八年级数学勾股定理的逆定理1(1)
人教版八年级下册 17.2 勾股定理的逆定理 课件 (共15张PPT)

知识点一:勾股定理逆定理的实际应用
学以致用
1.我国南宋著名数学家秦九韶的著作《数书九章》里记载有
这样一道题目:“问有沙田块,有三斜,其中小斜五里,中斜
十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一
块三角形沙田,三条边长分别为5里、12里13里,问这块沙
田面积有多大?题中的“里”是我国市制长度单位,1里=
7
• 解:设AD=x,则CD=10-x.
• 在 RtABD 中,
•
DB2 AB2 AD2
在RtCDQ中,
DB2 CQ2 CD2
62 x2 82 (10 x)2
解得: x 3.6
AD长为6.4n mile
8
知识点二:勾股定理逆定理在几何中的应用
3.如图,在四边形ABCD中,AB=8,BC=6,AC=10,
①若∠C- ∠B= ∠A,则△ABC是直角三角形;
②若c2=b2-a2,则△ABC是直角三角形,且∠C=90°;
③若(c+a)(c-a)=b2,则△ABC是直角三角形;
④若∠A:∠B:∠C=5:2:3,则△ABC是直角三
角形.
以上命题中的假命题个数是( A )
A.1个
B.2个
C.3个
D.4个
4.已知a、b、c是△ABC三边的长,且满足关系式 c2 +a2 - b2 + c - a = 0 ,则△ABC的形状是
典例讲评
解:根据题意: PQ=16×1.5=24 PR=12×1.5=18 QR=30
∵242+182=302, 即 PQ2+PR2=QR2 ∴∠QPR=90°
由”远航“号沿东北方向航行可知,∠1=45°.所以∠2=45°,
人教版八年级下册数学 第17章《勾股定理》讲义 第6讲 勾股定理-逆定理(有答案)

人教版八年级下册数学第17章《勾股定理》讲义第6讲勾股定理-逆定理(有答案)第6讲 勾股定理-逆定理 第一部分 知识梳理知识点一:勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 .①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形知识点二:勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)知识点三:勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整例4、已知:△ABC 的三边分别为m 2-n 2,2mn,m 2+n 2(m,n 为正整数,且m >n),判断△ABC 是否为直角三角形.例5、三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状? 举一反三:1、以下列各组数为边长,能组成直角三角形的是( )A 、8,15,17B 、4,5,6C 、5,8,10D 、8,39,402、下列各组线段中的三个长度:①9、12、15;②7、24、25;③32、42、52;④3a、4a 、5a (a>0);⑤m 2-n 2、2mn 、m 2+n 2(m 、n 为正整数,且m>n )其中可以构成直角三角形的有( )A 、5组B 、4组C 、3组D 、2组3、现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为( )A 、30厘米B 、40厘米C 、50厘米D 、以上都不对4、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。
八年级数学勾股定理的逆定理1(1)

18.2(1)勾股定理逆定理(1)

S四边形ABCD=36
练一练
1、已知 △ABC三角形的三边 分别为 a,b,c 且a = m - n ,b = 2mn, = m n c
2 2 2 2
(m > n,m,n是正整数), △ABC是直角三角形 吗?说明理由
分析:先来判断a,b,c三边哪条最长, 可以代m,n为满足条件的特殊值来试, m=5,n=4.则a=9,b=40,c=41,c最大。 解: a b (m n ) (2mn) (m n ) c
问: (1) 上述解题过程,从哪一步开始出现错误?请写出该 步的代号___ 3 a2- b2可能是0 (2) 错误原因是_________
直角三角形或等腰三角形 (3) 本题正确的结论是________
当堂检测
必做题:习题18.2 第2题(1)(2)(3)(4) 第1题(3)(4) 第5题(自己据题目画出图形) 选做题: 第4题(写出推理过程) 拓展题: 第6题(判断并写出证明过程)
(逆定理) 勾股定理的逆命题
如果三角形的三边长a、b、c满足
2 a
+
2 b
=
2 c
那么这个三角形是直角三角形。
勾股定理
(互逆定理) 互逆命题
如果直角三角形两直角边分别为a,b, 斜边为c,那么 a2 + b2 = c2
中考链接
已知:如图,四边形ABCD 中,∠B=900,AB=3,BC=4, CD = 12 , AD = 13, 求 四 边 形 ABCD的面积?
B
a
C
B'
a
C'
∵ ∠ C’=900 ∴ A’B’2= a2+b2
∵ a2+b2=c2
勾股定理的逆定理12勾股定理的逆定理1

