实变函数与泛函分析第1讲

合集下载

实变函数与泛函分析课程教学大纲

实变函数与泛函分析课程教学大纲

《实变函数与泛函分析》课程教学大纲一、课程基本信息课程代码:110047课程名称:实变函数与泛函分析英文名称:Real variable analysis And Functional analysis课程类别:专业基础课学时:50学分:3适用对象:信息与计算科学专业本科考核方式:考试,平时成绩30%,期末成绩70%先修课程:数学分析和高等代数二、课程简介中文简介:实变函数起源于对连续而不可微函数以及Riemann可积函数等的透彻研究,在点集论的基础上讨论分析数学中一些最基本的概念和性质,其主要内容是引入Lebesgue积分并克服了Riemann积分的不足。

它是数学分析的继续、深化和推广,是一门培养学生数学素质的重要课程,也是现代数学的基础。

泛函分析起源于经典的数学物理边值问题和变分问题,同时概括了经典分析的许多重要概念,是现代数学中一个重要的分支,它综合运用了分析、代数与几何的观点和方法研究、分析数学和工程问题,其理论与方法具有高度概括性和广泛应用性的特点。

英文简介:Real variable analysis And Functional analysis is a theoretical course of mathematics which can be used in variable fields such as engineering and technology, physics, chemical, biology, economic and other fields. The educational aim in this course is to develop the abilities of students in analyzing and solving practical problem by the special ways of Real variable analysis And Functional analysis’ thinking and reasoning.三、课程性质与教学目的本课程是在实变函数与泛函分析基本理论的基础上,着重泛函分析的应用,教学的目的是丰富学生的知识和培养学生解决实际问题的能力。

