的定义分析,圆关于直线l 的对称图形也是一个圆,其大小不变, 而决定一个圆只需确定圆心和半径,因而只要求出图C: x y x y 2220+-+=的圆心关于直线l 的对称点, 及此圆的半径,就可以写出其对称的圆的方程.解法一: 设圆C :x y x y 2220+-+=上任一点()p x y ,关于直线l: x y -+=10的对称点为()'''p x y ,,则有()()()()x x y y y y x x x y y x p QC y x y x x y x y x y x y x y x y +'-+'=-'-'=-⎧⎨⎪⎪⎩⎪⎪='-='+⎧⎨⎩∴'-+'+-'-+'+='+'+'-'+=''++-+=220111111210435043502222222 点在上有即以代换得为所求的园的方程,,解法二: 化QC :为圆的标准方程得0222=+-+y x y x()25,1.214512122=⎪⎭⎫⎝⎛-∴=++⎪⎭⎫ ⎝⎛-R C y x 半径圆心设C ()12110,:,-⎛⎝ ⎫⎭⎪-+='关于直线的对称点为l x y C x y 则:()4523223,22320121221121122=⎪⎭⎫ ⎝⎛-++∴⎪⎭⎫ ⎝⎛-'∴⎪⎩⎪⎨⎧=-=⎪⎪⎪⎩⎪⎪⎪⎨⎧=+--+-=-+y x C y x y x x y 可求的圆的方程为解得即x y x y 224350++-+=例 13 自点A(-3,3)发出的光线l 射到x 轴, 被x 轴反射, 其反射光线所在直线与圆x y x y l 224470+--+=相切求光线所在的直线的方程,分析:此题实际上是求过A 点的入射线方程(如图)直线l 1,直线l 2,其反射线分别,,,,2121与知园相切依题意l l l l '''.,,2211轴对称关于与与并且与x l l l l '' 若直线21212121,,,,,,k k k k l l l l ''''的斜率分别为 则221,k k k k -='-=' 又若A 点关于x 轴的对称点为'A 则'A 必在,反射线上即A l l '=''21 综上,此题可以有两种方法(1)通过反射线22112121,,,,,k k k k k k l l '-='-=''''再利用求出方程 求出入射线的斜率k 1, k 2,得到直线l l 12,的方程(2)由对称性求出已知圆QC 关于x轴对称的圆QC ',再示过A 点的QC '的切线方程, 就是可求的入射线方程.解法一:()A -33,点关于x 轴的对称点()3,3--'A ,设过'A 点的圆C 的切线方程为()y k x k x y k +='+'-+'-=33330即已知圆:()()()1,2,212222==-+-R C y x 半径圆心43,34113322212='='=+-'+-'k k k k k 解得 即反射线43,34,2121='='''k k l l 的斜率分别为, ∵入射线则22211,k k l k k '-='-=的斜率同理得入射线 即43,2421-==k k 由点斜式得过A 点的两条入射线方程为:43303430x y x y ++=+-=解法二:已知圆()()()QC R C y x QC ,1,2,2,122:22==-+-圆心轴对称的圆关于x ()''C QC 的方程为:()()()1,2,212222=-'=++-R c y x设过A 点的QC '的两切线l l 12,:的方程为)3(3+=-x k y即:033=++-k y kx2233113443212k k k k k ++++==-=-解得以下同解法一,例 14求曲线C :()f x y y x C ,==+'02关于直线对称的曲线的方程 解:设曲线'C 上任一点()()p x y P y x M x y C ,,,.则点关于直线的对称点必在曲线上=+''2则有()f x y ''=,0()()y y x x y y x x x y y x M y x M C C f y x -'-'=-+'=+'=⎧⎨⎪⎪⎩⎪⎪'=-'=+⎧⎨⎩∴-+∈'∴'-+=12222222220解得曲线的方程为,,,【综合练习】:选择题:(1)点p (a,b )关于直线x+y=0的对称点的坐标是() A ( a ,b )B ( b ,a )C (-a ,b )D ( -b ,-a )(2) 曲线C :f (x ,y )=0关于直线x - y -2=0对称的曲线'C 的方程为()A ()f y x +=20,B ()f x y -=20,C ()f y x +-=220,D ()f y x -+=220,(3) 直线l :2310x y --=关于直线x y +=0对称的直线方程为() A 3210x y --=B 3210x y +-=C 3210x y -+=D 3210x y ++=(4) 不重合的两点()()m n N n m M ,1,1和+-,对称关于直线l l 则直线的方程()为A x y +=0B x y ++=10C x y -+=10D x y --=10(5) 点(-2,6)关于直线3450x y -+=对称的点的坐标是() A (-2,4) B (2,-4) C (4,2)D (4,-2)(6) 在直线y =-2上有点P ,它到A (-3,1)和B (5,-1)的距离之和最小,则点P 的坐标是() A (1,-2)B (3,-2)C (1942,-)D (9,-2)(7) 以x y ++=210为对称轴,直线x y --=20的轴对称图形的方程为() A 780x y +-= B 780x y -+= C 780x y --=D 087=++y x(8) 如果直线y ax =+2与直线y x b =-3关于直线对称,那到()A a b ==136,B a b ==-136,C a b ==-32,D a b ==36,(9) 若圆x y 224+=和圆x y x y 224440++-+=关于直线l 对称,那么l 的方程是() A x y -=0B x y +-=20C x y --=20D 02=+-y x(10) 已知()A a b ++22,和点()B b a b --,关于直线01134=-+y x 对称,则a b,的值是() A a b =-=22, B a b ==-42,C a b ==24,D a b ==42,解答题:(1)求直线‰关于原点对称的直线方程(2)求直线l x y 120:--=关于直线033:=+-y x l 对称的直线l 2的方程 (3)()∆ABC A B 中且,,,31-∠平分线所在直线方程为x =0,∠C 平分线所在直线的方程为y x =,求BC 边所在直线的方程。
