湖北省武汉市江汉区中考数学三模试卷(含解析)【含解析】
精选武汉市汉阳区中考数学三模试卷有详细答案

湖北省武汉市汉阳区中考数学三模试卷一、选择题(共有10小题,每小题3分,共30分) 1.最接近3的整数是( )A .0B .1C .2D .3 2.分式21-x 无意义,则x 的取值范围是( )A .x >2B .x =2C .x ≠2D .x <2 3.若(x +2)(x -1)=x 2+mx +n ,则m +n 的值为( )A .1B .-2C .-1D .2 4.下列说法正确的是( )A .掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件B .甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差是S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定C .“明天降雨的概率为21”,表示明天有半天都在下雨D .了解一批电视机的寿命,适合用全面调查的方式 5.下列运算正确的是( )A .3a +2a =6aB .a 2+a 3=a 5C .a 6÷a 2=a 4D .a 2·a 4=a 8 6.如图,在平面直角坐标系中,直线x y 3=经过点A ,作AB ⊥x 轴于点B ,将△ABO 绕点B 逆时针旋转60°得到△CBD ,若点B 的坐标为(2,0),则点C 的坐标为( ) A .(-1,3)B .(-2,3)C .(-3,1)D .(-3,2)7.如图所示的几何体的俯视图是( )DC BA正面8.若干名工人某天生产同一种零件,生产的零件数整理成条形图(如图所示),设他们生产零件的平均数为a ,中位数为b ,众数为c ,则有( ) A .b >a >c B .c >a >b C .a >b >c D .b >c >a 9.已知21+=x xa ,2112+=a a a , (2)11+=--n n n a a a ,其中n 是正整数,则a 8的值为( )A .1615+x xB .128127+x xC .256255+x xD .512511+x x10.如图,C 是以AB 为直径的半圆O 上一点,连接AC 、BC ,分别以AC 、BC 为边向外作正方形ACDE 、BCFG ,DE 、FC 、弧AC 、弧BC 的中点分别是M 、N 、P 、Q .若MP +NQ =14,AC +BC =18,则AB 的长为( )A .29B .790 C .13 D .16二、填空题(共6个小题,每小题3分,共18分) 11.计算2-(-5)的结果为____________12.现在网上购物越来越多的成为人们的一种消费方式,在2015年的“双11”促销活动中天猫和淘宝的支付交易额突破57000 000 000元,将数字57000 000 000元用科学计数法表示为______13.用2、3、4三个数字排成一个三位数,则排出的数是偶数的概率为__________ 14.如图,AB ∥CD ,∠CDE =116°,GF 交∠DEB 的平分线EF 于点F ,∠AGF =130°,则∠F =__________15.如图,点O 是四边形ABCD 对角线AC 、BD 的交点,∠BAD 与∠ACB 互补,53 OBOD ,AD =6,AB =7,AC =5,则BC 的长为__________16.定义符号min {a ,b }的含义为:当a ≥b 时,min {a ,b }=b .当a <b 时,min {a ,b }=a .若当-2≤x ≤3,min {x 2-2x -15,m (x +1)}=x 2-2x -15,则实数m 的取值范围是________三、解答题(共8小题,共72分) 17.(本题8分)解方程:5x -2=3(x -4)18.(本题8分)如图,AC 和BD 相交于点O ,OA =OC ,0B =OD ,求证:AB ∥CD19.(本题8分)某校组织学生书法比赛,对参赛作品按A 、B 、C 、D 四个等级进行了评定.现随机抽取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下: 根据上述信息完成下列问题:(1) 求这次抽取的样本容量(2) 请在图②中把条形统计图补充完整(3) 已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B 级以上(即A 级和B 级)有多少份?20.(本题8分)如图,反比例函数xy 3 的图像与一次函数y =x +2的图像交于A 、B 两点.(1) 当x 取何值时,反比例函数的值小于一次函数的值 (2) 在双曲线上找一点C ,使∠BAC 为直角,求点C 的坐标21.(本题8分)如图,AB 是⊙O 的直径,PA 、PC 分别是⊙O 的切线,切点分别为A 、C(1) 求证:BC ∥OP(2) 若AB =AP ,求tan ∠BPC 的值22.(本题10分)某公司经过市场调查发现,该公司生产的某商品在第x 天的售价(1≤x≤100)为(x+30)元/件,而该商品每天的销量满足关系式y=200-2x.如果该商品第15天的售价按8折出售,仍然可以获得20%的利润(1) 求该公司生产每件商品的成本为多少元(2) 问销售该商品第几天时,每天的利润最大?最大利润是多少?(3) 该公司每天需要控制人工、水电和房租支出共计a元,若考虑这一因素后公司对最大利润要控制在4000元至4500元之间(包含4000和4500),且保证至少有90天赢利,请直接写出a的取值范围23.(本题10分)定义:如图1,点M、N把线段AB分割成AM,MN和BN,若以AM、MN、BN为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点(1) 已知点M、N是线段AB的勾股分割点,若AM=3,MN=4直接写出BN的长(2) 如图2,在△ABC中,FG∥BC,点D、E是线段BC的勾股分割点,且EC>DE ≥BD,连接AD、AE分别交FG于点M,N,求证:点M,N是线段FG的勾股分割点(3) 已知点C是线段AB上的一定点,其位置如图3所示,请在BC上画一点D,使C、D是线段AB的勾股分割点(要求简单说明作图过程,保留作图痕迹,画出一种情形即可)24.(本题12分)如图1,在直角坐标系中,抛物线C :y =21(x -3)2+3与直线y =kx +b (k ≠0)相交于M 、N 两点,点P (3,t )是x 轴下方一点,且直线x =3平分∠MPN(1) 探究与猜想:当t =-1时① 探究:取点M (1,5)时,点N 的坐标为(7,11),直接写出直线MN 的解析式_____________取点(6,215),直接写出直线MN 的解析式为________________________② 猜想:对于P (3,t ),我们猜想直线MN 必经过一个定点Q ,其坐标为______________,并证明你的猜想(2) 应用 如图2,当t =-3时,直线MN 经过原点,在抛物线上存在一点E ,使S △EMN =21S △PMN ,并直接写出所有符合条件的E 点的坐标汉阳区中考模拟数学试题答案一、选择题(共10小题,每小题3分,共30分) 题号 12 3 4 5 6 7 8 9 10答案C B C B C A B A C C二、填空题(共6小题,每小题3分,共18分) 11, 7; 5.7×1010; 13. 32; 14.8º; 15.750; 16.73≤≤-m 9.提示:432+=x xa ,873+=x x a10.提示:OI +OH =9又MH +NI =AC +BC =18 ∴PH +QI =18-14=4∴AB =OP +OQ =(OI +OH )+(PH +QI )=9+4=1315.提示:过点O 作OM ∥AD 交AB 于M∴35==OD OB AMBM∴821783=⨯=AM ,835785=⨯=BM 又ADOM BDBO =∴415=OM∵∠BADO +∠MA =180°,∠BAD +∠ACB =180° ∴∠OMA =∠ACB∴△AMO ∽△ACB ∴AMACOM BC =∴750=BC三、解答下列各题(本大题共8小题,共72分) 17.x=-5.…………8分 18略.…………8分 19.(1)120;…………3分 (2)略:…………5分 (3)450.…………8分20.(1)由⎪⎩⎪⎨⎧=+=x y x y 32,解得A (1,3),B (-3,-1).………2分 当反比例函数的值小于一次函数的值-3<x <0或x >1;…4分(2)如图,过点A ,B ,C 分别作坐标轴的平行线,分别交于D ,E .∵AD =BD ,∴△ADB 为等腰直角三角形,∵∠BAC=90º.∴△ACE 为等腰直角三角形 设AE =CE =a ,则C (1+a ,3-a ),∵C (1+a ,3-a )在xy 3=上,∴(1+a )(3-a )=3, 解得a =2, a =0(舍去) ∴C (3,1).…………8分21. (1)证明:连结OC 交PB 于点D , ∵PC 是⊙O 的切线,∴∠PCO =∠PAO =90°, 又∵OC =OA ,OP =OP∴AOP ∆≌COP ∆,∴∠AOP =∠COP第20题图∵OB =OC ,∴∠ABC =∠BCO . 又∵∠AOP +∠COP =∠ABC +∠BCO , ∴∠BCO =∠COP ,∴BC ∥OP .…………3分 (2)∵AB =AP ,∴AP =2OA,∵OP ⊥AC ,∴tan ∠APO =tan ∠OAE =21.设OE =x ,则AE =2x ,PE =4x ,OA =OC =5x ,PC=25x . ∵OE ∥BC ,∴BC=2x ∵52==OP BC OD CD ,∴=OC CD 72 ∴CD =x 752 ∴tan ∠BPC=71=PC CD .…………8分 22.(1)设该公司生产每件商品的成本为m 元,则(1+20%)·m=0.8×(15+30)解得m=30,即该公司生产每件商品的成本为30元.…………3分 (2)设销售该商品第x 天时,当天的利润为w 元,则 ()()()5000502303022002+--=-+-=x x x w所以当x =50,w 有最大值,且最大值w=5000.即销售该商品第50天时,每天的利润最大,最大利润5000元;…………7分 (3)500≤a <950.…………10分 23.(1)解:当MN 为最大线段时,∵点M ,N 是线段AB 的勾股分割点, ∴791622=-=-=AM MN BN . 当BN 为最大线段时,∵点M ,N 是线段AB 的勾股分割点, ∴591622=+=+=AM MN BN .综上,7=BN 或5. …………2分(2)证明:∵FG BC ∥.∴k CEGNNE AN DE MN MD AM BD FM =====. ∴FM =kBD ,MN =kDE ,GN =kCE .∵点D ,E 是线段BC 的勾股分割点,且EC >DE ≥BD , ∴222DE BD EC += ∴222222k1k 1k 1MN FM GN +=.. ∴222MN FM NG +=.∴点M ,N 是线段FG 的勾股分割点. …………7分如图,过点C 作AB 的垂线a ,在a 上取点G ,取CG =AC ,连接BG ,作BG 的垂直平分线交BC 于点D .点D 就是所求的点.…………10分 (3)24(1)①4+=x y …………2分 21361+=x y …………4分 ②Q(3,6-t)…………5分证明:设直线MN 的解析式:b kx y +=(k ≠0),与二次函数联立得⎪⎩⎪⎨⎧+-=+=3)3212x y bkx y (,得()0215622=-++-b x k xb k x x xx n m nm215.,62-=+=+过点M,N 分别作直线X=3的对称轴,由tan ∠MPQ= tan ∠NPQ,得tt yxy x NN MM--=--33,化简得0622122=---k kt kb k∵k ≠0第24题图3........∴036=---k t b∴k t b 36--=∴k t kx y 36--+==t x k -+-6)3(∴Q (3,6-t )…………9分(2)E 1(3,3),)21,9(2E ,E 3()33324,336--,)33324,336(4++E …12分。
湖北省武汉市江汉区2024届高三上学期7月新起点摸底考试数学试题(含解析)

