八年级数学上册第六章一次函数6.2一次函数教学设计(新版)苏科版

合集下载

苏科版数学八年级上第六章一次函数教材解读

苏科版数学八年级上第六章一次函数教材解读

苏科版数学八(上)第六章:一次函数------------教材分析和教学建议兴化市城东初级中学刘继光【教材的地位与作用】本章是二元一次方程(组),平面直角坐标系后又一重要内容。

是变量向函数,两个变量之间关系的延伸。

也是今后学习反比例函数,二次函数等知识必要准备与重要基础。

一次函数反映了客观世界的运动与实际的量之间的依赖关系,学好一次函数将为以后学习数学奠定良好的基础。

用函数的观点去研究方程等能更进一步地理解初中数学中这些重要的内容。

【教学要求】一、教科书内容和课程教学目标(一)本章知识结构框图如下:(二)课程学习目标本章内容的设计与编写以下列目标为出发点:1.以探索简单实际问题中的数量关系和变化规律为背景,经历“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.2.结合实例,了解常量、变量的意义和函数的概念,体会“变化与对应”的思想,了解函数的三种表示方法(列表法、解析式法和图象法),能结合图象数形结合地分析简单的函数关系.3. 能确定简单实际问题中函数自变量的取值范围,并会求函数值.4. 结合具体情境体会和理解正比例函数和一次函数的意义,能根据已知条件确定它们的表达式,会画它们的图象,能结合图象讨论这些函数的增减变化,能利用这些函数分析和解决简单实际问题.5.通过讨论一次函数与二元一次方程等的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程等内容的认识,构建和发展相互联系的知识体系.6.进行探究性课题学习,以选择方案为问题情境,进一步体会建立数学模型的方法与作用,提高综合运用函数知识分析和解决实际问题的能力.二、教学重点6.1 节是全章的基础部分,“变量与函数”结合简单的实际问题,对事物的运动变化进行数量化讨论,先引出常量和变量的意义,再从描述变量之间对应关系的角度刻画了一般函数的基本特征,从而初步建立函数的概念,并给出函数的解析式的意义. 6.2节从实际问题到函数表达式,归纳出一次函数、正比例函数概念,介绍用待定系数求一次函数解析式。

新苏科版2024~2025学年八年级数学上册第六章一次函数6.1函数1教案

新苏科版2024~2025学年八年级数学上册第六章一次函数6.1函数1教案

6.1函数(1)教学目标【知识与能力】1.通过简单的实例,了解常量、变量、自变量、因变量以及函数的定义.2.会判断某个变化过程中两个变量之间是否是函数关系.【过程与方法】通过写出一些简单的实际问题中变量之间的函数关系,提高抽象能力【情感态度价值观】体会函数思想,体会数学来源于生活教学重难点【教学重点】了解常量、变量、自变量、因变量以及函数的定义【教学难点】会确定常量、变量、自变量、因变量以及函数课前准备无教学过程引入:问题1、汽车从镇江出发沿沪宁高速匀速驶向上海。

行程问题:路程(s)、速度(v)、时间(t)讨论:有不变的数量吗?有变化的数量吗?探索新知定义:(1)常量:在变化过程中,保持不变取值的量叫常量。

(2)变量:在变化过程中,可以不断变化取值的量叫变量。

思考:你能指出下列各式的常量和变量吗?求余角的计算公式为β=900- α圆面积S和半径r的关系式为S=πr2矩形的长a一定,宽b,面积s= a b问题2:这是工作人员根据水库的水位变化与水库蓄水量变化情况而制作的表格:说说表格里有几个变量?他们有怎样的关系呢?问题3:根据小鱼的条数与所需火柴棒的根数的关系,说说你从中获得的信息。

说说这里有几个变量?他们有怎样的关系呢?上述问题都有怎样的共同之处呢?一般地,设在一个变化的过程中有两个变量x 和y 。

如果对于变量x 的每一个值,变量y 都有唯一的值与它对应,我们称y 是x 的函数(function ).其中,x 是自变量,y 是因变量。

思考1、圆面积s 是半径r 的函数吗?思考2、搭小鱼所需火柴的根数S 是所搭小鱼条数n 的函数吗?你能再举一些你熟悉的函数例子吗?知识运用用一根1m 长的铁丝围成一个长方形。