初中的数学经典几何的题目及问题详解

4e d c 经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .A P C DB A F GC EBO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1 N FE CDPCG FB QA DE 经典难题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M .(1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q .求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二)经典难题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)· A D HE M C B O · GAO D B EC Q P NM · O Q PB DE C N M · A AFD E2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)经典难题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)D E DA CB F F EP C B A O D BFAECP AP CBP A D CB DA4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二) 经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA=200,求∠BED 的度数.FP DE CBAAPCBACBPDEDCB A A CBPD经典难题(一)1.如下图做GH⊥AB,连接EO。
高二数学解析几何训练题精选(带答案)

高二数学解析几何训练题精选(带答案)高中数学习题精选第三部分•解析几何一、选择题:1、直线的倾斜角是______。
A.B.C.D.2、直线m、l关于直线x=y对称,若l的方程为,则m的方程为_____。
A.B.C.D.3、已知平面内有一长为4的定线段AB,动点P满足|PA|—|PB|=3,O 为AB中点,则|OP|的最小值为______。
A.1B.C.2D.34、点P分有向线段成定比λ,若λ∈,则λ所对应的点P的集合是___。
A.线段B.线段的延长线C.射线D.线段的反向延长线5、已知直线L经过点A与点B,则该直线的倾斜角为______。
A.150°B.135°C.75°D.45°6、经过点A且与直线垂直的直线为______。
A.B.C.D.7、经过点且与直线所成角为30°的直线方程为______。
A.B.或C.D.或8、已知点A和点B,直线m过点P且与线段AB相交,则直线m的斜率k的取值范围是______。
A.B.C.D.9、两不重合直线和相互平行的条件是______。
A.B.或C.D.10、过且倾斜角为15°的直线方程为______。
A.B.C.D.11、a=1是直线和互相垂直的___。
A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也非必要条件12、与曲线关于直线对称的曲线方程是______。
A.B.C.D.13、曲线关于点对称的曲线的方程是______。
A.B.C.D.14、实数a=0是和平行的______A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也非必要条件15、已知m和n的斜率分别是方程的两根,则m和n所成角为______。
A.15°B.30°C.45°D.60°16、直线的倾斜角为______。
A.B.C.D.17、a为非负实数,直线不通过的象限是______。
高中几何证明选讲课后练习及答案解析

高中几何证明选讲课后练习及答案解析1、[选修4-1:几何证明选讲]如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E.证明:①BE=EC;②AD·DE=2PB2.证明:①∵PC=2PA,PD=DC,∴PA=PD,△PAD为等腰三角形.连接AB,那么∠PAB=∠DEB=β,∠BCE=∠BAE=α,∵∠PAB+∠BCE=∠PAB+∠BAD=∠PAD=∠PDA=∠DEB+∠DBE,∴β+α=β+∠DBE,即α=∠DBE,即∠BCE=∠DBE,所以BE=EC.②∵AD·DE=BD·DC,PA2=PB·PC,PD=DC=PA,BD·DC=(PA-PB)PA=PB·PC-PB·PA=PB·(PC-PA),PB·PA=PB·2PB=2PB2.2、[选修4-4:坐标系与参数方程]在直角坐标系xOy中,曲线C1的参数方程为y=2+2sinα(x=2cosα)(α为参数),M为C1上的动点,P点满足→(OP)=2→(OM),点P的轨迹为曲线C2.