湖北省武汉市江汉区2024届高三上学期7月新起点摸底考试数学试题学校:___________姓名:___________班级:___________考号:___________二、多选题9.武汉市某七天每天的最高气温分别是38,36,35,37,39,37,35(单位℃),则三、填空题四、解答题(1)求证:1A C CD ⊥;(2)求二面角1B A C D --的正弦值.19.已知n S 是数列{}n a 的前n 项和,2n n S na =,23a =.(1)求数列{}n a 的通项公式;参考答案:16.8【分析】先设出直线l 的方程,联立抛物线方程,得到两根之和,两根之积,表达出2121AB m y y =+⋅-,221BC m y =+⋅,再由正弦定理得到故答案为:8【点睛】方法点睛:解三角形中,当条件中有角平分线时,可利用正弦定理得到角平分线的性质,将角的关系转化为边的比例关系,再进行求解17.(1)πA=3(2)639+或639-19.(1)3(1)n a n =-(2)22335,62335204,62n n n n T n n n ⎧-+≤⎪⎪=⎨-+⎪>⎪⎩【分析】(1)利用n a 与n S 的关系,结合累乘法即可求出数列不妨设()11,A x y 、()22,B x y ,由图可知,直线AB 的斜率存在,设直线AB 的方程为y kx m =+,因为点()2,2D -,则2k -联立2244y kx m x y =+⎧⎨+=⎩可得()222418440k x kmx m +++-=,()()222264164110k m k m ∆=-+->,可得2241m k <+,即解得38k <-,()1216180k k km x x ⎧++=-=->⎪【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.。
汉阳区近年年中考数学三模试卷(含解析)(2021年整理)

湖北省武汉市汉阳区2016年中考数学三模试卷(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(湖北省武汉市汉阳区2016年中考数学三模试卷(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为湖北省武汉市汉阳区2016年中考数学三模试卷(含解析)的全部内容。
2016年湖北省武汉市汉阳区中考数学三模试卷一、选择题(共有10小题,每小题3分,共30分)1.最接近的整数是()A.0 B.1 C.2 D.32.分式无意义,则x的取值范围是()A.x>2 B.x=2 C.x≠2 D.x<23.若(x+2)(x﹣1)=x2+mx+n,则m+n=()A.1 B.﹣2 C.﹣1 D.24.下列说法正确的是( )A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0。
4,S乙2=0。
6,则甲的射击成绩较稳定C.“明天降雨的概率为”,表示明天有半天都在降雨D.了解一批电视机的使用寿命,适合用普查的方式5.下列运算正确的是()A.3a+2a=6a B.a2+a3=a5C.a6÷a2=a4D.a2•a4=a86.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B 逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)7.如图所示的几何体的俯视图是()A.B. C.D.8.若干名工人某天生产同一种零件,生产的零件数整理成条形图(如图所示).设他们生产零件的平均数为a,中位数为b,众数为c,则有()A.b>a>c B.c>a>b C.a>b>c D.b>c>a9.已知a1=,a2=,…a n=,其中n是正整数,则a8的值为()A. B.C.D.10.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG.DE,FG,的中点分别是M,N,P,Q.若MP+NQ=14,AC+BC=18,则AB的长为()A.B.C.13 D.16二、填空题(共6个小题,每小题3分,共18分)11.计算2﹣(﹣5)的结果为.12.现在网购已成为人们的一种消费方式,在2015年的“双11”促销活动中天猫和淘宝的支付交易额突破57000000000元,将数字57000000000用科学记数法表示为元.13.用2,3,4三个数字排成一个三位数,则排出的数是偶数的概率为.14.如图,AB∥CD,∠CDE=116°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F= .15.如图,点O是四边形ABCD对角线AC、BD的交点,∠BAD与∠ACB互补, =,AD=6,AB=7,AC=5,则BC的长为.16.定义符号min{a,b}的含义为:当a≥b时,min{a,b}=b.当a<b时,min{a,b}=a.若当﹣2≤x≤3,min{x2﹣2x﹣15,m(x+1)}=x2﹣2x﹣15,则实数m的取值范围是.三、解答题(共8小题,共72分)17.解方程:5x﹣2=3(x﹣4)18.如图,AC和BD相交于点O,OA=OC,OB=OD,求证:AB∥CD.19.某校组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定.现随机抽取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题:(1)求这次抽取的样本的容量;(2)请在图②中把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B 级)有多少份?20.如图,反比例函数y=的图象与一次函数y=x+2的图象交于A、B两点.(1)当x取何值时,反比例函数的值小于一次函数的值.(2)在双曲线上找一点C,使∠BAC为直角,求点C的坐标.21.如图,AB是⊙O的直径,PA,PC分别是⊙O的切线,切点分别为A,C,连接BC、BP、OP.(1)求证:BC∥OP;(2)若AB=AP,求tan∠BPC的值.22.某公司经过市场调查发现,该公司生产的某商品在第x天的售价(1≤x≤100)为(x+30)元/件,而该商品每天的销量满足关系式y=200﹣2x.如果该商品第15天的售价按8折出售,仍然可以获得20%的利润(1)求该公司生产每件商品的成本为多少元(2)问销售该商品第几天时,每天的利润最大?最大利润是多少?(3)该公司每天需要控制人工、水电和房租支出共计a元,若考虑这一因素后公司对最大利润要控制在4000元至4500元之间(包含4000和4500),且保证至少有90天赢利,请直接写出a 的取值范围.23.定义:如图1,点M、N把线段AB分割成AM,MN和BN,若以AM、MN、BN为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点(1)已知点M、N是线段AB的勾股分割点,若AM=3,MN=4直接写出BN的长;(2)如图2,在△ABC中,FG∥BC,点D、E是线段BC的勾股分割点,且EC>DE≥BD,连接AD、AE分别交FG于点M,N,求证:点M,N是线段FG的勾股分割点;(3)已知点C是线段AB上的一定点,其位置如图3所示,请在BC上画一点D,使C、D是线段AB的勾股分割点(要求简单说明作图过程,保留作图痕迹,画出一种情形即可)24.如图1,在直角坐标系中,抛物线C:y=(x﹣3)2+3与直线y=kx+b(k≠0)相交于M、N 两点,点P(3,t)是x轴下方一点,且直线x=3平分∠MPN(1)探究与猜想:当t=﹣1时①探究:取点M(1,5)时,点N的坐标为(7,11),直接写出直线MN的解析式;取点(6,),直接写出直线MN的解析式为;②猜想:对于P(3,t),我们猜想直线MN必经过一个定点Q,其坐标为,并证明你的猜想;(2)应用如图2,当t=﹣3时,直线MN经过原点,在抛物线上存在一点E,使S△EMN=S△PMN,并直接写出所有符合条件的E点的坐标.2016年湖北省武汉市汉阳区中考数学三模试卷参考答案与试题解析一、选择题(共有10小题,每小题3分,共30分)1.最接近的整数是()A.0 B.1 C.2 D.3【考点】估算无理数的大小.【分析】根据的近似值,判断与最接近的整数.【解答】解:∵≈1。
中考数学模试试题(3)含答案解析

中考数学模试卷一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)4的倒数的相反数是()A.﹣4 B.4 C.D.2.(3分)提出了未来5年“精准扶贫”的构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为()A.1.17×106B.1.17×107C.1.17×108D.11.7×1063.(3分)在一次数学测试中,某学校小组6名同学的成绩(单位:分)分别为65,82,86,82,76,95,关于这组数据,下列说法错误的是()A.众数是82 B.中位数是82 C.方差8.4 D.平均数是814.(3分)如图,若要添加一条线段,使之既是轴对称图形又是中心对称图形,正确的添加位置是()A.B.C.D.5.(3分)下列运算正确的是()A.a6+a3=a9 B.a2•a3=a6 C.(2a)3=8a3D.(a﹣b)2=a2﹣b26.(3分)如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么既可以堵住方形空洞,又可以堵住圆形空洞的几何体是()A. B.C.D.7.(3分)如图,直线l1∥l2,且分别与△ABC的两边AB、AC相交,若∠A=45°,∠1=65°,则∠2的度数为()A.45°B.65°C.70°D.110°8.(3分)如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm得到线段EF,点E、F分别落在边AB、BC上,则△EBF 的周长是()cm.A.7 B.11 C.13 D.169.(3分)不等式组的解集为x<2,则k的取值范围为()A.k>1 B.k<1 C.k≥1 D.k≤110.(3分)如图,分别延长圆内接四边形ABDE的两组对边,延长线相交于点F、C,若∠F=27°,∠A=53°,则∠C的度数为()A.30°B.43°C.47°D.53°11.(3分)二次函数y=ax2+bx+c图象上部分点的坐标满足表格:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的顶点坐标为()A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)12.(3分)已知点A(﹣1,1),B(1,1),C(2,4)在同一个函数图象上,这个函数图象可能是()A.B.C.D.13.(3分)如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG,DE和FG相交于点O.设AB=a,CG=b(a>b).下列结论:①△BCG≌△DCE;②BG⊥DE;③=;④(a﹣b)2•S△EFO=b2•S△DGO.其中结论正确的个数是()A.4个 B.3个 C.2个 D.1个14.(3分)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)分解因式:a2b+2ab2+b3=.16.(3分)在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外完全相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个红球的概率为.17.(3分)如图,在Rt△ABC中,∠BCA=90°,∠BAC=30°,BC=2,将Rt△ABC 绕A点顺时针旋转90°得到Rt△ADE,则BC扫过的面积为.18.(3分)如图,已知点A(1,0),B(0,2),以AB为边在第一象限内作正方形ABCD,直线CD与y轴交于点G,再以DG为边在第一象限内作正方形DEFG,若反比例函数y=的图象经过点E,则k的值是.19.(3分)规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是.三、解答题(本大题共7小题,共计63分)20.(6分)+()﹣1﹣﹣|﹣2|21.