冷却塔的选型系数

合集下载

空调水泵选型

空调水泵选型
暖通空调水泵选型要点
水泵简介:
冷冻水泵: 在冷冻水环路中驱动水进行循环流动的装臵。 我们知道,空调房间内的末端(如风机盘 管,空气处理机组等)需要冷水机组提供 的冷水,但是冷冻水由于阻力的限制不会 自然流动,这就需要水泵驱动冷冻水进行 循环以达到换热的目的。
冷却水泵: 在冷却水环路中驱动水进行循环流动的装臵。 我们知道,冷却水在进入冷水机组后带走 制冷剂一部分热量,而后流向冷却塔将这 部分热量释放掉。而冷却水泵就是负责驱 动冷却水在机组与冷却塔这个闭合环路中 进行循环。外形同冷冻水泵。
水管路比摩阻计算图 (1mmH2O=9.80665Pa)
局部阻力: 水流动时遇到弯头、三通及其他配件时, 因摩擦及涡流耗能而产生的局部阻力计算 公式为: Hd=ζ×(ρ×V2/2) 式中ζ——局部阻力系数,见下面的表格 V——水流速,m/s。
阀门及管件的局部阻力系数(ζ)表
三通局部阻力系数
③水管总阻力 水流动总阻力H(Pa)包括沿程阻力Hf和 局部阻力Hd,即: H=Hf+Hd
(3)补水泵扬程: 扬程为定压点与最高点距离+水泵吸水端和 出水端阻力+3~5mH2O的富裕扬程。 例题: 一幢约100m高的高层建筑,安装有海尔水 冷螺杆HX300数台,采用闭式空调水系统, 试估算冷冻水泵所需的扬程。
解答: 1.冷水机组蒸发器阻力,查产品样册:60 kPa(6m水柱); 2.管路阻力:取冷冻机房内的除污器、集水器、分水器及管路等 的阻力为50 kPa;取输配侧管路长度300m与比摩阻300 Pa/m,则摩 擦阻力为300*300=90000 Pa=90 kPa;如考虑输配侧的局部阻力为 摩擦阻力的50%,则局部阻力为90 kPa*0.5=45 kPa;系统管路的总 阻力为50 kPa+90 kPa+45 kPa=185 kPa(18.5m水柱); 3.空调末端装臵阻力:空气处理机组的阻力一般比风机盘管阻力 大,故取前者的阻力为45 kPa(4.5m水柱)(可以参照产品样册确 定); 4.二通调节阀,Y型过滤器等的阻力:取40 kPa(4.0m水柱)。 5. 水系统的各部分阻力之和为:60 kPa+185kPa+45 kPa+40 kPa=330 kPa(33m水柱) 6.水泵扬程:取15%的安全系数,则扬程 H=33m*1.15=37.95m。 根据以上估算结果,可以基本掌握类同规模建筑物的空调水系统的压 力损失值范围,尤其应防止因未经过计算,过于保守,而将系统压力 损失估计过大,水泵扬程选得过大,导致能量浪费。

冷却塔设计计算举例

冷却塔设计计算举例

冷却塔设计计算举例冷却塔是一种常用的热交换设备,主要用于将热水冷却至一定温度。

其设计计算是为了保证冷却效果和安全性能。

下面以一个简单的冷却塔设计计算举例进行说明。

一、设计参数确定1.冷却介质:假设为水,需要冷却至25℃。

2.进口温度:假设为70℃。

4.气象条件:温度为35℃,湿度为80%,周围空气压力为101.325千帕。

二、冷却介质流量计算根据热负荷和进出口温差可以计算出冷却介质的流量,常用的公式为:Q = m * Cp * (Tout - Tin)其中,Q为热负荷,m为流量,Cp为冷却介质的比热容,Tout为出口温度,Tin为进口温度。

假设冷却介质的比热容为4.18千焦/千克.摄氏度,则可以得到:解得冷却介质的流量m为641.76千克/小时。

三、冷却风量计算冷却塔利用气流将冷却介质中的热量带走,所以需要计算冷却风量。

冷却风量的计算公式为:Q = ρ * Qa * (h - 1) / (ρa * Cp * (Tout - Tin))其中,Q为热负荷,ρ为冷却介质的密度,Qa为冷却介质的流量,h 为感温系数,ρa为空气密度,Cp为冷却介质的比热容,Tout为出口温度,Tin为进口温度。