①求C2的参数方程;②在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=3(π)与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.解:①设P(x,y),那么由条件知M2(y).由于M点在C1上,所以=2+2sinα(y),即y=4+4sinα(x=4cosα).从而C2的参数方程为y=4+4sinα(x=4cosα)(α为参数).②曲线C1的极坐标方程为=4sinθ,曲线C2的极坐标方程为=8sinθ.射线θ=3(π)与C1的交点A的极径为1=4s in3(π),射线θ=3(π)与C2的交点B的极径为2=8sin3(π).所以|AB|=|2-1|=2.3、 [选修4-5:不等式选讲]函数f(x)=|x-m|+|x+6|(m∈R).①当m=5时,求不等式f(x)≤12的解集;②假设不等式f(x)≥7对任意实数x恒成立,求m的取值范围.解:①当m=5时,f(x)≤12即|x-5|+|x+6|≤12,当x<-6时,得-2x≤13,即x≥-2(13),所以-2(13)≤x<-6;当-6≤x≤5时,得11≤12成立,所以-6≤x≤5;当x>5时,得2x≤11,即x≤2(11),所以5故不等式f(x)≤12的解集为2(11).②f(x)=|x-m|+|x+6|≥|(x-m)-(x+6)|=|m+6|,由题意得|m+6|≥7,那么m+6≥7或m+6≤-7,解得m≥1或m≤-13,故m的取值范围是(-∞,-13]∪[1,+∞).三道题让你快速“吃透”几何选讲,你还在等什么呢?更多数学资讯,尽在数学网。
备战高考数学(精讲+精练+精析)专题13.1几何证明选讲试题文(含解析)
专题1 几何证明选讲(文科)【三年高考】1. 【2016高考天津】如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为__________.【答案】2.【2016高考新课标1卷】如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(I)证明:直线AB与O相切;(II)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【解析】(Ⅰ)设是的中点,连结,因为,所以,.在中,,即到直线的距离等于圆的半径,所以直线与⊙相切.(Ⅱ)因为,所以不是四点所在圆的圆心,设是四点所在圆的圆心,作直线.由已知得在线段的垂直平分线上,又在线段的垂直平分线上,所以.同理可证,.所以.3.【2016高考新课标2】如图,在正方形中,分别在边上(不与端点重合),且,过点作,垂足为.(Ⅰ) 证明:四点共圆;(Ⅱ)若,为的中点,求四边形的面积.4.【2016高考新课标3】如图,中的中点为,弦分别交于两点.(I)若,求的大小;(II)若的垂直平分线与的垂直平分线交于点,证明.【解析】(Ⅰ)连结,则.因为,所以,又,所以.又,所以,因此.(Ⅱ)因为,所以,由此知四点共圆,其圆心既在的垂直平分线上,又在的垂直平分线上,故就是过四点的圆的圆心,所以在的垂直平分线上,又也在的垂直平分线上,因此.5.【2015高考新课标2,】如图,为等腰三角形内一点,圆与的底边交于、两点与底边上的高交于点,与、分别相切于、两点.(Ⅰ)证明:;(Ⅱ)若等于的半径,且,求四边形的面积.【解析】(Ⅰ)由于是等腰三角形,,所以是的平分线.又因为分别与、相切于、两点,所以,故.从而.(Ⅱ)由(Ⅰ)知,,,故是的垂直平分线,又是的弦,所以在上.连接,,则.由等于的半径得,所以.所以和都是等边三角形.因为,所以,.因为,,所以.于是,.所以四边形的面积.6.【2015高考陕西,】如图,切于点,直线交于,两点,,垂足为.(I )证明:;(II )若,,求的直径.7.【2015高考新课标1】如图,AB是O的直径,AC是O的切线,BC交O于E.(Ⅰ)若D为AC的中点,证明:DE是O的切线;(Ⅱ)若,求∠ACB的大小.【解析】(Ⅰ)连结AE,由已知得,AE⊥BC,AC⊥AB,在Rt△AEC中,由已知得DE=DC,∴∠DEC=∠DCE,连结OE,∠OBE=∠OEB,∵∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,∴∠OED=90°,∴DE是圆O的切线. (Ⅱ)设CE=1,AE=,由已知得AB=,,由射影定理可得,,∴,解得=,∴∠ACB=60°.8.【2015高考湖南】如图,在圆中,相交于点的两弦,的中点分别是,,直线与直线相交于点,证明:(1);(2)【解析】(1)如图所示,∵,分别是弦,的中点,∴,,即,,,又四边形的内角和等于,故;(2)由(I)知,,,,四点共圆,故由割线定理即得9. 【2014高考辽宁第22题】如图,EP交圆于E、C两点,PD切圆于D,G为CE上一点且,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(Ⅰ)求证:AB为圆的直径;(Ⅱ)若AC=BD,求证:AB=ED.【解析】(Ⅰ)因为PD=PG,所以∠PDG=∠PGD. 由于PD为切线,故∠PDA=∠DBA, 又由于∠PGD=∠EGA,故∠DBA=∠EGA,所以∠DBA+∠BAD=∠EGA+∠BAD,从而∠BDA=∠PFA.由于AF垂直EP,所以∠PFA=90°,于是∠BDA=90°,故AB是直径.(Ⅱ)连接BC,DC.由于AB是直径,故∠BDA=∠ACB=90°,在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,从而Rt△BDA≌Rt△ACB,于是Rt△BDA与∠DAB=∠CBA.又因为∠DCB=∠DAB,所以∠DCB=∠CBA,故DC∥AB. 由于ED是直径,由(Ⅰ)得ED=AB.10. 【2014高考全国2第22题】如图,P是O外一点,PA是切线,A为切点,割线PBC与O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交O于点E.