(7分)某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为,扇形统计图中A类所对的圆心角是度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?22.(7分)如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C的俯角为60°,热气球与高楼的水平距离AD为20m,求这栋楼的高度.(结果保留根号)23.(9分)如图,⊙O是△ABC的外接圆,AC为直径,=,BE⊥DC交DC 的延长线于点E.(1)求证:∠1=∠BCE;(2)求证:BE是⊙O的切线;(3)若EC=1,CD=3,求cos∠DBA.24.(10分)甲、乙两辆汽车沿同一路线赶赴出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时),图中折线OABC、线段DE分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数关系对应的图象(线段AB表示甲出发不足2小时因故停车检修),请根据图象所提供的信息,解决如下问题:(1)求乙车所行路程y与时间x的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)25.(11分)(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB 上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.26.(13分)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求△ABC的面积;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)1.【考点】17:倒数;14:相反数.【分析】先求出4的倒数,再根据相反数即可解答.【解答】解:4的倒数是,的相反数﹣,故选:C.【点评】本题考查了倒数和相反数,解决本题的关键是熟记相反数,倒数的定义.2.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:11700000用科学记数法表示为1.17×107,故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【考点】W7:方差;W1:算术平均数;W4:中位数;W5:众数.【分析】根据方差、中位数、众数及平均数的定义,结合数据进行分析即可.【解答】解:将数据重新排列为65、76、82、82、86、95,A、数据的众数为82,此选项正确;B、数据的中位数为=82,此选项正确;C、数据的平均数为=81,所以方差为×[(65﹣81)2+(76﹣81)2+2×(82﹣81)2+(86﹣81)2+(95﹣81)2]=84,此选项错误;D、由C选项知此选项正确;故选:C.【点评】本题考查了众数、中位数、平均数、方差,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数据.4.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.5.【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法;4C:完全平方公式.【分析】根据合并同类项法则、同底数幂的乘法法则、积的乘方与完全平方公式逐一计算可得.【解答】解:A、a6与a3不是同类项,不能合并,此选项错误;B、a2•a3=a5,此选项错误;C、(2a)3=8a3,此选项正确;D、(a﹣b)2=a2﹣2ab+b2,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握合并同类项法则、同底数幂的乘法法则、积的乘方与完全平方公式.6.【考点】U1:简单几何体的三视图.【分析】根据从正面看得到的图形是主视图,从上边看得到的图形是俯视图,可得答案.【解答】解:圆柱从上边看是一个圆,从正面看是一个矩形,既可以堵住方形空洞,又可以堵住圆形空洞,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从上边看得到的图形是俯视图.7.【考点】JA:平行线的性质.【分析】根据平行线的性质求出∠AEF,根据三角形内角和定理求出∠AFE,即可得出答案.【解答】解:如图,∵直线l1∥l2,∠1=65°,∴∠AEF=∠1=65°,∵∠A=45°,∴∠2=∠AFE=180°﹣∠A﹣∠AEF=70°,故选:C.【点评】本题考查了平行线的性质,三角形的内角和定理,对顶角相等的应用,解此题的关键是求出∠AEF的度数,注意:两直线平行,同位角相等.8.【考点】Q2:平移的性质;KH:等腰三角形的性质.【分析】直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案.【解答】解:∵将线段DC沿着CB的方向平移7cm得到线段EF,∴EF=DC=4cm,FC=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周长为:4+4+5=13(cm).故选:C.【点评】此题主要考查了平移的性质,根据题意得出BE的长是解题关键.9.【考点】CB:解一元一次不等式组.【分析】求出每个不等式的解集,根据已知得出关于k的不等式,求出不等式的解集即可.【解答】解:解不等式组,得.∵不等式组的解集为x<2,∴k+1≥2,解得k≥1.故选:C.【点评】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集和已知得出关于k的不等式,难度适中.10.【考点】M6:圆内接四边形的性质.【分析】先根据三角形外角性质∠CBD=∠A+∠F=80°,根据圆内接四边形的性质得到∠A+∠BDE=180°,求得∠BDE=180°﹣53°=127°,根据三角形的外角的性质即可得到结论.【解答】解:∵∠A=53°,∠F=27°,∴∠CBD=∠A+∠F=80°,∵∠A+∠BDE=180°,∴∠BDE=180°﹣53°=127°,∵∠BDE=∠C+∠CBD,∴∠C=127°﹣80°=47°.故选:C.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补;圆内接四边形的任意一个外角等于它的内对角.也考查了三角形外角性质.11.【考点】H5:二次函数图象上点的坐标特征.【分析】根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.【解答】解:∵x=﹣3和﹣1时的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=﹣2,∴顶点坐标为(﹣2,﹣2).故选:B.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,仔细观察表格数据确定出对称轴是解题的关键.12.【考点】E6:函数的图象.【分析】由点A(﹣1,1),B(1,1),C(2,4)在同一个函数图象上,可得A 与B关于y轴对称,当x>0时,y随x的增大而增大,继而求得答案.【解答】解:∵A(﹣1,1),B(1,1),∴A与B关于y轴对称,故C,D错误;∵B(1,1),C(2,4),当x>0时,y随x的增大而增大,而B(1,1)在直线y=x上,C(2,4)不在直线y=x上,所以图象不会是直线,故A错误;故B正确.故选:B.【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.13.【考点】S9:相似三角形的判定与性质;KB:全等三角形的判定;LE:正方形的性质.【分析】由四边形ABCD和四边形CEFG是正方形,根据正方形的性质,即可得BC=DC,CG=CE,∠BCD=∠ECG=90°,则可根据SAS证得①△BCG≌△DCE;然后延长BG交DE于点H,根据全等三角形的对应角相等,求得∠CDE+∠DGH=90°,则可得②BH⊥DE;由△DGO与△DCE相似即可判定③错误,证明△EFO∽△DGO,即可求得④正确;即可得出结论.【解答】解:①∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,CD∥EF,∴∠BCG=∠DCE.在△BCG和△DCE中,,∴△BCG≌△DCE(SAS),故①正确;②延长BG交DE于点H,如图所示:∵△BCG≌△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BGC=90°,∴∠CDE+∠DGH=90°,∴∠DHG=90°,∴BH⊥DE;∴BG⊥DE.故②正确;③∵四边形GCEF是正方形,∴GF∥CE,∴,是错误的.故③错误;④∵DC∥EF,∴△EFO∽△DGO,∴=()2=()2=,∴(a﹣b)2•S△EFO=b2•S△DGO.故④正确;正确的有3个,故选:B.【点评】本题主要考查正方形的性质、全等三角形的判定和性质及相似三角形的判定和性质,综合性较强,掌握三角形全等、相似的判定和性质是解题的关键.14.【考点】H4:二次函数图象与系数的关系.【分析】利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间,则当x=﹣1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=﹣=1,即b=﹣2a,则可对②进行判断;利用抛物线的顶点的纵坐标为n得到=n,则可对③进行判断;由于抛物线与直线y=n有一个公共点,则抛物线与直线y=n﹣1有2个公共点,于是可对④进行判断.【解答】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y>0,即a﹣b+c>0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac﹣4an=4a(c﹣n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n﹣1有2个公共点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选:C.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a ≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c):抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x 轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(本大题共5小题,每小题3分,共15分)15.【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式,再利用公式法把原式进行因式分解即可.【解答】解:原式=b(a+b)2.故答案为:b(a+b)2.【点评】本题考查的是提公因式法与公式法的综合运用,熟记完全平方公式是解答此题的关键.16.【考点】X3:概率的意义.【分析】设红球有x个,根据摸出一个球是蓝球的概率是,得出红球的个数,再根据概率公式即可得出随机摸出一个红球的概率.【解答】解:∵在一个不透明的口袋里有红、黄、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有5个黄球,4个蓝球,随机摸出一个蓝球的概率是,设红球有x个,∴=,解得:x=3∴随机摸出一个红球的概率是:=.故答案为:.【点评】此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.17.【考点】MO:扇形面积的计算;KO:含30度角的直角三角形;R2:旋转的性质.【分析】根据题意可以求得AC和AB的长,然后根据旋转的性质即可求得BC扫过的面积.【解答】解:∵在Rt△ABC中,∠BCA=90°,∠BAC=30°,BC=2,∴AB=4,AC=2,∴BC扫过的面积为:=π,故答案为:π.【点评】本题考查扇形面积的计算、含30度角的直角三角形、旋转的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.18.