1.“如果同旁内角互补,那么两条直线平行”的题设是
_____, 结论是 ,逆命题是_______.
2.“对顶角相等”的的题设是 结论是
,逆命题
是_______.
3. 已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、
c,分别为下列长度,判断该三角形是否是直角三角形?
(1)a=6,b=8,c=10; (2)a=5,b=12,c=13;
平方之间的大小关系. 你能发现什么规律?
量一量的结论 (1):3、4、5 ; 直角 三角形 (2):3、6、8; 钝角 三角形
(3):6、8、10 ;直角 三角形
算一算的结论 大小关系:32 ? 42 __=__ 52
_______3_2 _?_1_0_2 ___
探究一:动手实践.
(一)、画一画.画出边长分别是下列各组数的三角形(单位:厘米).
(1):3、4、5 ;(2):3、6、8;(3):6、8、10
(二)、量一量.用你的量角器分别测量一下小组内同学画出的三个三角形的
最大角的度数,并判断上述你们所画的三角形的形状:(按角分类)
(三)、算一算.请比较上述每个三角形的两条较短边的平方和与最长边的
第5题图
学习体会
1.本节课你又那些收获? 2.预习时的疑难问题解决了吗?你还有那些疑惑? 3.你认为本节还有哪些需要注意的地方?
当堂达标
(3)a=5,b=7,c=9; (4)a=8,b=15,c=17;
尝试应用
4.说出下列命题的逆命题.这些命题的逆命题成立吗? (1)两条直线平行,内错角相等. (2)如果两个实数相等,那么它们的平方相等. (3)如果两个实数相等,那么它们的绝对值相等. (4)全等三角形的对应角相等. 5.如图所示△ABC三边a,b,c为边向外作正方形, 若S1+S2=S3成立,则△ABC是什么三角形?为什么?
八年级数学勾股定理的逆定理1

原命题:猫有4只脚 逆命题:有4只脚的是猫
(正确)
(不正确)
(正确)
原命题:等边三角形的三边相等。
(不正确) 逆命题:三边相等的三角形是等边三角形。 (1)任何一个命题都有逆命题; (2)原命题正确,逆命题不一定正确;原命题不正 确,逆命题可能正确。 (3)原命题与逆命题的关系是题设和结论相互转换
写出下列命题的逆命题并判断它们是否成立:
(1)等腰三角形的两底角相等
原命题:如果一个三角形是等腰三角形,那么这个 三角形的两底角相等。
逆命题:如果一个三角形的两底角相等,那么这个 三角形是等腰三角形。
勾股定理: 若直角三角形的两直角边为a ,b , 斜边为 c ,则有
a2+ b2=c2。
逆定理:
2 2
B
)
A、锐角三角形 C、钝角三角形
B、直角三角形 D、等边三角形
已知a,b,c为△ABC的三边,且满 足 a2+b2+c2+338=10a+24b+26c. 试判断△ABC的形状.
训练:
1.如图,两个正方形的面积分别为64,49, 则AC=( ) 17 A
D 64 49
C
2.由四根木棒,长度分别为3,4,5,12, 13 若取其中三根木棒组呈三角形,有( ) 4 种取法,其中,能构成直角三角形的是 ( )种取法。 2
2. 将直角三角形的三边的长度扩大同样的倍数, 则得到的三角形是 ( A )
A. 是直角三角形;
B. 可能是锐角三角形;
C. 可能是钝角三角形; D. 不可能是直角三角形.
中考链接
已知:如图,四边形 ABCD 中,∠B=900,AB=3,BC=4, CD = 12 , AD = 13, 求 四 边 形 ABCD的面积?