证明:(Ⅰ)BE=EC;(Ⅱ)AD DE=2【解析】(Ⅰ)连结AB,AC,由题意知PA=PD,故,因为,,,所以,从而,因此BE=EC. (Ⅱ)由切割线定理得:,因为,所以,,由相交弦定理得:===,所以等式成立.11. 【2014高考全国1第22题】如图,四边形是的内接四边形,的延长线与的延长线交于点,且.(Ⅰ)证明:;(Ⅱ)设不是的直径,的中点为,且,证明:为等边三角形.【三年高考命题回顾】纵观前三年各地高考试题, 高考对几何证明的考查,主要考查有关三角形相似、全等、面积、线段长度及角相等的求解及证明,以平行线等分线段定理,平行线截割定理,相似三角形的判定与性质定理,直角三角形射影定理,圆心角、圆周角定理,圆内接四边形的性质定理及判定定理,圆的割线定理,切割线定理,弦切角定理,相交弦定理等为主要考查内容,题目难度一般为中、低档,备考中应严格控制训练题的难度.【2017年高考复习建议与高考命题预测】由前三年的高考命题形式可以看出, 高考对这部分要求不是太高,要求会以圆为几何背景,利用直角三角形射影定理,圆周角定理、圆的切线的判定定理及性质定理,相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理证明三角形相似,全等,求线段长等,预测2017年高考还会以圆为几何背景,考查相交线定理,切割线定理,以及圆内接四边形的性质定理与判定定理,考查学生的数形结合的能力.“几何证明选讲”是选修系列4的一个专题,该专题在高考中只考查“相似三角形”和“圆”这两部分平面几何内容,且与另三个选修4的专题一起命题,供考生选择作答.其核心内容为:线段成比例与相似三角形,圆的切线及其性质,与圆有关的相似三角形等.对同学们来说,“几何证明选讲”是初中所学知识的深化,因而倍感亲切.试题题型为解答题,且难度不大.题型以比例问题为主,平行线分线段成比例定理、相似形、角平分线定理、直角三角形中的射影定理、圆中的割线定理、切割线定理和相交弦定理等,都涉及线段成比例,因此比例问题是本专题中所占比重最大的题型.解决这类问题,主要方法就是设法利用上述定理,并灵活变形.复习建议:圆内接四边形的重要结论:内接于圆的平行四边形是矩形;内接于圆的菱形是正方形;内接于圆的梯形是等腰梯形.应用这些性质可以大大简化证明有关几何题的推证过程.与圆有关的比例线段的证明要诀:相交弦、切割线定理是法宝,相似三角形中找诀窍,联想射影定理分角线,辅助线来搭桥,第三比作介绍,代数方法不可少,分析综合要记牢,十有八九能见效.【2017年高考考点定位】几何证明选讲的内容涉及的考点可归纳为:①相似三角形的定义与性质;②平行线截割定理;③直角三角形射影定理;④圆周角与圆心角定理;⑤圆的切线的判定定理及性质定理;⑥弦切角的性质;⑦相交弦定理;⑧圆内接四边形的性质定理和判定定理;⑨切割线定理.【考点1】相似三角形的判定与性质【备考知识梳理】1.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.推论1:经过三角形一边的中点与另一边平行的直线必平分第三边.推论2:经过梯形一腰的中点,且与底边平行的直线平分另一腰.2.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.3.相似三角形的判定与性质(1)判定定理:结论相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方射影定理直角三角形中,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项;斜边上的高是两条直角边在斜边上的射影的比例中项【规律方法技巧】1.判定两个三角形相似的常规思路(1)先找两对对应角相等;(2)若只能找到一对对应角相等,则判断相等的角的两夹边是否对应成比例;(3)若找不到角相等,就判断三边是否对应成比例,否则考虑平行线分线段成比例定理及相似三角形的“传递性”.2.借助图形判断三角形相似的方法(1)有平行线的可围绕平行线找相似;(2)有公共角或相等角的可围绕角做文章,再找其他相等的角或对应边成比例;(3)有公共边的可将图形旋转,观察其特征,找出相等的角或成比例的对应边.3.比例线段常用平行线产生,利用平行线转移比例是常用的证题技巧,当题中没有平行线条件而有必要转移比例时,也常添加辅助平行线,从而达到转移比例的目的.4.判定两个三角形相似要注意结合图形特征灵活选择判定定理,特别要注意对应角和对应边.在一个题目中,相似三角形的判定定理和性质定理可能多次用到.相似三角形的性质可用来证明线段成比例、角相等;也可间接证明线段相等.5..在使用直角三角形射影定理时,要学会将“乘积式”转化为相似三角形中的“比例式”.证题时,要注意作垂线构造直角三角形是解直角三角形时常用的方法.6.相似关系的证明中,经常要应用比例的性质:若,则①;②;③;④;⑤;⑥.7.辅助线作法:几何证明题的一个重要问题就是作出恰当的辅助线,相似关系的基础就是平行截割定理,故作辅助线的主要方法就是作平行线,见中点取中点连线利用中位线定理,见比例点取等比的分点构造平行关系,截取等长线段构造全等关系,立体几何中通过作平行线或连结异面直线上的点化异为共等等都是常用的作辅助线方法.【考点针对训练】1.【2016届河南省郑州一中高三考前冲刺四】如图所示,已知圆O外有一点P,作圆O的切线PM,M为切点,过PM的中点N作割线NAB,交圆O于A,B两点,连接PA并延长,交圆O于点C,连接PB交圆O于点D,若MC=BC.(1)求证:△APM△ABP;(2)求证:四边形PMCD是平行四边形.2.【2016年山西省右玉一中高考冲刺压轴卷三】如图,已知⊙和⊙相交于两点,为⊙的直径,直线交⊙于点,点为弧中点,连结分别交⊙、于点,连结.