【考点】G6:反比例函数图象上点的坐标特征;G4:反比例函数的性质;LE:正方形的性质.【分析】作EH⊥x轴于H,求出AB的长,根据△AOB∽△BCG,求出DG的长,再根据△AOB∽△EHA,求出AE的长,得到答案.【解答】解:作EH⊥x轴于H,∵OA=1,OB=2,由勾股定理得,AB=,∵AB∥CD,∴△AOB∽△BCG,∴CG=2BC=2,∴DG=3,AE=4,∵∠AOB=∠BAD=∠EHA=90°,∴△AOB∽△EHA,∴AH=2EH,又AE=4,∴EH=4,AH=8,∴点E的坐标为(9,4),则k=36,故答案为:36.【点评】本题考查的是正方形的性质和反比例函数图象上点的特征,运用相似三角形求出图中直角三角形两直角边是关系是解题的关键,解答时,要认真观察图形,找出两正方形边长之间的关系.19.【考点】18:有理数大小比较.【分析】分五种情况讨论x的范围:①﹣1<x<﹣0.5,②﹣0.5<x<0,③x=0,④0<x<0.5,⑤0.5<x<1即可得到答案.【解答】解:①﹣1<x<﹣0.5时,[x]+(x)+[x)=﹣1+0﹣1=﹣2;②﹣0.5<x<0时,[x]+(x)+[x)=﹣1+0+0=﹣1;③x=0时,[x]+(x)+[x)=0+0+0=0;④0<x<0.5时,[x]+(x)+[x)=0+1+0=1;⑤0.5<x<1时,[x]+(x)+[x)=0+1+1=2.故答案为:﹣2或﹣1或0或1或2.【点评】本题考查了学生对[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数)的理解,难度适中,解此题的关键是分类讨论思想的应用.三、解答题(本大题共7小题,共计63分)20.【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】直接利用特殊角的三角函数值以及负指数幂的性质、绝对值的性质分别化简得出答案.【解答】解:原式=2+2﹣﹣(2﹣)=2+2﹣(2+)﹣2+=2+2﹣2﹣﹣2+=2﹣2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.21.【考点】VC:条形统计图;V3:总体、个体、样本、样本容量;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据统计图可以得到抽查的学生数,从而可以求得样本容量,由扇形统计图可以求得扇形圆心角的度数;(2)根据统计图可以求得C类学生数和C类与D类所占的百分比,从而可以将统计图补充完整;(3)根据统计图可以估计该校九年级男生“引体向上”项目成绩为C类的有多少名.【解答】解:(1)由题意可得,抽取的学生数为:10÷20%=50,扇形统计图中A类所对的圆心角是:360°×20%=72°,故答案为:50,72;(2)C类学生数为:50﹣10﹣22﹣3=15,C类占抽取样本的百分比为:15÷50×100%=30%,D类占抽取样本的百分比为:3÷50×100%=6%,补全的统计图如右图所示,(3)300×30%=90(名)即该校九年级男生“引体向上”项目成绩为C类的有90名.【点评】本题考查条形统计图、扇形统计图、用本估计总体,解题的关键是明确题意,利用数形结合的思想解答.22.【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】在Rt△ABD中,求出BD,在Rt△ACD中,求出CD,二者相加即为楼高BC【解答】解:在Rt△ABD中,∠BDA=90°,∠BAD=45°,∴BD=AD=20.在Rt△ACD中,∠ADC=90°,∠CAD=60°,∴CD=AD=20.∴BC=BD+CD=20+20(m).答:这栋楼高为(20+20)m.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,将原三角形转化为两个直角三角形是解题的关键.23.【考点】ME:切线的判定与性质;M5:圆周角定理;T7:解直角三角形.【分析】(1)过点B作BF⊥AC于点F,易证△ABF≌△DBE(AAS),所以BF=BE,从而可证明∠1=∠BCE;(2)连接OB,易证∠BAC=∠EBC,由于OA=OB,所以∠BAC=∠OBA,所以∠EBC=∠OBA,从而可知∠EBC+∠CBO=∠OBA+∠CBO=90°,所以BE是⊙O的切线;(3)易证:△EBC≌△FBC(AAS),所以CF=CE=1,由(1)可知:AF=DE=1+3=4,所以AC=CF+AF=1+4=5,利用锐角三角函数的定义即可求出答案.【解答】解:(1)过点B作BF⊥AC于点F,在△ABF与△DBE中,∴△ABF≌△DBE(AAS)∴BF=BE,∵BE⊥DC,BF⊥AC,∴∠1=∠BCE(2)连接OB,∵AC是⊙O的直径,∴∠ABC=90°,即∠1+∠BAC=90°,∵∠BCE+∠EBC=90°,且∠1=∠BCE,∴∠BAC=∠EBC∵OA=OB,∴∠BAC=∠OBA,∴∠EBC=∠OBA,∴∠EBC+∠CBO=∠OBA+∠CBO=90°,∴BE是⊙O的切线(3)由(2)可知:∠EBC=∠CBF=∠BAC,在△EBC与△FBC中,∴△EBC≌△FBC(AAS)∴CF=CE=1由(1)可知:AF=DE=1+3=4,∴AC=CF+AF=1+4=5,∴cos∠DBA=cos∠DCA==【点评】本题考查圆的综合问题,涉及圆的切线性质与判定,全等三角形的性质与判定,锐角三角函数的定义等知识,综合程度较高,需要学生综合运用知识.24.【考点】FH:一次函数的应用.【分析】(1)由图可看出,乙车所行路程y与时间x的成一次函数,使用待定系数法可求得一次函数关系式;(2)由图可得,交点F表示第二次相遇,F点横坐标为6,代入(1)中的函数即可求得距出发地的路程;(3)交点P表示第一次相遇,即甲车故障停车检修时相遇,点P的横坐标表示时间,纵坐标表示离出发地的距离,要求时间,则需要把点P的纵坐标先求出;从图中看出,点P的纵坐标与点B的纵坐标相等,而点B在线段BC上,BC对应的函数关系可通过待定系数法求解,点B的横坐标已知,则纵坐标可求.【解答】解:(1)设乙车所行使路程y与时间x的函数关系式为y=k1x+b1,把(2,0)和(10,480)代入,得,解得:,故y与x的函数关系式为y=60x﹣120;(2)由图可得,交点F表示第二次相遇,F点的横坐标为6,此时y=60×6=120=240,则F点坐标为(6,240),故两车在途中第二次相遇时它们距出发地的路程为240千米;(3)设线段BC对应的函数关系式为y=k2x+b2,把(6,240)、(8,480)代入,得,解得,故y与x的函数关系式为y=120x﹣480,则当x=4.5时,y=120×4.5﹣480=60.可得:点B的纵坐标为60,∵AB表示因故停车检修,∴交点P的纵坐标为60,把y=60代入y=60x﹣120中,有60=60x﹣120,解得x=3,则交点P的坐标为(3,60),∵交点P表示第一次相遇,∴乙车出发3﹣2=1小时,两车在途中第一次相遇.【点评】本题意在考查学生利用待定系数法求解一次函数关系式,并利用关系式求值的运算技能和从坐标系中提取信息的能力,是道综合性较强的代数应用题,对学生能力要求比较高.25.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;KQ:勾股定理;LI:直角梯形.【分析】(1)由四边形是ABCD正方形,易证得△CBE≌△CDF(SAS),即可得CE=CF;(2)首先延长AD至F,使DF=BE,连接CF,由(1)知△CBE≌△CDF,易证得∠ECF=∠BCD=90°,又由∠GCE=45°,可得∠GCF=∠GCE=45°,即可证得△ECG≌△FCG,继而可得GE=BE+GD;(3)首先过C作CG⊥AD,交AD延长线于G,易证得四边形ABCG为正方形,由(1)(2)可知,ED=BE+DG,即可求得DG的长,设AB=x,在Rt△AED中,由勾股定理DE2=AD2+AE2,可得方程,解方程即可求得AB的长,继而求得直角梯形ABCD的面积.【解答】(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠B=∠CDF=90°,∵∠ADC=90°,∴∠FDC=90°.∴∠B=∠FDC,∵BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(2)证明:如图2,延长AD至F,使DF=BE,连接CF.由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,GC=GC,∴△ECG≌△FCG.∴GE=GF,∴GE=GF=DF+GD=BE+GD.(3)解:如图3,过C作CG⊥AD,交AD延长线于G.在直角梯形ABCD中,∵AD∥BC,∴∠A=∠B=90°,又∵∠CGA=90°,AB=BC,∴四边形ABCG为正方形.∴AG=BC.…(7分)∵∠DCE=45°,根据(1)(2)可知,ED=BE+DG.…(8分)∴10=4+DG,即DG=6.设AB=x,则AE=x﹣4,AD=x﹣6,在Rt△AED中,∵DE2=AD2+AE2,即102=(x﹣6)2+(x﹣4)2.解这个方程,得:x=12或x=﹣2(舍去).…(9分)∴AB=12.=(AD+BC)•AB=×(6+12)×12=108.∴S梯形ABCD即梯形ABCD的面积为108.…(10分)【点评】此题考查了正方形的性质与判定、全等三角形的判定与性质、直角梯形的性质以及勾股定理等知识.此题综合性较强,难度较大,注意掌握辅助线的作法是解此题的关键,注意数形结合思想与方程思想的应用.26.【考点】HF:二次函数综合题.【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标;(2)设直线AC的解析式为y=kx+b,与x轴交于D,得到y=2x﹣1,求得BD=2﹣=于是得到结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON和△ABC相似时,利用三角形相似的性质可得=或=,可求得N点的坐标.【解答】解:(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x﹣1)2+1,又抛物线过原点,∴0=a(0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+1,即y=﹣x2+2x,联立抛物线和直线解析式可得,解得或,∴B(2,0),C(﹣1,﹣3);(2)设直线AC的解析式为y=kx+b,与x轴交于D,把A(1,1),C(﹣1,﹣3)的坐标代入得,解得:,∴y=2x﹣1,当y=0,即2x﹣1=0,解得:x=,∴D(,0),∴BD=2﹣=∴△ABC 的面积=S △ABD +S △BCD =××1+××3=3;(3)假设存在满足条件的点N ,设N (x ,0),则M (x ,﹣x 2+2x ),∴ON=|x |,MN=|﹣x 2+2x |,由(2)知,AB=,BC=3,∵MN ⊥x 轴于点N ,∴∠ABC=∠MNO=90°,∴当△ABC 和△MNO 相似时,有=或=, ①当=时, ∴=,即|x ||﹣x +2|=|x |,∵当x=0时M 、O 、N 不能构成三角形,∴x ≠0,∴|﹣x +2|=,∴﹣x +2=±,解得x=或x=,此时N 点坐标为(,0)或(,0); ②当或=,时, ∴=,即|x ||﹣x +2|=3|x |,∴|﹣x +2|=3,∴﹣x +2=±3,解得x=5或x=﹣1,此时N 点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N 点,其坐标为(,0)或(,0)或(﹣1,0)或(5,0).【点评】本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理及逆定理、相似三角形的性质及分类讨论等.在(1)中注意顶点式的运用,在(3)中设出N、M的坐标,利用相似三角形的性质得到关于坐标的方程是解题的关键,注意相似三角形点的对应.本题考查知识点较多,综合性较强,难度适中.。
2021年江汉区中考数学模拟试卷3(改)

数 学 试 卷(三)
亲爱的同学,在你答题前,请认真阅读下面的注意事项:
1.本试卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成.全卷共 6 页,三大题,满分 120 分.考 试用时 120 分钟.