(1)当长方形的宽为0.1m 时,长为m(2)当长方形的宽为0.2m 时,长为m(3)当长方形的宽为a m 时,长为m(4)长方形的长是宽的函数吗?为什么?拓展延伸1、在圆的周长公式2c r π=中,下列说法正确的是( )A.常量为2,变量为,,c r πB.常量为2,,π变量为,c rC.常量为2,,r π,变量为cD.以上答案都不对2、分别写出下列各问题中的函数关系式,并指出其中的自变量与因变量(1)一个正方形的边长为3cm ,它的各边减少xcm 后,得到的新的正方形的周长为 ycm ,求x 与y 之间的函数关系式。

苏科版数学八年级上册《6.2 一次函数》教学设计

苏科版数学八年级上册《6.2 一次函数》教学设计

苏科版数学八年级上册《6.2 一次函数》教学设计一. 教材分析苏科版数学八年级上册《6.2 一次函数》是学生在学习了平面直角坐标系、不等式等知识的基础上,进一步研究函数的一种表达形式。

本节内容通过具体的实例,引导学生认识一次函数,理解一次函数的性质,并能运用一次函数解决实际问题。

教材中安排了丰富的例题和练习题,有助于学生巩固所学知识。

二. 学情分析八年级的学生已经具备了一定的数学基础,对平面直角坐标系、不等式等概念有所了解。

但学生在学习过程中,可能对函数的概念和性质理解不够深入,需要通过实例和练习来进一步巩固。

此外,学生可能对实际问题中的函数关系理解不够,需要通过生活中的实例来启发和引导。

三. 教学目标1.了解一次函数的概念,理解一次函数的性质。

2.能够运用一次函数解决实际问题,提高解决问题的能力。

3.培养学生的数学思维能力和合作交流能力。

四. 教学重难点1.一次函数的概念和性质。

2.一次函数在实际问题中的应用。

五. 教学方法1.采用问题驱动法,引导学生主动探究一次函数的性质。

2.利用生活中的实例,让学生感受一次函数的实际意义。

3.运用合作交流法,让学生在讨论中加深对一次函数的理解。

4.采用练习法,巩固所学知识,提高解题能力。

六. 教学准备1.准备相关的教学课件和教学素材。

2.准备一次函数的练习题和实际问题。

3.准备黑板和粉笔,用于板书。

七. 教学过程1.导入(5分钟)通过一个生活中的实例,如购物时发现的总价与数量之间的关系,引导学生思考这种关系可以用数学模型来表示。

进而引出一次函数的概念。

2.呈现(10分钟)呈现一次函数的定义和性质,通过具体的例子,让学生理解一次函数的表达形式,掌握一次函数的性质。

3.操练(10分钟)让学生分组讨论,运用一次函数解决实际问题。

每组选择一个实际问题,列出一次函数的表达式,并解释其含义。

4.巩固(10分钟)让学生独立完成一次函数的练习题,检验学生对一次函数的理解和掌握程度。

6苏科版数学八年级上册精品教案.2 一次函数

6苏科版数学八年级上册精品教案.2 一次函数

6.2 一次函数第1课时一、教学目标1.通过实例理解一次函数和正比例函数的概念,以及它们之间的关系;2.能根据所给条件写出简单的一次函数表达式;3.经历一般规律的探索过程、发展学生的抽象思维能力.二、教学重点、难点教学重点:1.一次函数、正比例函数的概念及关系;2.会根据已知信息写出一次函数的表达式.教学难点:对一次函数和正比例函数概念的理解.三、教学方法与教学手段采用“问题分析—合作交流—归纳提炼”的方法,引导学生“观察—思考—提炼—理解”,使学生体会一次函数的意义.运用多媒体辅助教学手段,启发学生思考、理解.