(Ⅰ)求证:;(Ⅱ)求证:.【解析】(Ⅰ)连结,∵为⊙的直径,∴,∵为⊙的直径,∴,∵,∴,∵为弧中点,∴,∵,∴,∴,∴,∴.(Ⅱ)由(Ⅰ)知,,∴,∴,由(Ⅰ)知,∴.【考点2】圆的有关问题【备考知识梳理】1.圆周角定理(1)圆周角:顶点在圆周上且两边都与圆相交的角.(2)圆周角定理:圆上一条弧所对的圆周角等于它所对的圆心角的一半.(3)圆心角定理:圆心角的度数等于它所对弧的度数.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.2.圆内接四边形的性质与判定定理(1)性质:定理1:圆内接四边形的对角互补.定理2:圆内接四边形的外角等于它的内角的对角.(2)判定:判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆.推论:如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆.另外:若两点在一条线段同侧且对该线段张角相等,则此两点与线段两个端点共圆,特别的,对定线段张角为直角的点共圆.3.圆的切线(1)直线与圆的位置关系直线与圆交点的个数直线到圆心的距离d与圆的半径r的关系相交两个d<r相切一个d=r相离无d>r性质定理:圆的切线垂直于经过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点.推论2:经过切点且垂直于切线的直线必经过圆心.判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.(3)切线长定理:从圆外一点引圆的两条切线长相等.3.弦切角(1)弦切角:顶点在圆上,一边与圆相切,另一边与圆相交的角.(2)弦切角定理及推论①定理:弦切角的度数等于所夹弧的度数的一半.②推论:同弧(或等弧)上的弦切角相等,同弧(或等弧)上的弦切角等于它所夹的弧所对的圆周角. 4.与圆有关的比例线段定理名称基本图形条件结论应用相交弦定理弦AB、CD相交于圆内点P(1)PA·PB=PC·PD;(2)△ACP∽△DBP(1)在PA、PB、PC、PD四线段中知三求一;(2)求弦长及角切割线定理PA切⊙O于A,PBC是⊙O的割线(1)PA2=PB·PC;(2)△PAB∽△PCA(1)已知PA、PB、PC知二可求一;(2)求解AB、AC割线定理PAB、PCD是⊙O的割线(1)PA·PB=PC·PD;(2)△PAC∽△PDB(1)求线段PA、PB、PC、PD及AB、CD;(2)应用相似求AC、BD(1)(2)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.(4)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.【规律方法技巧】1. 与圆有关的比例线段: (1)应用相交弦定理、切割线定理要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关的相似三角形等.(2)相交弦定理、切割线定理主要是用于与圆有关的比例线段的计算与证明.解决问题时要注意相似三角形知识及圆周角、弦切角、圆的切线等相关知识的综合应用.(3)相交弦定理、切割线定理、割线定理、切线长定理统称为圆幂定理:圆的两条弦或其延长线若相交,各弦被交点分成的两条线段长的积相等.当两交点在圆内时为相交弦定理,当两交点在圆外时为割线定理,两交点重合时为切线,一条上两点重合时为切割线定理,两条都重合时为切线长定理,应用此定理一定要分清两条线段是指哪两条.2. 弦切角定理及推论的应用(1)圆周角定理及其推论与弦切角定理及其推论多用于推出角的关系,从而证明三角形全等或相似,可求线段或角的大小.(2)涉及圆的切线问题时要注意弦切角的转化;关于圆周上的点,常作直线(或半径)或向弦(弧)两端画圆周角或作弦切角.3. 证明多点共圆,当两点在一条线段同侧时,可证它们对此线段张角相等,也可以证明它们与某一定点距离相等;如两点在一条线段异侧,则证明它们与线段两端点连成的凸四边形对角互补.4.涉及圆的切线问题时要注意弦切角的转化;关于圆周上的点,常作直径(或半径)或向弦(弧)两端画圆周角或作弦切角.5.一般地,涉及圆内两条相交弦时首先要考虑相交弦定理,涉及两条割线时要想到割线定理,涉及切线和割线时要注意应用切割线定理,要注意相交弦定理中线段之间的关系与切割线定理线段关系之间的区别.6.在平面几何的有关计算中往往要使用比例线段,产生比例线段的一个主要根据是两三角形相似.在涉及两圆的公共弦时,通常是作出两圆的公共弦.如果有过公共点的切线就可以使用弦切角定理.在两个圆内实现角的等量代换,这是解决两个圆相交且在交点处有圆的切线问题的基本思考方向.【考点针对训练】1.【2016届湖北七市教研协作体高三4月联考】已知中,,是外接圆劣弧上的点(不与点重合),延长至,延长至.(1)求证:;(2)若,中边上的高为,求外接圆的面积.2.【2016届陕西省高三下学期教学质检二】如图,已知圆与相交于两点,过点作圆的切线交圆于点,过点作两圆的割线,分别交圆、圆于点、,与相交于点. (Ⅰ)求证:;(Ⅱ)若是圆的切线,且,求的长.【解析】(Ⅰ)连接.∵是圆的切线,∴.又∵,∴,∴.(Ⅱ)证明:设,∵,∴.又∵,∴,∴.又∵,联立上述方程得到,∴.∵是圆的切线,∴.∴.【应试技巧点拨】1.辅助线作法:几何证明题的一个重要问题就是作出恰当的辅助线,相似关系的基础就是平行截割定理,故作辅助线的主要方法就是作平行线,见中点取中点连线利用中位线定理,见比例点取等比的分点构造平行关系,截取等长线段构造全等关系,立体几何中通过作平行线或连结异面直线上的点化异为共等等都是常用的作辅助线方法.2.比例的性质的应用相似关系的证明中,经常要应用比例的性质:若,则①;②;③;④;⑤;⑥.3.