2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和 座位号.
(A)
(B)
(C)
(D)
9. 如图,O 为△ABC 的 BC 边上的一点,以 O 为圆心的半圆分别与 AB,AC 相切于点 M,N.已知∠BAC
=120°,AB+AC=16,弧 MN 的长为 ,则图中阴影部分的面积为
A. 24 3 3 3
B.18 2 3 2
C. 24 3 3 2
D.18 2 3 3
11.计算 25 的结果为
.
ቤተ መጻሕፍቲ ባይዱ
12.某校男子篮球队 10 名队员进行定点投篮练习,每人投 10 次,他们投中的次数统计如表:
则这些队员投中次数的中位数为
.
13.方程
9 x
8 x 1
的解为
.
14.如图,无人机在离地面 60 米的 C 处,观测楼房顶部 B 的俯角为 30 ,观测楼房底部 A 的俯角为 60 ,
粮食.某天午餐后,校学生会随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所 示的不完整的统计图:
(1)这次被调查的同学共有______人; (2)补全条形统计图,并在图上标明相应的数据; (3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供 50 人食用一餐.据 此估算,该校有 16000 名学生一餐浪费的食物可供多少人食用一餐?
【2021】湖北省中考数学模试卷(解析版)

湖北省中考数学精选真题预测(含答案)一、选择题(本大题共10小题,共30.0分)1.的相反数为A. 2B.C.D.【答案】A【解析】解:与符号相反的数是2,所以,数的相反数为2.故选:A.根据相反数的定义,只有符号不同的两个数是互为相反数,的相反数为2.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.近几年,襄阳市经济呈现稳中有进,稳中向好的态势,2017年GDP突破4000亿元大关,4000亿这个数用科学记数法表示为A. B. C. D.【答案】B【解析】解:4000亿,故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,把一块三角板的直角顶点放在一直尺的一边上,若,则的度数为A. B. C. D.【答案】D【解析】解:,,,故选:D.利用平行线的性质求出即可解决问题;本题考查平行线的性质,三角板的性质等知识,解题的关键是灵活运用所学知识解决问题.4.下列运算正确的是A. B. C.D.【答案】C【解析】解:A、,故A错误;B、,故B错误;C、,故C正确;D、,故D错误.故选:C.根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂相除,底数不变指数相减;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.本题考查合并同类项、同底数幂的除法、积的乘方,熟练掌握运算性质和法则是解题的关键.5.不等式组的解集为A. B. C. D. 空集【答案】B【解析】解:解不等式,得:,解不等式,得:,则不等式组的解集为,故选:B.首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.一个几何体的三视图如图所示,则这个几何体是A.B.C.D.【答案】C【解析】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选:C.由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.此题主要考查了由三视图判断几何体主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为几边形就是几棱柱.7.如图,在中,分别以点A和点C为圆心,大于长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,若,的周长为13cm,则的周长为A. 16cmB. 19cmC. 22cmD. 25cm【答案】B【解析】解:垂直平分线段AC,,,,,的周长,故选:B.利用线段的垂直平分线的性质即可解决问题.本题考查作图基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质,属于中考常考题型.8.下列语句所描述的事件是随机事件的是A. 任意画一个四边形,其内角和为B. 经过任意点画一条直线C. 任意画一个菱形,是屮心对称图形D. 过平面内任意三点画一个圆【答案】D【解析】解:A、任意画一个四边形,其内角和为是不可能事件;B、经过任意点画一条直线是必然事件;C、任意画一个菱形,是屮心对称图形是必然事件;D、过平面内任意三点画一个圆是随机事件;故选:D.根据事件发生的可能性大小判断相应事件的类型即可.本题考查的是必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.已知二次函数的图象与x轴有交点,则m的取值范围是A. B. C. D.【答案】A【解析】解:二次函数的图象与x轴有交点,,解得:,故选:A.根据已知抛物线与x轴有交点得出不等式,求出不等式的解集即可.本题考查了抛物线与x轴的交点,能根据题意得出关于m的不等式是解此题的关键.10.如图,点A,B,C,D都在半径为2的上,若,,则弦BC的长为A. 4B.C.D.【答案】D【解析】解:,,,,,,故选:D.根据垂径定理得到,,根据圆周角定理求出,根据正弦的定义求出BH,计算即可.本题考查的是垂径定理、圆周角定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.二、填空题(本大题共6小题,共18分)11.计算:______.【答案】【解析】解:.故答案为:.根据负数的绝对值等于它的相反数解答.本题考查了实数的性质,是基础题,主要利用了绝对值的性质.12.计算的结果是______.【答案】【解析】解:原式,故答案为:.根据同分母分式加减运算法则计算即可,最后要注意将结果化为最简分式.本题考查了分式的加减,归纳提炼:分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.13.我国古代数学著作九章算术中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元问这个物品的价格是多少元?”该物品的价格是______元【答案】53【解析】解:设该商品的价格是x元,共同购买该物品的有y人,根据题意得:,解得:.故答案为:53.设该商品的价格是x元,共同购买该物品的有y人,根据“每人出8元,则多3元;每人出7元,则差4元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14.一组数据3,2,3,4,x的平均数是3,则它的方差是______.【答案】【解析】解:数据2、3、3、4、x的平均数是3,,,.故答案为:.由于数据2、3、3、4、x的平均数是3,由此利用平均数的计算公式可以求出x,然后利用方差的计算公式即可求解.此题主要考查了平均数和方差的计算,解题的关键是熟练掌握平均数和方差的计算公式.15.已知CD是的边AB上的高,若,,,则BC的长为______.【答案】或【解析】解:分两种情况:当是锐角三角形,如图1,,,,,,,,,;当是钝角三角形,如图2,同理得:,,;综上所述,BC的长为或.故答案为:或.分两种情况:当是锐角三角形,如图1,当是钝角三角形,如图2,分别根据勾股定理计算AC和BC即可.本题考查了三角形的高、勾股定理的应用,在直角三角形中常利用勾股定理计算线段的长,要熟练掌握.16.如图,将面积为的矩形ABCD沿对角线BD折叠,点A的对应点为点P,连接AP交BC于点若,则AP的长为______.【答案】【解析】解:设,,则,由∽可得:,,,,,设PA交BD于O.在中,,,.故答案为.设,,则,构建方程组求出a、b即可解决问题;本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、计算题(本大题共3小题,共18分)17.先化简,再求值:,其中,.【答案】解:,当,时,原式.【解析】根据平方差公式、单项式乘多项式和完全平方公式可以化简题目中的式子,再将x、y的值代入化简后的式子即可解答本题.本题考查整式的混合运算化简求值,解答本题的关键是明确整式的化简求值的计算方法.18.正在建设的“汉十高铁”竣工通车后,若襄阳至武汉段路程与当前动车行驶的路程相等,约为325千米,且高铁行驶的速度是当前动车行驶速度的倍,则从襄阳到武汉乘坐高铁比动车所用时间少小时求高铁的速度.【答案】解:设高铁的速度为x千米小时,则动车速度为千米小时,根据题意得:,解得:,经检验是分式方程的解,且符合题意,则高铁的速度是325千米小时.【解析】设高铁的速度为x千米小时,则动车速度为千米小时,根据题意列出方程,求出方程的解即可.此题考查了分式方程的应用,弄清题中的等量关系是解本题的关键.19.如图,已知双曲线与直线交于点和点.求双曲线和直线的解析式;直接写出线段AB的长和时x的取值范围.【答案】解:把代入得,反比例函数的解析式为,把代入得,解得,则,把,代入得,解得,直线解析式为;,当或时,.【解析】先把A点坐标代入中求出k得到反比例函数的解析式为,再把代入中求出m得到,然后利用待定系数法求直线解析式;利用两点间的距离公式计算AB的长;利用函数图象,写出反比例函数图象在直线上方所对应的自变量的范围得到时x的取值范围.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.四、解答题(本大题共6小题,共54分)20.为了保证端午龙舟赛在我市汉江水域顺利举办,某部门工作人员乘快艇到汉江水域考察水情,以每秒10米的速度沿平行于岸边的赛道AB由西向东行驶在A处测得岸边一建筑物P在北偏东方向上,继续行驶40秒到达B处时,测得建筑物P在北偏西方向上,如图所示,求建筑物P到赛道AB的距离结果保留根号.【答案】解:过P点作于C,由题意可知:,,在中,,,在中,,,,,答:建筑物P到赛道AB的距离为米【解析】作于C,构造出与,求出AB的长度,利用特殊角的三角函数值求解.此题考查的是直角三角形的性质,解答此题的关键是构造出两个特殊角度的直角三角形,再利用特殊角的三角函数值解答.21.“品中华诗词,寻文化基因”某校举办了第二届“中华诗词大赛”,将该校八年级参加竞赛的学生成绩统计后,绘制了如下不完整的频数分布统计表与频数分布直方图.频数分布统计表组别成绩分人数百分比A8B16C aD4请观察图表,解答下列问题:表中______,______;补全频数分布直方图;组的4名学生中,有1名男生和3名女生现从中随机抽取2名学生参加市级竞赛,则抽取的2名学生恰好是一名男生和一名女生的概率为______.