实变函数论与泛函分析

实变函数论与泛函分析

实变函数论与泛函分析实变函数论与泛函分析是数学家们在研究函数分析的时候提出的一种理论模式。

实变函数论是一门理论体系,其研究的对象主要是和函数之间的关系。

泛函分析则注重对函数本身的进行分析。

实变函数论与泛函分析介绍如下:一、实变函数论1.定义实变函数论是指研究将一个变量关于另一个变量而又依赖于一个参数时函数的行为和性质的学科。

它试图分析它们之间的关系,在有限或无限的变量区间上建立关于函数的数学模型和理论,并导出用于解决数学问题的一般定理和式子。

2.应用实变函数论在各个数学学科,特别是微积分学中有着重要的地位。

在微积分中,它们被用来研究函数和变量之间的关系,帮助分析变量的变化率、局部变化规律以及参数对变量的影响等方面的数学模型,以及表示形式的分析等等。

二、泛函分析1.定义泛函分析是一门概括实变函数性质的学科。

它是研究实变函数的性质的一种新的数学方法,其研究的主要对象是函数本身的特征。

它不仅仅关注实变函数的变化规律以及参数对变量的影响,而且重视函数本身的一般特征。

2.应用泛函分析在数学中广泛应用,用它可以分析函数表示形式、函数图像、数值函数特征等,以及函数变量范围等方面的信息。

泛函分析可以快速求解实变函数存在的问题,例如函数的变换矩阵以及函数的定义域等等,并可以用来帮助分析实变函数在不同区间的特征。

它还可以帮助机器学习和统计学家们更好地探索实变函数方程的内在特征。

总之,实变函数论与泛函分析是数学家们用来研究函数的理论尝试,涉及到函数之间的关系、特征以及数学上的分析。

它们在数学学科中都具有重要的地位,为数学应用研究提供了强有力的帮助。

实变函数与泛函分析要点

实变函数与泛函分析要点

实变函数与泛函分析要点实变函数是指定义在实数集上的函数。

泛函分析是数学领域中的一个分支,研究无穷维的向量空间中的函数,函数可以是函数空间的元素,也可作为泛函作用于其他函数上。

以下是实变函数与泛函分析的一些重要要点:1.实变函数的定义与性质:实变函数是一个定义在实数集上的函数,即其自变量和值都是实数。

实变函数可以分为一元函数和多元函数两种。

一元实变函数常见的类型包括常值函数、线性函数、幂函数、指数函数、对数函数、三角函数等。

多元实变函数一般是一元实变函数的扩展,引入了多个实数自变量。

2.实变函数的极限与连续性:实变函数的极限概念与数列极限类似,但要考虑函数在自变量无穷大时的极限。

连续函数是实变函数中很重要的一类,其定义是指函数在其定义域内的任意点上都有极限,并且极限值等于函数在该点的函数值。

连续函数具有许多重要的性质,如介值定理、最大最小值定理、魏尔斯特拉斯逼近定理等。

3.实变函数的导数与微分:实变函数的导数是研究实变函数变化率的重要工具,通过导数可以求得函数的切线、切平面、切量等。

导数的定义是函数在一点处的极限,有了导数概念之后,可以引入微分的概念,将实变函数局部线性化。

4.实变函数的积分与级数:实变函数的积分是对函数在一定区间上的面积或曲线下面积进行求和的过程。

具体可以分为定积分和不定积分两种,常见的积分方法包括牛顿-莱布尼茨公式、换元积分法、分部积分法等。

级数是实变函数的另一个重要概念,是无穷多项之和的极限形式,数学分析中常用到的级数包括幂级数、傅里叶级数等。

5.泛函分析的基本概念:泛函是一个将向量空间中的函数映射到实数域的映射,也可以理解为对函数进行描写或度量的方式。

泛函分析是考虑无穷维向量空间上的泛函的性质与运算的数学分支。

泛函分析包括拓扑向量空间、线性算子、度量性等方面的内容。

6.泛函分析中的函数空间:函数空间是泛函分析中一个重要的研究对象,它是一组具有特定性质的函数的集合。

常见的函数空间包括连续函数空间、可测函数空间、Lp 空间等。

教学大纲_实变函数与泛函分析

教学大纲_实变函数与泛函分析

教学大纲_实变函数与泛函分析实变函数与泛函分析是高级数学中的一门重要课程,主要涉及实变函数的性质及其应用,以及泛函分析中的函数空间与算子的概念和性质。

本教学大纲旨在培养学生对实变函数与泛函分析的基本理论和方法的理解与应用能力。

一、课程目标通过本课程的学习,学生应该能够:1.了解实变函数的定义、性质和基本的分析方法;2.掌握实数的完备性和实变函数的连续性、可微性等基本概念与定理;3.熟悉重要的实变函数序列收敛的理论和方法;4.理解一元多项式空间及其上的内积、范数等概念;5.了解泛函分析的基本概念,如线性算子、单射、满射、闭算子等;6.掌握泛函分析中重要的泛函空间和赋范向量空间的性质与应用。

二、教学内容1.实变函数的性质与基本分析方法(12学时)1.1实数的完备性与实变函数的极限概念1.2实变函数的连续与可导性质1.3实变函数的积分与微分概念与定理2.实变函数的序列收敛理论与方法(16学时)2.1一致收敛性与收敛级数理论2.2函数项级数的收敛理论与方法2.3 Weierstrass逼近定理的证明与应用2.4傅里叶级数的概念、性质及展开方法3.一元多项式空间与泛函分析基础(14学时)3.1一元多项式空间及其上的内积与范数3.2一元多项式空间中的正交多项式与勒让德多项式3.3泛函分析的基本概念与定理4.泛函空间与线性算子(18学时)4.1泛函空间的定义与性质4.2无穷维度空间的收敛性与紧性4.3线性算子的基本性质与分类4.4线性算子的连续性与有界性5.算子的谱理论与泛函方程(20学时)5.1线性算子的谱理论与应用5.2巴拿赫空间的定义与性质5.3泛函方程的基本理论与应用5.4泛函方程的解的存在唯一性定理三、教学方法1.理论教学:通过讲述与讲解基本概念与定理,引导学生掌握基本原理和方法。

2.解题指导:通过典型例题和习题,引导学生独立思考问题,掌握解题方法和技巧。

3.讨论与交流:鼓励学生参与讨论,提问和回答问题,促进学生之间的交流与合作。

《实变函数与泛函分析基础》第二版 程其襄 9§1-5,习题选讲与答案

《实变函数与泛函分析基础》第二版 程其襄  9§1-5,习题选讲与答案

第九章 内积空间和希尔伯特空间例题选讲例1. Hilbert 是X 可分的充分必要条件X 存在一个可数的完全规范正交系{}n e 证明:若X 是可分的,设{}n x 是X 的一个可数稠密子集。