采用小组合作的方式,培养学生合作、探索的意识与能力.四、教学过程(一)创设情境、感受概念创设“汽车加油过程”、“行程”、“汽车油量”的生活情境,写出函数表达式.【情境1】给汽车加油的加油枪流量为25 L/min.如果加油前油箱里没有油,那么加油过程中,油箱里的油量y(L)与加油时间x(min)之间有怎样的函数关系?如果加油前油箱里有6L油,那么在加油过程中,邮箱里的油量y(L)与加油时间x(min)之间有怎样的函数关系?【情境2】陈老师用导航搜索了一下,发现桐岐中学与南闸中学之间的行程是16 km,早上7点30分,陈老师以80 km/h的速度从桐岐中学开车驶向南闸中学,那么在行驶过程中,陈老师行驶的路程s(km)与行驶时间t(h)之间的函数表达式是__________.在行驶过程中,陈老师离南闸中学的路程y(km)与行驶时间t(h)之间的函数表达式是____________.【情境3】加油后陈老师的油箱有汽油75 L,在行驶过程中,陈老师发现每行驶100 km耗油10 L,那么行驶过程中的耗油量y(L)与行驶路程s(km)之间的函数表达式是_______.那么行驶过程中的余油量Q(L)与行驶路程s(km)之间的函数表达式是_________.(二)合作探究、理解概念请学生分组讨论,上述函数表达式中的自变量分别是什么?在这些函数表达式中,表示函数的自变量的式子是关于自变量的几次整式?共同总结概念:一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数,其中x是自变量,y是x的函数.请学生说说上述6个一次函数表达式的k ,b ,发现异同,归纳出正比例函数的概念:特别地,当b =0时,y =kx (k 为常数,k ≠0),y 叫做x 的正比例函数.☆正比例函数一定是一次函数,一次函数不一定是正比例函数.它们之间的关系可以用下图来描述:(三)例题示范、应用概念例1 有下列函数:①y =x -6,②y =x 2,③y =8x ,④y =7-x ,⑤y =5x 2,⑥y =(x -2)-x ,其中y 是x 的一次函数的是_____________ ;y 是x 的正比例函数的是________.例2 用函数表达式表示下列变化过程中两个变量之间的关系,并指出其中的一次函数、正比例函数.(1)正方形的面积S 随边长x 的变化而变化;_________(2)正方形的周长l 随边长x 的变化而变化;_________(3)当长方形的长为常量a 时,面积S 随宽x 的变化而变化;___________(4)如图,A ,B 两站相距200 km ,一列火车从B 站出发以120 km/h 的速度驶向C 站,火车离A 站的路程y (km )随随行驶时间t (h )变化而变化.____________(四)自我诊断、落实概念 1.高速列车以300 km/h 的速度驶离A 站,列车行驶的路程为y (km ),行驶时间是t (h ).试写出 y 与 t 之间的函数表达式,并判断 y 是否为 t 的一次函数,是否为 t 的正比例函数.2.水池中有水465 m 3,每小时排水15 m 3,排水 t h 后,水池中还有水 y m 3.试写出 y 与 t 之间的函数表达式,并判断 y 是否为 t 的一次函数,是否为 t 的正比例函数.3.一个长方形的长为15 cm ,宽为10 cm .如果将长方形的长减少x cm ,宽不变,那么长方形的面积y (cm 2)与x (cm )之间有怎样的函数表达式?判断 y 是否为 x 的一次函数,是否为x 的正比例函数.