【答案】12;40;【解析】解:被调查的总人数为人,,,即,故答案为:12、40;补全图形如下:列表如下:男女1女2女3男---女,男女,男女,男女1男,女---女,女女,女女2男,女女,女---女,女女3男,女女,女女,女---共有12种等可能的结果,选中1名男生和1名女生结果的有6种.抽取的2名学生恰好是一名男生和一名女生的概率为,故答案为:.先由A组人数及其百分比求得总人数,总人数乘以C的百分比可得a的值,用B组人数除以总人数可得m的值;根据中所求结果可补全图形;列出所有等可能结果,再根据概率公式求解可得.本题考查了频数分布表、频数分布直方图,解题的关键是明确题意,找出所求问题需要的条件,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查了列表法和画树状图求概率.22.如图,AB是的直径,AM和BN是的两条切线,E 为上一点,过点E作直线DC分别交AM,BN于点D,C,且.求证:;若,,求图中阴影部分的面积.【答案】解:证明:连接OE、OC.,.,,.为的切线,;为半径,为的切线,切于点A,;如图,过点D作于点F,则四边形ABFD是矩形,,,.,,.在直角中,,.在与中,,≌,..【解析】连接推知CD为的切线,即可证明;利用分割法求得阴影部分的面积.本题考查了切线的判定与性质:从圆外一点引圆的两条切线,它们的切线长相等,运用全等三角形的判定与性质进行计算.23.襄阳市精准扶贫工作已进入攻坚阶段贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克第x天的售价为y元千克,y关于x的函数解析式为且第12天的售价为32元千克,第26天的售价为25元千克已知种植销售蓝莓的成木是18元千克,每天的利润是W元利润销售收入成本.______,______;求销售蓝莓第几天时,当天的利润最大?最大利润是多少?在销售蓝莓的30天中,当大利润不低于870元的共有多少天?【答案】;25【解析】解:当第12天的售价为32元件,代入得解得当第26天的售价为25元千克时,代入则故答案为:,由第x天的销售量为当时当时,当时,随x的增大而增大当时,当时,当时,令解得,抛物线的开口向下时,有9天利润不低于870元当时,令解得为正整数有3天利润不低于870元综上所述,当天利润不低于870元的天数共有12天.根据题意将相关数值代入即可;在的基础上分段表示利润,讨论最值;分别在中的两个函数取值范围内讨论利润不低于870的天数,注意天数为正整数.本题考查了一次函数和二次函数的实际应用,应用了分类讨论的数学思想.24.如图,已知点G在正方形ABCD的对角线AC上,,垂足为点E,,垂足为点F.证明与推断:求证:四边形CEGF是正方形;推断:的值为______:探究与证明:将正方形CEGF绕点C顺时针方向旋转角,如图所示,试探究线段AG与BE之间的数量关系,并说明理由:拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图所示,延长CG交AD于点若,,则______.【答案】;【解析】解:四边形ABCD是正方形,,,、,,四边形CEGF是矩形,,,四边形CEGF是正方形;由知四边形CEGF是正方形,,,,故答案为:;连接CG,由旋转性质知,在和中,、,,∽,,线段AG与BE之间的数量关系为;,点B、E、F三点共线,,∽,,,,∽,,设,则,则由得,,则,,得,解得:,即,故答案为:.由、结合可得四边形CEGF是矩形,再由即可得证;由正方形性质知、,据此可得、证∽得,设,知,由得、、,由可得a的值.本题主要考查相似形的综合题,解题的关键是掌握正方形的判定与性质、相似三角形的判定与性质等知识点.25.直线交x轴于点A,交y轴于点B,顶点为D的抛物线经过点A,交x轴于另一点C,连接BD,AD,CD,如图所示.直接写出抛物线的解析式和点A,C,D的坐标;动点P在BD上以每秒2个单位长的速度由点B向点D运动,同时动点Q在CA 上以每秒3个单位长的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒交线段AD于点E.当时,求t的值;过点E作,垂足为点M,过点P作交线段AB或AD于点N,当时,求t的值.【答案】解:在中,令得,令得,点、点,将点代入抛物线解析式,得:,解得:,所以抛物线解析式为,,点,对称轴为,点C坐标为;如图1,由知,根据,得:,、,,,、,,,,,四边形ABPQ是平行四边形,,即,解得:,即当时,秒;Ⅰ当点N在AB上时,,即,连接NE,延长PN交x轴于点F,延长ME交x轴于点H,、,,,,,、,,,点N在直线上,点N的坐标为,,,∽,,,、,直线AD解析式为,点E在直线上,点E的坐标为,,,解得:舍或;Ⅱ当点N在AD上时,,即,,,解得:,综上所述,当时,秒或秒【解析】先由直线解析式求得点A、B坐标,将点A坐标代入抛物线解析式求得m 的值,从而得出答案;由知、,根据证四边形ABPQ是平行四边形得,即,解之即可;分点N在AB上和点N在AD上两种情况分别求解.本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求二次函数的解析式、平行四边形的判定与性质、相似三角形的判定与性质等知识点.湖北省中考数学精选真题预测(含答案)一、选择题(本大题共10小题,每小题3分,共30分,每小题给出的四个选项中,只有一个是正确的)1.(3分)﹣的相反数是()A.﹣B.C.﹣2 D.22.(3分)如图是一个由4个相同正方体组成的立体图形,它的左视图是()A.B.C.D.3.(3分)下列运算正确的是()A.a2•a3=a6B.a3÷a﹣3=1C.(a﹣b)2=a2﹣ab+b2D.(﹣a2)3=﹣a64.(3分)如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是()A.25°B.35°C.45°D.65°5.(3分)某同学连续6次考试的数学成绩分别是85,97,93,79,85,95,则这组数据的众数和中位数分别为()A.85 和89 B.85 和86 C.89 和85 D.89 和866.(3分)如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为()A.1 B.C. 1 D.7.(3分)“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是()A.B.C.D.8.(3分)正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()A.B.C.D.9.(3分)我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为()A.33 B.301 C.386 D.57110.(3分)如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B 两点,与y轴交于点C对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c 交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.其中正确的有()A.4个B.3个C.2个 D.1个二.填空题(本大题共6小题、每小题3分,共18分,只需要将结果直接填在答卡对应题号处的横线上)11.(3分)计算:﹣|2﹣2|+2tan45°=.12.(3分)如图,点A,B,C在⊙O上,∠A=40度,∠C=20度,则∠B=度.13.(3分)已知是关于x,y的二元一次方程组的一组解,则a+b=.14.(3分)如图,一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,与x轴交与点C,若tan∠AOC=,则k的值为.15.(3分)如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A 在第一象限,点C在x轴正半轴上,∠AOC=60°,若将菱形OABC绕点O 顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的坐标为.16.(3分)如图,在四边形ABCD中,AB=AD=5,BC=CD且BC>AB,BD=8.给出以下判断:①AC垂直平分BD;②四边形ABCD的面积S=AC•BD;③顺次连接四边形ABCD的四边中点得到的四边形可能是正方形;④当A,B,C,D四点在同一个圆上时,该圆的半径为;⑤将△ABD沿直线BD对折,点A落在点E处,连接BE并延长交CD于点F,当BF⊥CD时,点F到直线AB的距离为.其中正确的是.(写出所有正确判断的序号)三、解答题(本人题共8小题,共72分,解答应写出必要的演算步骤、文字说明或证明过程)17.(6分)先化简,再求值:,其中x为整数且满足不等式组.18.(7分)己知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若+=﹣1,求k的值.19.(9分)为了解某次“小学生书法比赛”的成绩情况,随机抽取了30名学生的成绩进行统计,并将统计情况绘成如图所示的频数分布直方图,己知成绩x(单位:分)均满足“50≤x<100”.根据图中信息回答下列问题:(1)图中a的值为;(2)若要绘制该样本的扇形统计图,则成绩x在“70≤x<80”所对应扇形的圆心角度数为度;(3)此次比赛共有300名学生参加,若将“x≥80”的成绩记为“优秀”,则获得“优秀“的学生大约有人:(4)在这些抽查的样本中,小明的成绩为92分,若从成绩在“50≤x<60”和“90≤x<100”的学生中任选2人,请用列表或画树状图的方法,求小明被选中的概率.20.(8分)随州市新㵐水一桥(如图1)设计灵感来源于市花﹣﹣兰花,采用蝴蝶兰斜拉桥方案,设计长度为258米,宽32米,为双向六车道,2018年4月3日通车.斜拉桥又称斜张桥,主要由索塔、主梁、斜拉索组成.某座斜拉桥的部分截面图如图2所示,索塔AB和斜拉索(图中只画出最短的斜拉索DE和最长的斜拉索AC)均在同一水平面内,BC在水平桥面上.已知∠ABC=∠DEB=45°,∠ACB=30°,BE=6米,AB=5BD.(1)求最短的斜拉索DE的长;(2)求最长的斜拉索AC的长.21.(8分)如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM⊥AB于点O,分别交AC、CN于D、M两点.(1)求证:MD=MC;(2)若⊙O的半径为5,AC=4,求MC的长.22.(11分)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:天数(x)13610每件成本p(元)7.58.51012任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=设李师傅第x天创造的产品利润为W元.