不妨设{}n x 是线性无关的。

用Gram Schmidt -方法,存在可数的完全规范正交系{}n e ,使span {}1,,n e e ={}1,,n span x x 。

这样。

因此{}n e 是完全的。

反之,若{}ne 是X 的一个完全规范正交系,则span{}n e 在X 中稠密。

()01,,1,2,3,n k k k k k k X a ib e a b Q N =⎧⎫=+∈=⎨⎬⎩⎭∑是X 中的可数稠密子集,因此X 是可分的。

证毕例2.求证:P 是Hilbert 空间X 上的投影算子的充分必要条件是:2P P =且*P P = 证明:设P 是X 中相对应与闭线性子空间Y 的投影算子。

对任意x ∈X ,存在1x Y ∈,2x ∈Y ⊥,使12x x x =+,1Px x =。

对于1x ,1x =10x +,其中1x Y ∈,0Y ⊥∈。

因此11Px x =,即21P x Px Px ==,因此2P P =设,x y X ∈,12x x x =+,12y y y =+。

其中11,x y Y ∈,22,x y Y ⊥∈。

这样()()()()()1121112,,,,,Px y x y y x y x x Py x Py =+==+=。

这就证明了*P P =。

反之,若P 满足*P P =,*P P =。

令{}Y x Px x ==,则Y 是X 中的线性子空间。

Y 还是闭的。

事实上,若n x Y ∈,0lim n n x x →∞=,则00lim lim n n n n Px Px x x →∞→∞===。

故0x Y ∈,因此Y 是闭的线性子空间,我们要证明P 是Y 上的投影算子。

设x X ∈,则()x Px x Px =+-。

《实变函数与泛函分析》教学大纲-数学专业

《实变函数与泛函分析》教学大纲-数学专业

实变函数与泛函分析教学大纲应用数学与信息计算等专业使用修订单位:山东财政学院统计与数理学院修订时间:2009年8月修订课程中文名称:实变函数与泛函分析课程英文名称:Real Analysis and functional Analysis 课程号:30001001学时数:68学分数:4先修课程:数学分析、线性代数适用专业:应用数学与信息计算等专业。

一、课程的性质和任务1. 课程性质《实变函数与泛函分析》是数学专业的一门专业基础课程。

《实变函数》课程结合抽象测度与积分理论, 介绍Lebesgue测度与Lebesgue积分的理论。

通过本课程的学习, 应使学生掌握测度论和实变函数论的基本理论和方法, 并且应用所学知识, 解决一些相关的理论和应用问题, 解决一些具有一定难度的习题。

同时, 通过本课程的学习, 要加深学生对数学分析课程中知识的理解, 培养学生严密的逻辑思维能力。

《泛函分析》课程是现代教学中的一门较新的数学分支,它综合地运用分析的,代数和几何的观点,方法研究分析数学中的许多问题,由它把具体的分析问题,由于它把具体的分析问题抽象到一种更加纯粹的代数拓扑结构的形式中进行研究,因此逐步形成了综合运用代数,几何平段处理问题的新方法,正因为这种纯粹形式的代数,拓扑结构是跟植于肥沃的经典分析和数学物理土壤之中的,所以由此发展起来的基本概念,定理和方法也就显的更为广泛,更为深刻,现在泛函分析已成为一门内容丰富,方法系统,体系完备,应用广泛的独立分支,通过该课程的学习,学生不仅能学到泛函分析的基本理论和方法,而且对学习其他数学分支以及把他应用到数理经济,现代控制论,量子场论,统计物理,工程技术等领域有很大帮助。

学生通过学习本课程,既能从较高的观点总结一、二年级学过的分析、代数中的有关概念、理论和方法,又能获得抽象思维和逻辑论证的进一步训练,为今后深入学习拓扑、微分方程、随机过程、最优化等现代数学各个学科提供基础。

实变函数与泛函分析.doc

实变函数与泛函分析.doc

《实变函数与泛函分析》教学大纲统计学(非师范类)专业用—、说明部分(一)课程性质、目的和教学任务本课程为统计学专业的专业限选课。

实变函数起源于对连续而不可微函数以及Riemann可积函数等的透彻研究,在点集论的基础上讨论分析数学中一些最基本的概念和性质,其主要内容是引入Lebesgue积分并克服了Riemann积分的不足。

它是数学分析的继续、深化和推广,是一门培养学生数学素质的重要课程,也是现代数学的基础。

泛函分析起源于经典的数学物理边值问题和变分问题,同时概括了经典分析的许多重要概念,是现代数学中一个重要的分支,它综合运用了分析、代数与几何的观点和方法研究、分析数学和工程问题, 其理论与方法具有高度概括性和广泛应用性的特点。

本课程是在实变函数与泛函分析基本理论的基础上,着重泛函分析的应用,教学的目的是丰富学生的知识和培养学生解决实际问题的能力。

本课程就其实质来说是方法性的,但对于应用学科的学生来说,作为授课的目的,则是知识性的,故在教学方法和内容的选择上来说,只能让学生了解那些体现实变函数与泛函分析基本特征的思想内容,冗难的证明过程应尽量避免。

(二)课程的教学原则和方法本课程的教学原则:理论课与习题课并重的原则:单项训练与综合训练相互结合的原则:经典的、基本的内容与现代数学的方法尽量结合的原则:直觉想象和审慎推敲相互结合和转化的原则。