同一法:先作出一个满足命题结论的图形,然后证明图形符合命题已知条件,确定所作图形与题设条件所指的图形相同,从而证明命题成立.4.证明多点共圆,当两点在一条线段同侧时,可证它们对此线段张角相等,也可以证明它们与某一定点距离相等;如两点在一条线段异侧,则证明它们与线段两端点连成的凸四边形对角互补.5.与圆有关的比例线段(1)应用相交弦定理、切割线定理要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关的相似三角形等.(2)相交弦定理、切割线定理主要是用于与圆有关的比例线段的计算与证明.解决问题时要注意相似三角形知识及圆周角、弦切角、圆的切线等相关知识的综合应用.二年模拟1. 【2016年山西榆林高三二次模考】如图所示,在中,是的平分线,的外接圆交于点,.(1)求证:;(2)当时,求的长.2. 【2016年湖北八校高三四次联考】如图,在锐角三角形中,,以为直径的圆与边另外的交点分别为,且于.(Ⅰ)求证:是的切线;(Ⅱ)若,,求的长.【解析】(Ⅰ)连结则又,∴为的中点,而为中点,∴,又,∴,而是半径,∴是的切线.(Ⅱ)连,则,则,∴,设,则,由切割线定理得:,即,解得:(舍),∴EFDOC BA3. 【2016年安徽安庆二模】如图,以的边为直径作圆,圆与边的交点恰为边的中点,过点作于点.(I )求证:是圆的切线;(II )若,求的值.【解析】(Ⅰ)如图,连接.因为是的中点,是的中点,所以//.因为,所以,所以是⊙的切线. (Ⅱ)因为是⊙的直径,点在⊙上,所以. 又是的中点,所以. 故.因为,所以. 在直角三角形中,;在直角三角形中,. 于是.4.【2016年江西高三九校联考】如图所示,为的直径,为的中点,为的中点.(1)求证:;(2)求证:.5. 【2016年安徽淮北一中高三模考】如图,是圆上的两点,为圆外一点,连结分别交圆于点,且,连结并延长至,使.(1)求证:;(2)若,且,求.【解析】(1)连结,因为,又因为,所以,所以,由已知,所以,且,所以,所以.(2)因为,所以,则,所以,又因为,所以,所以,所以.6. 【2016年江西南昌高三一模】如图,圆M与圆N交于A, B两点,以A为切点作两圆的切线分别交圆M和圆N于C、D两点,延长DB交圆M于点E,延长CB交圆N于点F.已知BC=5, DB=10. (I)求AB的长;(II)求.【解析】(Ⅰ)根据弦切角定理,知,,∴△∽△,则,故.(Ⅱ)根据切割线定理,知,,两式相除,得(*).由△∽△,得,,又,由(*)得.7. 【2016年河南八市高三三模】已知,内接于圆,延长到点,使得交圆于点.(1)求证:;(2)若,求证:.【解析】(1)如图,连结..又(2)8.【2016届河北省石家庄市高三二模】如图,内接于⊙,,弦交线段于,为的中点,在点处作圆的切线与线段的延长线交于,连接.(I)求证:;(II)若,⊙的半径为,求切线的长.【解析】(I)证明:在中,弦相交于E,,又E为AC的中点,所以,又因为,,根据射影定理可得,;(II)因为为直径,所以,又因为,所以为等腰直角三角形.,根据勾股定理得,解得,所以,由(I)得所以,所以.9.【2016届陕西省高三高考全真模拟四】如下图,是圆的两条互相垂直的直径,是圆上的点,过点作圆的切线交的延长线于.连结交于点.(1)求证:;(2)若圆的半径为,求的长.【解析】(1)证明:连接,由弦切角定理知,又,即.由切割线定理得,所以.(2)由知,.在中,由得,.在中,由得,于是.10.【2016届山西右玉一中高三下学期模拟】已知如图,四边形是圆的内接四边形,对角线交于点,直线是圆的切线,切点为,.(1)若,求的长;(2)在上取一点,若,求的大小.11. 【2015届陕西西安西北工大附中高三下学期5月模拟】如图,和相交于A,B两点,过A 作两圆的切线分别交两圆于两点,连结并延长交于点.证明:(Ⅰ);(Ⅱ).【解析】(1)由与相切于,得,同理,所以从而,即(2)由与相切于,得,又,得从而,即,综合(1)的结论,12.【2015届陕西省西工大附中高三下学期模拟考试一】如图,⊙的直径的延长线与弦的延长线相交于点,为⊙上一点,AE=AC ,交于点,且,(Ⅰ)求的长度.(Ⅱ)若圆F 与圆内切,直线PT与圆F切于点T,求线段PT的长度【解析】(Ⅰ)连结,由同弧对应的圆周角与圆心角之间的关系结合题中条件弧长等于弧长可得,又,,从而,故∽,∴, 由割线定理知,故.(Ⅱ)若圆F 与圆内切,设圆的半径为,因为即,所以是圆的直径,且过点圆的切线为,则,即.13.【2015届吉林省吉林市高三第三次模拟考试】如图,在△ABC 中,,以为直径的⊙O 交于,过点作⊙O 的切线交于,交⊙O 于点.(Ⅰ)证明:是的中点;(Ⅱ)证明:.【解析】(Ⅰ)证明:连接,因为为⊙O 的直径,所以,又,所以CB切⊙O于点B ,且ED 切于⊙O 于点E ,因此,,所以,得,因此,即是的中点(Ⅱ)证明:连接BF ,可知BF 是△ABE 斜边上的高,可得△ABE ∽△AFB ,于是有,即,同理可证,所以.14.【2015届辽宁省师大附中高三模拟考试】如图,圆周角的平分线与圆交于点,过点的切线与弦的延长线交于点,交于点.(1)求证:;(2)若四点共圆,且弧与弧相等,求【解析】(1)因为与圆相切,,平方,所以,,所以(2)弧与弧相等,设,,,.15.【2015届陕西省西安市第一中学高三下学期自主命题二】如图,在中,是的角平分线,的外接圆交于点,.EDCA B(Ⅰ)求证:; (Ⅱ)当,时,求的长.【解析】(Ⅰ)连接,因为是圆内接四边形,所以又∽,即有,又因为,可得因为是的平分线,所以,从而(Ⅱ)由条件知,设,则,根据割线定理得,即即,解得或(舍去),则.EDCA B拓展试题以及解析 1. 如图,内接于⊙,弦AE 交BC 于点D ,已知,,OD =1,. (Ⅰ)求;(Ⅱ)求中BC 边上的高.【入选理由】本题主要考查平面几何的相关知识,同时考查考生的逻辑推理能力.