(五)拓展延伸、强化概念例3 (1)已知函数y=2x m -1,当m 取什么值时,y 是x 的一次函数?(2)已知函数y=x m 21--1,当m 取什么值时,y 是x 的一次函数?(3)已知函数y =(m +2)x m 1--1,当m 取什么值时,y 是x 的一次函数?(4)已知函数y=x m21 -n,当m,n取什么值时,y是x的一次函数?当m,n取什么值时,y是x的正比例函数?(六)总结归纳、升华概念1.交流对话:(1)对自己说:“有哪些收获?”(2)对同学说:“有哪些提示?”(3)对老师说:“有哪些疑惑?”2.教师小结:(1)一次函数.(2)一次函数与正比例函数的关系.第2课时【学习目标】1.能根据已知条件确定一次函数关系式;2.能利用一次函数关系式求相应的自变量的值以及函数值.【重、难点】重点:运用待定系数法求一次函数关系式.难点:求一次函数关系式中的自变量的取值范围.【新知预习】1.已知函数y=2x-3,当x=-2时,y=____;当y=1时,x=___ .2.某跨江大桥的收费站对过往车辆都要收费,规定大车收费60元,小车收费50元,若某天过往车辆为3 000辆,求所收费用y(元)与小车x(辆)之间的函数关系,及x的取值范围.【导学过程】活动1:一盘蚊香长105 cm,点燃时每小时缩短10 cm.(1)写出蚊香点燃后的长度y(cm)与点燃时间t(h)之间的函数关系式.(2)5 h后蚊香还剩多长?(3)该盘蚊香可以使用多长时间?(4)求t的取值范围.练习:甲、乙两地相距520 km,一辆汽车以80 km/h的速度从甲地开往乙地,行驶了t h.试问:剩余路程s(km)与行驶时间t(h)之间有怎样的函数表达式?求t的取值范围.活动2:在弹性限度内,弹簧的长度y(厘米)是所挂物体的质量x(克)的一次函数,当所挂物体的质量为10克时,弹簧长11厘米;当所挂物体的质量为30克时,弹簧长15厘米.(1)写出y与x之间的函数关系式.(2)求所挂物体的质量为4克时的弹簧的长度.(3)当弹簧长为29厘米时,所挂物体的质量为多少克?想一想:如何用“待定系数法”确定一次函数的表达式?小结:求一次函数表达式的一般步骤:例1 已知y 与x-3 成正比例,当x=4 时,y=3,求y 与x 的函数关系式.变式1 已知y-1 与x 成正比例,当x=2 时,y=-4,求y 与x 的函数关系式.变式2 已知y=y1+y2,其中y1 与x 成正比例,y2 与x-2 成正比例,当x=-1 时,y=2;当x=2 时,y=5,求y 与x 的函数关系式.例2 已知长方形的周长为20 cm.(1)写出长y 与宽x 之间的函数关系式.(2)当长为5 cm 时,宽为多少?(3)求长的取值范围.【课堂反馈】1. 完成教材P146练习.2. 已知函数y=4x+5,当x=-3时,y= ;当y=5时,x= .3. 已知y与4x-1成正比例,当x=3时,y=6,求出y与x的函数关系式.4. 已知一次函数y=kx+b,当x=-4时,y=9;当x=2时,y=-3.(1)求这个函数的函数关系式;(2)当y=5时,求x的值.5. 已知y-3与x+2成正比例,且当x=2时,y=7.(1)写出y与x之间的函数关系式;(2)计算当x=4时,y的值;(3)计算当y=4时,x的值.6.将长为38 cm,宽为5 cm的长方形白纸,按如图的方法粘合在一起,粘合部分白纸为2 cm.(1)求10张白纸粘合后的长度;(2)设x张白纸粘合后的总长为y cm,写出y与x的函数关系式;(3)求x的取值范围.。