教学方法是要在主要采用讲授法为主配合教改,使用讨论法、练习法等,仔细推敲概念间的相互联系和差异。

(三)课程的主要内容学时分配《实变函数与泛函分析》安排授课共90学时。

第一章集合与测度12学时第二章可测函数12学时第三章Lebesgue积分16学时第四章线性赋范空间24学时第五章内积空间16学时第六章有界线性算子与有界线性泛函10学时二、正文部分第一章集合与测度(一)教学的目的和要求1.了解集族的交并关系,映射及其性质,集的对等,可数集合;2.掌握度量空间的概念和度量空间中的点集3.理解直线上的测度和可测集4.掌握Lebesgue测度及相关理论;(二)教学重点集族的交并关系(三)教学难点度量空间的概念和测度及可测集的概念。

泛函分析讲义张恭庆答案

泛函分析讲义张恭庆答案

泛函分析讲义张恭庆答案【篇一:《泛函分析》课程标准】>英文名称:functional analysis课程编号:407012010 适用专业:数学与应用数学学分数:4一、课程性质泛函分析属于数学一级科下的基础数学二级学科,在数学与应用数学专业培养方案中学科专业教育平台中专业方向课程系列的一门限选课程。

二、课程理念1、培育理性精神,提高数学文化素养基础数学研究数学本身的内在规律,是整个数学学科的基础,它在数学学科其他领域、物理学、工程及社会科学中都有着广泛的应用。

《泛函分析》课程是数学与应用数学本科学生的专业课程之一,是数学分析、高等代数、实变函数等基础课程的后继课程,是研究生学习的基础,。

它不仅在数学学科占有十分重要的地位,而且在其他学科领域也有广泛的应用,掌握泛函分析的方法对学生更好地理解基础课程的理论将有很大的益处。

该课程培养学生的抽象思维能力、逻辑推理能力,体现知识、能力和素质的统一,符合应用型人才培养的目标要求。

2、良好的学习状态,提高综合解题能力本课程面对的是数学与应用数学专业四年级的学生。

学生刚刚结束教育实习,准备考研的学生进入紧张复习阶段,另一部分学生开始准备找工作。

《泛函分析》这门课内容比较抽象,课时又少,所以,如何让学生安保持良好的学习状态,是本门课要面对的一个重要问题,也是学生要面对的一个具体问题。

需要师生共同努力去正确面对才能顺利完成本门课的教学任务。

为学习研究生课程和现代数学打下必要的基础;进一步提高学生的数学素养。

3、内容由浅入深本课程的框架结构是根据教学对象和教学任务来安排的:“度量空间”泛函分析的基本概念之一,十分重要。

首先,引入度量空间的概念,并在引入度量的基础上定义了度量空间中的极限、稠密集、可分空间、连续映照、柯西点列、完备度量空间,对于一般的度量空间,给出了度量空间的完备化定理,并证明了压缩映照原理。

然后,在度量空间上定义线性运算并引入范数,就得到线性赋范空间以及巴拿赫空间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
或 .
三、集合与元素的关系
如果 是集合 的元素,则说 属于 ,记作 ,或说A含有a.
如果 不是集 的元素,则说 不属于 ,记作 ,或说A不含有a.
四、集合与集合的关系
1.包含:
是 的子集
若 且 ,就称A是 的真子集,规定空集是任何集的子集.
2.相等
材的第一章.不过,对于实变函数论来说,集论知识.
一、集合的概念及其表示
集合也称作集,是数学中所谓原始概念之一,即不能用别的概念加以定义,它像几
何学中的“点”、“直线"那样,只能用一组公理去刻画.就目前来说,我们只要求掌握以下朴素的说法:
“在一定范围内的个体事物的全体,当将它们看作一个整体时,我们把这个整体称
由 个元素 所组成的集合,可表示为
由全体自然数所组成的集合称为自然数集,可表示为 .
不含任何元素的集合称为空集,记作 .
2.描述法
当集 是具有某性质 的元素之全体时,我们用下面的形式表示 :
方程 的解x的全体组成的数集是
注:有时我们也把集 具有性质 改写成 具有性质 .例如,设
是定义在集合 上的一实函数, 是一个实数,我们把集 写成
第一章 集合§1集合的表示
由德国数学家Cantor所创立的集合论,是现代数学中一个独立的分支,按其本性
而言,集合论是整个现代数学的逻辑基础;而就其发展历史而言,则与近代分析(包括
实变函数论)的发展密切相关,实变函数通常是第一门大量运用集合论知识的大学数学
课程.因此,在现代数学教育中,对集合论知识的较系统的介绍,通常构成实变函数教
为一个集合,其中每个个体事物叫做该集合的元素.”
一个集合的元素必须彼此互异,而且哪些事物是给定集合的元素必须明确.以集合
作为元素的集合,也常称为集族或集类.以后常用大写字母 表示集合,用小写字母 表示集合中的元素.
二、集合的表示
1.穷举法:
有些集合可用列举其元素的办法来表示,如:
只含有一个元素 的集合称为单元素集或独点集,可表示为 .
相关文档
最新文档