(1)直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:(2)求李师傅第几天创造的利润最大?最大利润是多少元?(3)任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?23.(11分)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.化为分数形式由于0.=0.777…,设x=0.777…①则10x=7.777…②②﹣①得9x=7,解得x=,于是得0.=.同理可得0.==,1.=1+0.=1+=根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)【基础训练】(1)0.=,5.=;(2)将0.化为分数形式,写出推导过程;【能力提升】(3)0.1=,2.0=;(注:0.1=0.315315…,2.0=2.01818…)【探索发现】(4)①试比较0.与1的大小:0.1(填“>”、“<”或“=”)②若已知0.8571=,则3.1428=.(注:0.857l=0.285714285714…)24.(12分)如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B 两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.(1)求出抛物线C1的解析式,并写出点G的坐标;(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,每小题给出的四个选项中,只有一个是正确的)1.(3分)﹣的相反数是()A.﹣B.C.﹣2 D.2【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣的相反数是,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)如图是一个由4个相同正方体组成的立体图形,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.(3分)下列运算正确的是()A.a2•a3=a6B.a3÷a﹣3=1C.(a﹣b)2=a2﹣ab+b2D.(﹣a2)3=﹣a6【分析】根据同底数幂的乘法、完全平方公式及同底数幂的除法、幂的乘方逐一计算可得.【解答】解:A、a2•a3=a5,此选项错误;B、a3÷a﹣3=a6,此选项错误;C、(a﹣b)2=a2﹣2ab+b2,此选项错误;D、(﹣a2)3=﹣a6,此选项正确;故选:D.【点评】本题主要考查幂的运算,解题的关键是掌握同底数幂的乘法、完全平方公式及同底数幂的除法、幂的乘方的运算法则.4.(3分)如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是()A.25°B.35°C.45°D.65°【分析】过点C作CD∥a,再由平行线的性质即可得出结论.【解答】解:如图,过点C作CD∥a,则∠1=∠ACD.∵a∥b,∴CD∥b,∴∠2=∠DCB.∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°.故选:A.【点评】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.5.(3分)某同学连续6次考试的数学成绩分别是85,97,93,79,85,95,则这组数据的众数和中位数分别为( ) A .85 和 89 B .85 和 86 C .89 和 85 D .89 和 86【分析】根据众数、中位数的定义即可判断;【解答】解:将数据重新排列为79、85、85、93、95、97, 则这组数据的中位数为=89,众数为85故选:A .【点评】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是次数出现最多的数;6.(3分)如图,平行于BC 的直线DE 把△ABC 分成面积相等的两部分,则的值为( )A .1B .C . 1D .【分析】由DE ∥BC 可得出△ADE ∽△ABC ,利用相似三角形的性质结合S △ADE =S四边形BCED,可得出=,结合BD=AB ﹣AD 即可求出的值,此题得解.【解答】解:∵DE ∥BC , ∴∠ADE=∠B ,∠AED=∠C , ∴△ADE ∽△ABC , ∴()2=.∵S △ADE =S 四边形BCED , ∴=,∴===﹣1.。
2022年湖北省武汉市中考数学试卷含答案详解(高清word版)
第1页,共26页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2022年湖北省武汉市中考数学试卷副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I 卷(选择题)一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 实数2022的相反数是( ) A. −2022B. −12022C. 12022D. 20222. 彩民李大叔购买1张彩票中奖.这个事件是( ) A. 必然事件B. 确定性事件C. 不可能事件D. 随机事件3. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A.B.C.D.4. 计算(2a 4)3的结果是( ) A. 2a 12B. 8a 12C. 6a 7D. 8a 75. 如图是由4个相同的小正方体组成的几何体,它的主视图是( ) A.B.第2页,共26页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………C.D.6. 已知点A(x 1,y 1),B(x 2,y 2)在反比例函数y =6x 的图象上,且x 1<0<x 2,则下列结论一定正确的是( )A. y 1+y 2<0B. y 1+y 2>0C. y 1<y 2D. y 1>y 27. 匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度ℎ随时间t 的变化规律如图所示(图中OABC 为一折线).这个容器的形状可能是( )A.B.C.D.8. 班长邀请A ,B ,C ,D 四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A ,B 两位同学座位相邻的概率是( )A. 14B. 13C. 12D. 239. 如图,在四边形材料ABCD 中,AD//BC ,∠A =90°,AD =9cm ,AB =20cm ,BC =24cm.现用此材料截出一个面积最大的圆形模板,则此圆的半径是( )第3页,共26页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………A.11013cm B. 8cm C. 6√2cm D. 10cm10. 幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x 与y 的和是( )A. 9B. 10C. 11D. 12第II 卷(非选择题)二、填空题(本大题共6小题,共18.0分)11. 计算√(−2)2的结果是______.12. 某体育用品专卖店在一段时间内销售了20双学生运动鞋,各种尺码运动鞋的销售量如下表.则这20双运动鞋的尺码组成的一组数据的众数是______. 尺码/cm 24 24.5 25 25.5 26 销售量/双13104213. 计算:2x x 2−9−1x−3的结果是______ .14. 如图,沿AB 方向架桥修路,为加快施工进度,在直线AB 上湖的另一边的D 处同时施工.取∠ABC =150°,BC =1600m ,∠BCD =105°,则C ,D 两点的距离是______m.第4页,共26页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………15. 已知抛物线y =ax 2+bx +c(a,b,c 是常数)开口向下,过A(−1,0),B(m,0)两点,且1<m <2.下列四个结论: ①b >0;②若m =32,则3a +2c <0;③若点M(x 1,y 1),N(x 2,y 2)在抛物线上,x 1<x 2,且x 1+x 2>1,则y 1>y 2; ④当a ≤−1时,关于x 的一元二次方程ax 2+bx +c =1必有两个不相等的实数根. 其中正确的是______(填写序号).16. 如图,在Rt △ABC 中,∠ACB =90°,AC >BC ,分别以△ABC 的三边为边向外作三个正方形ABHL ,ACDE ,BCFG ,连接DF.过点C 作AB 的垂线CJ ,垂足为J ,分别交DF ,LH 于点I ,K.若CI =5,CJ =4,则四边形AJKL 的面积是 .三、解答题(本大题共8小题,共72.0分。
2023年湖北省武汉市江汉区中考模拟数学试题(一)
2023年湖北省武汉市江汉区中考模拟数学试题(一)学校:___________姓名:___________班级:___________考号:___________
A.B.
C.
D.
A.B.C.D.
2
是()
A.癸卯B.丁酉C.壬卯D.庚子
三、解答题
17.解不等式组:31321x x x +>-⎧⎨-≤⎩
①②,请按下列步骤完成解答.
(1)解不等式①,得_______;
(2)解不等式②,得______;
(3)把不等式①和②的解集在数轴上表示出来;
(4)原不等式组的解集为_______.
18.如图,ABC V 中,DE BC ∥,CD B ⊥A 于点D ,FG AB ⊥于点G .
(1)求证12∠=∠;
(2)若140∠=︒,若CD 平分ACB ∠,直接写出A ∠的度数.
19.对九年级学生进行一次安全知识问答测试,成绩x 分(x 为整数),评定为优秀、良好、合格、不合格四个等级(优秀、良好、合格、不合格分别用A ,B ,C ,D 表示),A 等级:90100x ≤≤,B 等级:8090x ≤<,C 等级:6080x ≤<,D 等级:060x ≤<,随机抽取了一部分学生的成绩进行调查,并绘制成如图不完整的统计图表.
AH。
2022年湖北省武汉市中考数学真题(含详细解析)
∴△EAD∽△EBC,∠B=90°,
∴ ,即 ,
∴ ,
∴EB=32cm,
∴ ,
设这个圆的圆心为O,与EB,BC,EC分别相切于F,G,H,
∴OF=OG=OH,
∵ ,
∴ ,
∴ ,
∴ ,
∴此圆的半径为8cm,
故选B.
【点睛】本题主要考查了三角形内切圆半径与三角形三边的关系,勾股定理,正确作出辅助线是解题的关键.
9.如图,在四边形材料 中, , , , , .现用此材料截出一个面积最大的圆形模板,则此圆的半径是()
A. B. C. D.
【答案】B
【解析】
【分析】如图所示,延长BA交CD延长线于E,当这个圆为△BCE的内切圆时,此圆的面积最大,据此求解即可.