假设冷却介质的密度为1000千克/立方米,空气的密度为1.225千克/立方米,则可以得到:解得感温系数h为0.743四、塔高计算根据冷却风量的计算结果和冷却介质的温度变化,可以通过查表或者利用经验公式计算出塔高。

假设根据经验公式计算得到塔高为20米。

五、填料选择填料可以增加冷却面积,提高冷却效果。

根据冷却塔的设计参数,可以选择适合的填料。

假设选择波纹板填料。

六、风机功率计算风机功率的计算公式为:P = Qa * h * ρ * (Pout - Pin)其中,P为风机功率,Qa为冷却介质的流量,h为感温系数,ρ为冷却介质的密度,Pout为塔顶的绝对压力,Pin为塔底的绝对压力。

假设塔顶的绝对压力为101.325千帕,塔底的绝对压力为101.425千帕,则可以得到:P=641.76*0.743*1000*(101.325-101.425)解得风机功率P为739.32千瓦。

冷却塔常识

冷却塔常识

北京市京港玻璃钢有限公司创业1973年,地处北京市三。

四环路之间紧邻京津.京沈高速路,占抵600m。

拥有多种生产部门。

先进的“CAD”设计系统和HSE安全管理体系.督促行业自律。

规范行业健康发展,厚载学研基础.把多种学科玻璃钢制造技术发展到国际领先水平.实现了产业发展,开辟了京港前程.公司系中国复合材料工业协会、中国玻璃钢学会、中国冷却塔研究会,多年凝聚百名博大精英为中国“复合材料”玻璃钢事业做出了卓越贡献.目前玻璃钢夹沙管道、缠绕容器、软水管、冷却塔;出口到国内外几十个国家及地区是国内水工业、洁净循环水行业、化工行业使用管、罐的骨干生产厂。

玻璃钢成型管罐耐压、耐磨、耐强腐蚀、延年易用、造价低等是用户及设计师在行业竞选、考察、论证中最关注的焦点,也是玻璃钢业界在学术上长期争论不休的问题.京港玻璃钢公司在研究国内外冷却塔经验与新冷却塔开发中,特感谢中国水科院、西安科技大学、机械部四院、上海交通大学、吉化公司设计院、天津石化设计院有关专家、教授对冷却塔研究做出卓越成绩的传授交流。

感谢化工部、水电部各设计院及冷却塔研究会对几代冷却塔事业发展做出的贡献。

主要产品:复合材料(玻璃钢):缠绕管道、缠绕容器、缠绕软化水罐、缠绕过滤器及贮罐、冷却塔、空调末端通风系列产品、喷砂除锈、玻璃钢防腐、“聚脲"新型材料防腐防渗漏工程。

质量保证。

售后服务: 公司严格执行《采购控制程序《检验和验收控制程序》贯彻《质量振兴纲要》生产控制程序》和《搬运.储存。

安装。

防护和交付控制程序》.产品实行“三包”,供货期:国内六天,京津300km区域两天发到用户现场。

承担质量索赔.退货及延误罚金。

一、逆流塔:1、水在塔内填料中,水自上而下,空气自下而上,两者流向相反一种冷却塔。

2、逆流冷却塔热力性能好、分三个冷却段:①布水器到填料顶这一空间,此段的水温较高,所以仍可将热量传给空气.②填料水与空气热交换段。

③填料至集水池空间淋水段,水在此段被冷却称之为“尾效”。

闭式冷却塔的选型、制作方法和原理

闭式冷却塔的选型、制作方法和原理

闭式冷却塔的选型、制作方法和原理冷却塔选型须知:1、请注明冷却塔选用的具体型号,或每小时处理的流量。

2 、冷却塔进塔温度和出塔水温.3、请说明给什么设备降温、现场是否有循环水池,现场安装条件如何.4、若需要备品备件及其他配件,有无其他要求等请注明。

5、非常条件使用请说明使用环境和具体情况,以便选择适当的冷却塔型号。

6、特殊情况、型号订货时请标明,以双方合同、技术协议约定专门进行设计.冷却塔详细选型:1、首先要确定冷却塔进水温度,从而选择标准型冷却塔、中温型冷却塔还是高温型冷却塔。