高考对平面几何的考查主要是通过三角形全等或三角形相似进行边角转化,并综合运用圆的切割线定理、相交弦定理等 进行证明计算.以圆为背景是基本不变的,因而灵活应用圆的几何性质,找准有关的对应三角形、对应边和对应角是解题的关键.本题构思巧妙,难度不大,故选此题.2.如图,过圆外一点作圆的切线,切点为,割线、割线分别交圆于与、与.已知的垂直平分线与圆相切.(1)求证:;(2)若,,求的长.【解析】(1)证明:连结,∵与圆相切,∴.又为的垂直平分线,∴,∴,∴.(2)由(1)知且为的中点,∴为的中点,且,∴.∵为圆的切线,∴,∴,∴,∴.【入选理由】本题考查圆的切割线定理,弦切角定理等基础知识,意在考查逻辑思维能力和推理论证能力. 切割线定理、三角形相似、四点共圆的性质,是高考重点考查知识点,本题难度不大,故选此题.3.如图,直线AB过圆心O,交圆O于A、B,直线AF交圆O于F(不与B重合),直线与圆O相切于C,交AB于E,且与AF垂直,垂足为G,连接AC.求证:(Ⅰ);(Ⅱ).【证明】(Ⅰ)连接,是直径,,.切圆于,..(Ⅱ)连接,切圆于,.又∽..【入选理由】本题考查圆的弦切角定理、三角形相似等基础知识,意在考查逻辑思维能力和推理论证能力.本题由弦切角定理入手,得出三角形相似,从而可证,本题难度不大,故选此题.4.如图,是⊙的直径,是圆上两点,交于点,若,.(Ⅰ)求证:;(Ⅱ)求线段的长度.【入选理由】本题考查平面几何的证明,具体涉及圆的性质,四点共圆,割线定理等基础知识,意在考察学生推理证明和逻辑思维能力.本题考查知识基础,综合性强,是高考出题方向,故选此题.5.如图,圆内接四边形满足∥,在的延长线上,且. 若,.(Ⅰ)证明:;(Ⅱ)求的长.【解析】(Ⅰ)由知是圆的切线. ∴由弦切线角定理得,又,∴,∴;(Ⅱ)由(Ⅰ)知,又,∴∽,∴,又,,∴,∵,∴. 【入选理由】本题考查圆的切线的性质,圆內接四边形的性质,三角形相似等基础知识,意在考察学生推理证明和逻辑思维能力.本题考查知识基础,难度不大,故选此题.6.如图,点P是△ABC的外接圆O在C点的切线与直线AB的交点.(Ⅰ)若∠ACB=∠APC,证明:BC⊥PC;(Ⅱ)若D是圆O上一点,∠BPC=∠DAC,AC=,AB=,PC=4,求CD的长.【证明】(Ⅰ)由弦切角定理知,∠ABC=∠ACP,∵∠ACB=∠APC,∴△ACB∽△APC,∴∠BAC=∠CAP,∵∠BAC+∠CAP=,∴∠BAC=∠CAP=90°,∴BC是圆O的直径,又PC是圆O的切线,∴BC⊥PC. (Ⅱ)由切割线定理知,,即,即,解得(负值舍去),由弦切角定理及同弧所对的圆周角相等知,∠ACP=∠ABC=∠CDA,∵∠BPC=∠DAC,∴△CAD∽△APC,∴,∴=.【入选理由】本题考查三角形相似的判定与性质、弦切角定理、切割线定理等基础知识,意在考查学生推理证明和逻辑思维能力.本题第一问由弦切角入手,得三角形相似,从而得结论,第二问由切割线定理入手,结合弦切角定理及同弧所对的圆周角相等,得三角形相似,像这种题型考查知识基础,综合性强,是高考出题方向,故选此题.7.如图所示,在四边形中,交于点,.(Ⅰ)求证:、、、四点共圆;(Ⅱ)过作四边形外接圆的切线交的延长线于,,求证:平分.【证明】(Ⅰ)∵,∴,,∵,, ∴,,∴=,=,=,=,∴=+++=+++==,∴、、、四点共圆;(Ⅱ)由弦切角定理可知:∠=∠,∵,∴∽,∴=,∵,∴=,∴=,∴=,∴=,∴=∠,∴平分.。
初中数学经典几何题及答案解析总结计划
一、等腰三角形性质的应用1.题目:在等腰三角形ABC中,AB=AC,BD是底边BC上的高,垂足为D。
求证:AD=BD。
解析:利用等腰三角形的性质,我们知道AB=AC,所以∠ABC=∠ACB。
因为BD是高,所以∠BDA=90°。
根据直角三角形的性质,我们可以得到∠ABD=∠ACD。
又因为∠ABC=∠ACB,所以三角形ABD和三角形ACD是全等的。
根据全等三角形的性质,我们可以得到AD=BD。
2.题目:在等腰三角形ABC中,AB=AC,点D在底边BC上,且BD=CD。
求证:AD垂直平分BC。
解析:同样利用等腰三角形的性质,我们知道AB=AC,所以∠ABC=∠ACB。
因为BD=CD,所以∠BDC=∠CBD。
根据等腰三角形的性质,我们可以得到∠BDA=∠ADC=90°。
又因为∠BDC=∠CBD,所以三角形BDC 是等腰三角形,BD=CD。
根据等腰三角形的性质,我们知道AD垂直平分BC。
二、勾股定理的应用3.题目:直角三角形ABC中,∠C=90°,AB=10,BC=6,求AC的长度。
解析:根据勾股定理,我们知道AC^2+BC^2=AB^2。
将已知的AB 和BC的长度代入,得到AC^2+6^2=10^2。
解方程得到AC^2=100-36,所以AC=√64=8。
4.题目:直角三角形DEF中,∠F=90°,DE=8,DF=15,求EF的长度。
解析:同样根据勾股定理,我们知道DE^2+DF^2=EF^2。
将已知的DE和DF的长度代入,得到8^2+15^2=EF^2。
解方程得到EF^2=289,所以EF=√289=17。
三、圆的性质5.题目:在圆O中,∠AOB=60°,AB是圆的直径。
求证:∠ACB=30°。
解析:因为AB是圆的直径,所以∠AOB=90°。
因为∠AOB=60°,所以∠ACB=∠AOB/2=30°。
6.题目:在圆O中,直径AB,半径OC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 - 1 - 页
解析几何经典精讲(下)
题一:若有一菱形ABCD的顶点A、C在椭圆x2+4y2=4上,该菱形对角线BD所在直线的斜率为-1.当
直线BD过点(1,0)时,求直线AC的方程;
题二:如图,设A,B是椭圆2214xy的两个顶点,直线)0(kkxy与AB相交于点D,与椭
圆相交于EF,两点,求四边形AEBF面积的最大值.