苏科版数学八年级上册6.2《一次函数》教学设计1

苏科版数学八年级上册6.2《一次函数》教学设计1

苏科版数学八年级上册6.2《一次函数》教学设计1一. 教材分析苏科版数学八年级上册 6.2《一次函数》是学生在学习了初中数学基础知识后,对函数概念的进一步理解。

本节内容主要让学生掌握一次函数的定义、性质和图像,以及如何运用一次函数解决实际问题。

教材通过丰富的实例和生动的语言,引导学生探究一次函数的本质特征,培养学生的数学思维能力和解决问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了实数、方程、不等式等基础知识,对数学概念有一定的理解能力。

但部分学生对函数概念的理解可能仍存在模糊之处,对一次函数的应用能力和解决实际问题的能力有待提高。

因此,在教学过程中,要关注学生的个体差异,针对不同学生的学习需求进行有针对性的指导。

三. 教学目标1.理解一次函数的定义和性质,掌握一次函数的图像特点。

2.能够运用一次函数解决实际问题,提高学生的数学应用能力。

3.培养学生的数学思维能力和团队合作精神。

四. 教学重难点1.一次函数的定义和性质。

2.一次函数图像的特点。

3.运用一次函数解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入一次函数,让学生感受数学与生活的紧密联系。

2.合作学习法:引导学生分组讨论,共同探究一次函数的性质和图像特点。

3.启发式教学法:教师提问,引导学生思考,激发学生的学习兴趣和探究欲望。

4.反馈评价法:及时了解学生的学习情况,针对性地进行指导。

六. 教学准备1.教学课件:制作一次函数的相关课件,包括图片、动画和实例等。

2.练习题:准备一次函数的相关练习题,包括基础题、应用题和拓展题。

3.教学工具:准备黑板、粉笔、直尺等教学工具。

七. 教学过程1.导入(5分钟)利用生活实例引入一次函数的概念,如“某商品的原价是80元,打8折后的价格是多少?”引导学生思考,激发学生的学习兴趣。

2.呈现(10分钟)展示一次函数的定义和性质,如y=kx+b(k≠0,k、b为常数)。

通过动画和实例,让学生直观地感受一次函数的图像特点,如直线、斜率、截距等。

苏科版数学八年级上册《6.2一次函数》说课稿

苏科版数学八年级上册《6.2一次函数》说课稿

苏科版数学八年级上册《6.2 一次函数》说课稿一. 教材分析苏科版数学八年级上册《6.2 一次函数》这一节主要介绍了什么?一次函数的定义、性质和图象。

通过这一节的学习,学生能够掌握一次函数的基本知识,理解一次函数的图象特征,并能运用一次函数解决实际问题。

在教材中,首先介绍了函数的概念,让学生理解函数是一种数学对应关系。

然后,引入一次函数的定义,让学生了解一次函数的表达方式。

接着,通过实例讲解一次函数的性质,让学生理解一次函数的增减性和比例系数的概念。

最后,讲解一次函数的图象,让学生学会如何绘制一次函数的图象,并能够从图象中获取信息。

二. 学情分析学生在学习这一节内容时,需要具备哪些基础知识和技能?首先,学生需要了解函数的基本概念,知道函数是一种数学对应关系。

其次,学生需要掌握一些基本的代数运算,如解方程、求导数等。

此外,学生还需要具备一定的图形识别能力,能够识别和绘制一次函数的图象。

在学习这一节内容的过程中,学生可能会遇到哪些困难和问题?首先,学生可能对函数的概念不够清晰,难以理解函数的定义和性质。

其次,学生可能对一次函数的表达方式不够熟悉,难以理解和运用一次函数的公式。

此外,学生可能对一次函数的图象不够了解,难以绘制和解读一次函数的图象。

三. 说教学目标通过这一节的学习,我希望学生能够达到哪些目标?首先,我希望学生能够理解一次函数的定义和性质,掌握一次函数的表达方式。

其次,我希望学生能够学会绘制一次函数的图象,并能从图象中获取信息。

最后,我希望学生能够运用一次函数解决实际问题,提高学生的数学应用能力。

四. 说教学重难点在这一节内容中,我认为哪些部分是学生的难点和重点?首先,函数的概念和一次函数的定义是学生的重点和难点。

其次,一次函数的性质和图象是学生的重点和难点。

最后,运用一次函数解决实际问题是学生的重点和难点。

五. 说教学方法与手段在这一节的教学中,我打算采用哪些方法和手段进行教学?首先,我打算采用讲授法,向学生讲解一次函数的定义、性质和图象。

苏科版版八年级上册数学课件6.2__一次函数(上课用)