2、确定使用设备或者可以按照现场情况对噪声的要求,可以选择横流式冷却塔或者逆流式冷却塔。

3、根据冷水机组或者制冷机的冷却水量进行选择冷却塔流量,一般来讲冷却塔流量要大于制冷机的冷却水量。

(一般取1.2—1.25倍).4、多台并联时尽量选择同一型号冷却塔。

其次,冷却塔选型时要注意:1、冷却塔的塔体结构材料要稳定、经久耐用、耐腐蚀,组装配合精确。

2、配水均匀、壁流较少、喷溅装置选用合理,不易堵塞.3、冷却塔淋水填料的型式符合水质、水温要求。

4、风机匹配,能够保证长期正常运行,无振动和异常噪声,而且叶片耐水侵蚀性好并有足够的强度.风机叶片安装角度可调,但要保证角度一致,且电机的电流不超过电机的额定电流。

5、电耗低、造价低,中小型钢骨架玻璃冷却塔还要求质量轻。

6﹑冷却塔应尽量避免布置在热源、废气和烟气发生点、化学品堆放处和煤堆附近。

7、冷却塔之间或塔与其它建筑物之间的距离,除了考虑塔的通风要求,塔与建筑物相互影响外,还应考虑建筑物防火、防爆的安全距离及冷却塔的施工及检修要求.8、冷却塔的进水管方向可按90°、180°、270°旋转.9、冷却塔的材料可耐—50℃低温,但对于最冷月平均气温低于-10℃的地区订货时应说明,以便采取防结冰措施。