题三:问t取何值时,直线l:2x-y+t=0(t>0)与椭圆x22+y2=1有且只有一个交点?
题四:设椭圆x2m2+y2n2=1(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为12,则此椭圆的
标准方程为________.
题五:设A为椭圆x24+y2=1的右顶点,直线l是与椭圆交于M,N两点的任意一条直线,若AM⊥
AN,证明直线l过定点.
D
F
B
y
x
A
O
E
第 - 2 - 页
解析几何经典精讲(下)
课后练习参考答案
题一:35xy
详解:直线BD:y=-1×(x-1)=-x+1,设AC:y=x+b,
由方程组4422yxbxy,得到0)1(48522bbxx,
A(x1,y1),C(x2,y2)的中点坐标为)2,2(2121yyxx,即)5,54(bb,
ABCD是菱形,所以AC的中点在BD上,所以1545bb,
解得35b,满足△=5-b2>0,所以AC的方程为35xy.
题二:22
详解:解法一:
根据点到直线的距离公式和①式知,
点EF,到AB的距离分别为
2
11
1
2
222(1214)55(14)xkxkkhk
,
2
22
2
2
222(1214)55(14)xkxkkhk
.
又2215AB,所以四边形AEBF的面积为
12
1
()2SABhh
D
F
B
y
x
A
O
E
第 - 3 - 页
2
14(12)525(14)kk
2
2(12)14kk
2
2
144214kkk
22
≤
,
当21k,即当12k时,上式取等号.所以S的最大值为22.答案:22
解法二:由题设,1BO,2AO.
设11ykx,22ykx,由①得20x,210yy,
故四边形AEBF的面积为
BEFAEFSSS△△22
2xy
222(2)xy22
2222
44xyxy
22
22
2(4)xy
≤
22
,
当222xy时,上式取等号.所以S的最大值为22.
题三:t=3或22
详解:因为椭圆的方程为x22+y2=1(x≠±2).
由 2x-y+t=0,x22+y2=1,消去y得9x2+8tx+2t2-2=0.
①令Δ=64t2-36×2(t2-1)=0,得t=±3,∵t>0,∴t=3.
此时直线l与曲线C有且只有一个公共点.
②令Δ>0且直线2x-y+t=0恰好过点(-2,0)时,t=22.
此时直线与曲线C有且只有一个公共点.
综上所述,当t=3或22时,直线l与曲线C有且只有一个公共点.
题四:x216+y212=1
详解:抛物线y2=8x的焦点是(2,0),∴椭圆的半焦距c=2即m2-n2=4,又e=m2-n2m=2m=12,∴m=4,n2=12.
从而椭圆的方程为x216+y212=1
题五:()65,0
详解:①若直线l不垂直于x轴,设该直线方程为y=kx+m,M(x1,y1),N(x2,y2),
由 y=kx+m,x24+y2=1,得x2+4(k2x2+2kmx+m2)=4,
化简得(1+4k2)x2+8kmx+4m2-4=0,
所以x1+x2=-8km1+4k2,x1x2=4m2-41+4k2,
y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=
k24m2-41+4k2-8k2m21+4k2+m2=m2-4k
2
1+4k
2
.
第 - 4 - 页
因为AM⊥AN,
所以AM→·A N→=y1y2+(x1-2)(x2-2)=0,
所以y1y2+x1x2-2(x1+x2)+4=0,
所以m2-4k21+4k2+4m2-41+4k2+16km1+4k2+4=0,
去分母得m2-4k2+4m2-4+16km+4+16k2=0,整理得
即12k2+16km+5m2=0,整理得
(2k+m)(6k+5m)=0,所以k=-m2,或k=-56m,
当k=-m2时,l:y=-m2x+m=m()-x2+1过定点(2,0),显然不满足题意;
当k=-56m时,l:y=-5m6x+m=m()-56x+1过定点()65,0.
②若直线l垂直于x轴,设l与x轴交于点(x0,0),由椭圆的对称性可知△MNA为等腰直角三角形,
所以 1-x204=2-x0,化简得5x20-16x0+12=0,
解得x0=65或2(舍),即此时直线l也过定点()65,0.