【详解】解:如图所示,延长BA交CD延长线于E,当这个圆为△BCE的内切圆时,此圆的面积最大,
(2)若该校约有2000名学生,请估计其中意向参加“参观学习”活动的人数.
20.如图,以 为直径的 经过 的顶点 , , 分别平分 和 , 的延长线交 于点 ,连接 .
(1)判断 的形状,并证明你的结论;
(2)若 , ,求 的长.
21.如图是由小正方形组成 网格,每个小正方形的顶点叫做格点. 的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.
【详解】解:从函数图象可以看出:OA段上升最慢,AB段上升较快,BC段上升最快,上升的快慢跟容器的粗细有关,越粗的容器上升高度越慢,
∴题中图象所表示的容器应是中间最粗,下面其次,上面最细;
故选:D.
【点睛】本题考查了函数图象的性质在实际问题中的应用,判断出每段函数图象变化不同的原因是解题的关键.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2016年湖北省武汉市江汉区中考数学三模试卷 一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑. 1.在实数﹣3、0,π、3中,最大的实数是( ) A.﹣3 B.0 C.π D.3 2.要使分式有意义,则x的取值范围是( ) A.x>2 B.x<2 C.x≠﹣2 D.x≠2 3.下列运算正确的是( ) A.5a2+3a2=8a4 B.a3•a4=a12 C.(a+2b)2=a2+4b2 D.(a﹣b)(﹣a﹣b)=b2﹣a2 4.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表: 成绩(分) 35 39 42 44 45 48 50 人数(人) 2 5 6 6 8 7 6 根据上表中的信息判断,下列结论中错误的是( ) A.该班一共有40名同学 B.该班学生这次考试成绩的众数是45分 C.该班学生这次考试成绩的中位数是45分 D.该班学生这次考试成绩的平均数是45分 5.下列式子中正确的是( ) A.()﹣2=﹣9 B.(﹣2)3=﹣6 C. =﹣2 D.(﹣3)0=1 6.如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′,B′,A′,B′均在图中格点上,若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为( ) 2
A.(,n) B.(m,n) C.(,) D.(m,) 7.如图,下列几何体的左视图不是矩形的是( )
A. B. C. D. 8.以下是某手机店1~4月份的统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为( )
A.4月份三星手机销售额为65万元 B.4月份三星手机销售额比3月份有所上升 C.4月份三星手机销售额比3月份有所下降 D.3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额 9.把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式Am=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A2015=( ) A.(31,50) B.(32,47) C.(33,46) D.(34,42) 10.如图,正方形ABCD边长为2,E为AB边的中点,点F是BC边上一个动点,把△BEF沿EF向形内部折叠,点B的对应点为B′,当B′D的长最小时,BF长为( ) 3
A. B.﹣1 C. D. 二、填空题(共6小题,每小题3分,共18分)请将答案填在答题卡对应题号的位置上. 11.计算:﹣4﹣(﹣2)= . 12.15 000用科学记数法可表示为 . 13.有三辆车按1,2,3编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐3号车的概率为 . 14.如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4,则△CEF的周长为 .
15.在Rt△ABC中,∠ACB=90°,AC=1,BC=,点O为Rt△ABC内一点,连接AO、BO、CO,且∠AOC=∠COB=∠BOA=120°,则OA+OB+OC= .
16.对于平面直角坐标系中任意两点P1(x1,y1)、P2(x2,y2),称|x1﹣x2|+|y1﹣y2|为P1、P2两点的直角距离,记作:d(P1,P2).P0(2,﹣3)是一定点,Q(x,y)是直线y=kx+b上的一动点,称d(P0,Q)的最小值为P0到直线y=kx+b的直角距离.若P(a,﹣3)到直线y=x+1的直角距离为6,则a= .
三、解答题(共8小题,共72分)下列各题解答应写出文字说明,证明过程或演算过程. 17.解方程:2x﹣3=3x+4. 18.如图,在△ABC中,AB=AC,点D是BC的中点,BF⊥AC于点F,交AD于点E,∠BAC=45°.求证:△AEF≌△BCF. 4
19.一位射击运动员在10次射击训练中,命中靶的环数如图. 请你根据图表,完成下列问题: (1)补充完成下面成绩表单的填写: 射击序次 1 2 3 4 5 6 7 8 9 10 成绩/环 8 10 7 9 10 7 10 (2)求该运动员这10次射击训练的平均成绩.
20.如图,一次函数y1=﹣x+5的图象与反比例函数y2=(k≠0)在第一象限的图象交于A(1,n)和B两点. (1)求反比例函数的解析式; (2)当y2>y1>0时,写出自变量x的取值范围.
21.如图,AB为⊙O的直径,C为⊙O上一点,过C点的切线CE垂直于弦AD于点E,连OD交AC于点F. 5
(1)求证:∠BAC=∠DAC; (2)若AF:FC=6:5,求sin∠BAC的值.
22.某地政府计划为农户购买农机设备提供补贴.其中购买Ⅰ型、Ⅱ型设备农民所投资的金额与政府补贴的额度存在下表所示的函数对应关系.
型号 金额
Ⅰ型设备 Ⅱ型设备
投资金额x(万元) x 5 x 2 4 补贴金额y(万元) y1=kx(k≠0) 2 y2=ax2+bx(a≠0) 2.8 4 (1)分别求y1和y2的函数解析式; (2)有一农户共投资10万元购买Ⅰ型、Ⅱ型两种设备,两种设备的投资均为整数万元,要想获得最大补贴金额,应该如何购买?能获得的最大补贴金额为多少? 23.如图,△ABC中,AB=AC,AO是角平分线,D为AO上一点,作△CDE,使DE=DC,∠EDC=∠BAC,连接 BE.
(1)若∠BAC=60°,求证:△ACD≌△BCE; 6
(2)若∠BAC=90°,AD=DO,求的值; (3)若∠BAC=90°,F为BE中点,G为 BE延长线上一点,CF=CG,AD=nDO,直接写出的值. 24.如图,抛物线y=a(x﹣m)2+2m﹣2(其中m>1)顶点为P,与y轴相交于点A(0,m﹣1).连接并延长PA、PO分别与x轴、抛物线交于点B、C,连接BC,将△PBC绕点P逆时针旋转得△PB′C′,使点C′正好落在抛物线上. (1)该抛物线的解析式为 (用含m的式子表示); (2)求证:BC∥y轴; (3)若点B′恰好落在线段BC′上,求此时m的值. 7
2016年湖北省武汉市江汉区中考数学三模试卷 参考答案与试题解析
一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑. 1.在实数﹣3、0,π、3中,最大的实数是( ) A.﹣3 B.0 C.π D.3 【考点】实数大小比较. 【分析】根据正数大于0,0大于负数,正数大于负数,比较即可. 【解答】解:∵﹣3<0<3<π, ∴四个实数中,最大的实数是π. 故选C.
2.要使分式有意义,则x的取值范围是( ) A.x>2 B.x<2 C.x≠﹣2 D.x≠2 【考点】分式有意义的条件. 【分析】直接利用分式有意义的条件分析得出答案. 【解答】解:要使分式有意义, 则2﹣x≠0, 解得:x≠2. 故选:D.
3.下列运算正确的是( ) A.5a2+3a2=8a4 B.a3•a4=a12 C.(a+2b)2=a2+4b2 D.(a﹣b)(﹣a﹣b)=b2﹣a2 【考点】整式的混合运算. 【分析】按照整式的加法、整式的乘法、完全平方公式和平方差公式,分别计算,再判断. 【解答】解:A.5a2+3a2=8a2,故此题错误; 8
B.a3•a4=a7,故此题错误; C.(a+2b)2=a2+4ab+4b2,故此题错误; D.(a﹣b)(﹣a﹣b)=b2﹣a2,正确. 故选D.
4.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表: 成绩(分) 35 39 42 44 45 48 50 人数(人) 2 5 6 6 8 7 6 根据上表中的信息判断,下列结论中错误的是( ) A.该班一共有40名同学 B.该班学生这次考试成绩的众数是45分 C.该班学生这次考试成绩的中位数是45分 D.该班学生这次考试成绩的平均数是45分 【考点】众数;统计表;加权平均数;中位数. 【分析】结合表格根据众数、平均数、中位数的概念求解. 【解答】解:该班人数为:2+5+6+6+8+7+6=40, 得45分的人数最多,众数为45, 第20和21名同学的成绩的平均值为中位数,中位数为: =45, 平均数为: =44.425. 故错误的为D. 故选D.
5.下列式子中正确的是( ) A.()﹣2=﹣9 B.(﹣2)3=﹣6 C. =﹣2 D.(﹣3)0=1 【考点】二次根式的性质与化简;有理数的乘方;零指数幂;负整数指数幂. 【分析】根据二次根式的性质与化简、有理数的乘方、零指数以及负整数指数幂逐一运算,判断即可. 9
【解答】解:A、=9,故本项错误; B、(﹣2)3=﹣8,故本项错误; C、,故本项错误; D、(﹣3)0=1,故本项正确, 故选:D.
6.如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′,B′,A′,B′均在图中格点上,若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为( )
A.(,n) B.(m,n) C.(,) D.(m,) 【考点】位似变换;坐标与图形性质. 【分析】根据A,B两点坐标以及对应点A′,B′点的坐标得出坐标变化规律,进而得出P′的坐标. 【解答】解:∵△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上, 即A点坐标为:(4,6),B点坐标为:(6,2),A′点坐标为:(2,3),B′点坐标为:(3,1), ∴线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为:(,). 故选C.
7.如图,下列几何体的左视图不是矩形的是( )