例1
写出下列各题中y与 x之间的关系式,并判
断:y是否为x的一次函数?是否为正比例函数? (1)汽车以60千米/时的速度匀速行驶,行驶路 程为y(千米)与行驶时间x(时)之间的关系;
解:由路程=速度×时间,得
y=60x ,y是x的 一次函数,也是x的正比
例函数.
(2)圆的面积y (厘米2 )与它的半径x ( 厘米) 之间的关系.
入低于1600元的部分不收税:月收入超过1600元但低于
他应缴个人工资、薪金所得税为(1960-1600)×5%=18 (元). (1)当月收入大于1600元而又小于2100元时,写出应 缴所得税y(元)与月收入x(元) 之间的关系式. 解:当月收入大于1600元而小于2100时, y=0.05×(x-1600).
(3)某城市的市内电话的月收费额y(单位:元)包括:月租费22元,拔打电话x分 的计时费(按0.1元/分收取);
y=0.1x+22 (4)把一个长10cm、宽5cm的长方形的长减少x cm,宽不变,长方形的面积y(单位: 平方厘米)随x的值而变化。 y=-5x+50
(1)y=-6x+5; (3)G=h-105; (5)y=-5x+50.
解:由圆的面积公式,得y= πx2, y不是x的正比 例函数,也不是x的一次函数.
(3)一棵树现在高5 0 厘米,每个月长高2 厘米, x 月后这棵树的高度为y 厘米. 解:这棵树每月长高2厘米,x个月长高了2x 厘米,因而y=50+2x,y是x的一次函数,但不是x 的正比例函数.
学以致用
1. 我国现行个人工资、薪金所得税征收办法规定:月收
(5)y=-8x
2.下列说法不正确的是( D )
(A)一次函数不一定是正比例函数

苏科版-数学-八年级上册-6.2一次函数(2)教案

一、教学目标:1、能根据所给条件写出一次函数的关系式。

2、进一步由函数中的自变量求出相应的函数值。

3、把实际问题抽象为数字问题,也能把所学知识运用于实际,让学生认识数学与人类生活的密切联系及对人类历史发展的作用。

二、重点难点:根据所给息确定一次函数的表达式。

三、教学过程:导入:在上节课中我们学习了一次函数图象的定义,在给定表达式的前提下,我们可以说出它的有关性质,如果给你信息,你能否求出函数的表达式呢?这将是本节课我们要研究的问题。

课前:1、做一做、一盘蚊香长105cm,点然时每小时缩短10cm.(1)写出蚊香点然后的长度y(cm)与点然时间t(h)之间的函数关系式;(2)该盘蚊香可以使用多长时间?2、想一想(1)确定正比例函数的表达式需要几个条件?(2)确定一次函数的表达式呢?小组交流讨论:例1:在弹性限度内,弹簧的长度y(厘米)是所挂物体的质量x(千克)的一次函数、当所挂物体的质量为1千克时,弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米。

写出y与x之间的关系式,并求出所挂物体的质量为4千克时的弹簧的长度。

小结:求一次函数表达式的步骤反馈:1、若y与x成正比例,当x=-2时,y=4,则这个函数关系式为_____________.2、为了保护学生的视力,课桌椅的高度都是按一定的关系配套设计的.研究表明:假设课桌的高度为ycm,椅子的高度(不含靠背)为xcm,则y应是x的一次函数.下表列出两套符合条件的课桌椅的高度:椅子高度x(cm)桌的高度y(cm)第一套40.0 75.0第二套 37.0 70.2(1)请确定y与x的函数关系式(不要求写出x的取值范围);(2)现有一把高42.0cm的椅子和一张高78.2m的课桌,它们是否配套?说明理由.课堂小结:求一次函数表达式的步骤(1)设函数表达式y=kx+b(2)根据已知条件列出关于k,b的方程。

(3)解方程。

(4)把求出的k,b值代回到表达式中即可四、作业布置:做《补充习题》上的相应练习板书:一次函数(2)创设情境例题板演………………………………概念练习……………………………………五、课后反思:。

苏科版数学八年级上册教学设计《6-6一次函数、一元一次方程和一元一次不等式》

苏科版数学八年级上册教学设计《6-6一次函数、一元一次方程和一元一次不等式》一. 教材分析《苏科版数学八年级上册》第六章第六节主要介绍了“一次函数、一元一次方程和一元一次不等式”。

这部分内容是学生学习数学的基础知识,对于培养学生的逻辑思维和解决问题的能力具有重要意义。

通过本节课的学习,学生需要掌握一次函数的定义、性质,以及一元一次方程和一元一次不等式的解法。

二. 学情分析学生在学习本节课之前,已经掌握了实数、代数式、方程等基础知识,对于解决实际问题有一定的能力。

但部分学生在理解一次函数、一元一次方程和一元一次不等式之间的关系方面可能存在困难。

因此,在教学过程中,需要关注这部分学生的学习需求,通过实例讲解、小组讨论等方式,帮助他们理解和掌握知识点。

三. 教学目标1.知识与技能:理解一次函数的定义和性质,掌握一元一次方程和一元一次不等式的解法。

2.过程与方法:通过实例分析,培养学生解决实际问题的能力,提高学生的逻辑思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神,增强学生面对困难的自信心。

四. 教学重难点1.一次函数的定义和性质。

2.一元一次方程和一元一次不等式的解法。

3.一次函数、一元一次方程和一元一次不等式之间的关系。

五. 教学方法1.实例分析:通过具体例子,让学生了解一次函数、一元一次方程和一元一次不等式的应用,提高学生的学习兴趣。

2.小组讨论:分组讨论,培养学生的团队协作能力,提高学生的逻辑思维能力。

3.问题引导:引导学生提出问题,培养学生解决问题的能力。

4.板书设计:清晰的板书,帮助学生理解和记忆知识点。

六. 教学准备1.教学PPT:制作精美的PPT,展示一次函数、一元一次方程和一元一次不等式的相关知识点。

2.实例素材:准备一些实际问题,用于引导学生运用一次函数、一元一次方程和一元一次不等式解决问题。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何用数学知识解决问题,从而引出一次函数、一元一次方程和一元一次不等式的概念。

苏科版八年级数学上册第六章第2节《一次函数》第1课时导学案

淮安市南陈集中学八年级数学导学案主备人:孙艳玲审核人:朱友埝6.2 一次函数1 导学案日期:_______ 班级:_______ 姓名: _______ 组别:_______ 评价:_______【学习目标】1.理解一次函数和正比例函数的概念,以及它们之间的关系.2.会判断给定的函数是否是一次函数,会写出简单的实际问题的一次函数表达式.【学习重难点】理解一次函数、正比例函数的表达式及相互关系.【自主学习】温故:分别写出下列函数表达式:1、给汽车加油的加油枪流量为25L/min.如果加油前油箱里没有油,那么在加油过程中,油箱里的油量y(L)与加油时间x(min)之间的函数表达式是 .2、小汽车的行使速度为100km/h,那么小汽车的行使的路程y(km)与行使的时间t(h) 之间的函数表达式是 .3、汽车油箱中有油40L,如果该汽车行驶10 km平均耗油1 L,那么油箱中的余油量Q(L)与行驶的路程S (km)的函数表达式是.4、正方形面积y与边长x之间的函数表达式是.5、矩形的面积y比边长为x的正方形面积的2倍还多5,那么y与x 之间的函数表达式是。

【自主探究】(认真看课本第144页和155页交流部分)请你仔细观察上面5个函数表达式的特征,完成下面的填空1、一次函数:一般地,形如y= (k、b为常数,且)的函数叫做一次函数,其中是自变量,是的函数.3、说说你对k与b的认识?特别地:当b= 时,函数(), 称y是x的正比例函数.4、在下面的方框内写几个一次函数的表达式(5至8个即可)【课中交流】1、下列函数中,y是x的一次函数的是()①y=x-6;②y=x 2;③y=8x ;④y=7-x A 、①②③ B 、①③④ C 、①②③④ D 、②③④2、小明准备将平时的零用钱节约一些储存起来,他已有20元,从现在开始,每周存入5元,那么小明的存款y 与从现在开始的周数x 的关系为 . 是 函数 。

3、已知函数y=2mx+3-m ,要使y 是x 的正比例函数,则m= ,该函数表达式是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章第二节《一次函数》
教学内容:一次函数
教学目标:1、理解一次函数和正比例函数的概念,能根据所给条件写出简单的一次函数表达式。

2、经历一般规律的探索过程、发展学生的抽象思维能力。

3、经历利用一次函数解决实际问题的过程,发展学生的数学应用能力。

教学重点:
理解一次函数和正比例函数的概念.
教学难点
能根据所给条件写出简单的一次函数表达式,发展学生的抽象思维能力.
教学过程:
一、创设情境,新课导入
有关函数问题在我们日常生活中随处可见,如弹簧秤有自然长度,在弹性限度内,随着所挂物体的重量的增加,弹簧的长度相应的会拉长,那么所挂物体的重量与弹簧的长度之间就存在某种关系,究竟是什么样的关系,请看:
某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加0.5厘米。

(1)计算所挂物体的质量分别为1千克、2千克、3千克、4千克、5千克时弹簧的长度,并填入下表:
(2)你能写出x与y之间的关系式吗?
2、某辆汽车油箱中原有汽油100升,汽车每行驶50千克耗油9升。

(1)完成下表:
(2)你能写出x与y之间的关系吗?
目的:从学生比较熟悉的情景(弹簧的长度、汽车油箱中的余油量)出发,便于学生从情境中直接列出相应的代数表达式,在情境中设计了一个填表活动,一方面让学生感受到x的变化
引起y 的变化情况,另一方面通过对这个变化情况的观察,帮助学生获得关于变化规律的猜想,通过对一般规律的探索过程,从实际问题中抽象出一次函数和正比例函数的概念. 二、探究新知,理解概念 1、一次函数,正比例函数的概念
上面的两个函数关系式为y=0.5x+3,y=100-0.18x ,都是左边是因变量y ,右边是含自变量x 的代数式。

并且自变量和因变量的指数都是一次。

若两个变量x,y 间的关系式可以表示成y=kx+b (k ,b 为常数k ≠0)的形式,则称y 是x 的一次函数(x 为自变量,y 为因变量)。

特别地,当b=0时,称y 是x 的正比例函数。

2、例题讲解
例1:下列函数中,y 是x 的一次函数的是( ) ①y=x-6;②y=
x 2;③y=8
x
;④y=7-x A 、①②③ B 、①③④ C 、①②③④ D 、②③④
例2:写出下列各题中x 与y 之间的关系式,并判断,y 是否为x 的一次函数?是否为正比例函数?
①汽车以60千米/时的速度匀速行驶,行驶路程中y (千米)与行驶时间x (时)之间的关系式;
②圆的面积y (厘米2
)与它的半径x (厘米)之间的关系;
③一棵树现在高50厘米,每个月长高2厘米,x 月后这棵树的高度为y (厘米) [(1)y=60x ,y 是x 的一次函数,也是x 的正比例函数;(2)y=πx 2
,y 不是x 的正比例函数,也不是x 的一次函数;(3)y=50+2x ,y 是x 的一次函数,但不是x 的正比例函数]。

例3:我国现行个人工资薪金税征收办法规定:月收入低于800元但低于1300元的部分征收5%的所得税……如某人某月收入1160元,他应缴个人工资薪金所得税为(1160-800)×5%=18(元)
①当月收入大于800元而又小于1300元时,写出应缴所得税y (元)与月收入x (元)之间的关系式。

②某人某月收入为960元,他应缴所得税多少元?
③如果某人本月缴所得税19.2元,那么此人本月工资薪金是多少元? 分析:(1)当月收入大于800元而小于1300元时, y=0.05×(x-800);
(2)当x=960时,y=0.05×(960-800)=8(元);
(3)当x=1300时,y=0.05×(1300-800)=25(元),25>19.2,因此本月工资少于1300
元,设此人本月工资是x元,则0.05×(x-800)=19.2,x=1184。

目的:通过丰富的现实背景的例题,进一步理解一次函数和正比例函数的概念,根据所给的条件写出简单的一次函数的表达式,让学生体会数学的广泛应用,发展学生的抽象思维能力.充分加强数学与现实的联系,促进学生新的认知结构的建立和数学应用能力的发展.
三、课堂练习,巩固提高
1.根据下表写出,x y之间的一个关系式.
2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。

设每户每月用水量为x米3,应缴水费y元。

(1)写出每月用水量不超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数。

(2)已
知某户5月份的用水量为8米3,求该用户5月份的水费。

目的:对本节知识进行巩固练习,进一步加强对一次函数和正比例函数概念的理解
四、课堂小结:
1、一次函数、正比例函数的概念及关系。

2、能根据已知简单信息,写出一次函数的表达式。

五、布置作业:
P 186习题6.2知识技能1和问题解决2。

相关文档
最新文档