冷却塔造价约增加3%。

10、循环水的浊度不大于50mg/l,短期不大于100mg/l不宜含有油污和机械性杂质,必要时需采取灭藻及水质稳定措施。

冷却塔的选型汇总

冷却塔的选型汇总

冷却塔的选型汇总冷却塔是工业生产中常见的一种热交换设备,用于将工业生产过程中产生的废热通过散热的方式降低温度,保证工艺设备正常运行。

在选择冷却塔时,需要考虑多种因素,包括工艺要求、冷却负荷、环境条件等,以确保所选冷却塔能够满足工艺需求并具有良好的性能。

1.冷却负荷冷却负荷是选择冷却塔的重要参数之一、冷却负荷的大小取决于工艺设备的热负荷和传热系数。

对于冷却负荷较大的工艺设备,应选择冷却塔冷却能力较大的型号。

2.冷却介质选择冷却塔时需要考虑冷却介质的性质和化学成分。

不同的冷却介质可能对塔身和换热器材料产生腐蚀或者堵塞的作用,因此需要选择能够适应冷却介质的材料。

3.环境条件环境条件对冷却塔的选型和操作有重要影响。

例如,环境温度的高低会直接影响冷却塔的散热效果,因此,需要选择能够适应高温环境的冷却塔。

此外,环境中的颗粒物和油污等也可能会堵塞冷却塔,因此,对于含有较多杂质的环境,需选择能够更好地过滤杂质的冷却塔。

4.设计结构冷却塔常见的设计结构有流动式和关闭式两种。

流动式冷却塔适用于冷却需求较大的工业生产,其特点是易于维护和清洁;关闭式冷却塔适用于环境要求较高的场合,其特点是节约用水。

5.能耗与维护在选择冷却塔时,需要考虑其能耗和维护成本。

一般而言,能效较高的冷却塔在长期运行中能够降低能耗并减少维护成本,因此,应选择具有较高能效的冷却塔。

根据上述因素,以下是一些常见的冷却塔选型汇总:1.露天式冷却塔露天式冷却塔适用于冷却负荷较大且环境条件较好的场合,在电力、钢铁、石化等行业广泛应用。

其特点是散热效果好且维护简单,但对环境要求较高。

2.射流式冷却塔射流式冷却塔适用于冷却需求较大的工业生产,它利用高速水流的冲击将废热带走,具有节能、占地面积小的优点。

常见的射流式冷却塔有喷淋式、喷射式和喷洒式等。

3.空冷式冷却塔空冷式冷却塔适用于环境温度较高的地区,它通过增大散热面积,利用自然风扇或强制风扇将废热带走,具有节能、维护简单的特点。

双曲线冷却塔

双曲线冷却塔

双曲线冷却塔结构优化计算与选型(2008-12—14 22:20:52)转载分类: 天力知识标签:杂谈【Optimized Calculation and Model Selection of Double Curved Cooling Towers】[摘要]目前,火电厂机组容量不断增大,其冷却塔亦向超大型方向发展.对冷却塔结构进行优化可保证冷却塔设计的安全性、经济性、合理性.冷却塔优化包含热力选型优化和结构本体优化,其中热力选型优化包括塔高与淋水面积的选配,塔高主要部位几何尺寸的相关比值等;结构本体优化包括在合适的荷载组合下,保证热力选型所确定的冷却塔主要尺寸、风筒几何尺寸比值、壳底斜率及壁厚等。

通过优化计算,进行几个较优方案的技术经济性的比较,找出安全性、经济性、合理性最优的方案。

[关键词]冷却塔结构计算设计优化0概论双曲线逆流式自然通风冷却塔是火力发电厂循环水系统中应用最广泛的冷却设备。

随着电厂机组容量的不断增大,冷却塔的淋水面积和塔高也不断增大、增高,冷却塔的结构优化计算和选型显得十分重要,它是冷却塔尤其是超大型冷却塔设计的经济性、合理性和安全性的基本保证。

冷却塔主要由钢筋混凝土双曲线旋转薄壳通风筒、斜支柱、环型基础或倒“T"型基础(含贮水池)及塔芯淋水装置组成,详见图1.冷却塔通风筒包括下环梁、筒壁、塔顶刚性环3部分.下环梁位于通风筒壳体的下端,风筒的自重及所承受的其他荷载都通过下环梁传递给斜支柱,再传到基础.筒壁是冷却塔通风筒的主体部分,它是承受以风荷载为主的高耸薄壳结构,对风十分敏感。

其壳体的形状、壁厚,必须经过壳体优化计算和曲屈稳定来验算,是优化计算的重要内容。

塔顶刚性环位于壳体顶端,是筒壳在顶部的加强箍,它加强了壳体顶部的刚度和稳定性。

斜支柱为通风筒的支撑结构,主要承受自重、风荷载和温度应力。

斜支柱在空间是双向倾斜的,按其几何形状有“人"字形、“V”字形和“X”字形柱,截面通常有圆形、矩形、八边形等。

冷却塔的设计与计算

冷却塔的设计与计算
冷却塔的设计与计算
一、设计任务范围与技术指标
(一)工艺设计任务: 第一类问题:设计新塔:热力计算、阻力计
算,决定塔体尺寸,选择风机,水力计算、设 计水泵。 第二类问题;校核计算,校核所选得定型塔, 校核冷却后水温就是否能达到要求。
(二)设计范围: 1、选择塔型:P498表23-8
据当地条件,及生产能力,定塔型,选填料。据 p491表23—4;及其她设备。水泵,风机。
Fi——塔内各不同部位得截面积(㎡)
G——所需风量, 由
求得。
D
G Q
也可拟定风机,在风机特性曲线高效区查定风量G。
(2)空气阻力: 塔体由冷空气进口至出口各部分得局部阻力:
H
i
mVi 2
2
Pa
ξi——局部阻力系数可查有关手册;
ρm——塔内湿空气平均密度。㎏/m3
填料得阻力最大,可由 P491 f 23-36 关系曲线
B——电机安全系数B:1、15~1、20
2、风筒式自然通风冷却塔: (1)原理: (2)计算: 抽力Z=阻力H
求塔高He(有效高) Z=He(ρ1-ρ2)g(Pa)
H
vm2 2
m Pa
ρ1,ρ2—塔外和填料上部得空气密度
(㎏/ m3)
ρm——塔中平均空气密度
m
1
2
2
kg / m3
vm——淋水填料中得平均风速(m/s)
vm
2He 1 2 g
m
(vm一般取o、6~1、2m/s)
He——塔风筒有效高,填料中点到塔顶。
He
vm2 2g
m 1 2
ξ——总D0
2
0.32D0
Fm FT
p
H0——进风口高度,(m) D0——进风口直径, (m) Fm——淋水填料面积,(㎡) FT——风筒出风口面积,(㎡) ξp——填料阻力系数,(实验定) D——填料1/2高处直径, (m)

冷却塔设计技术规范

冷却塔设计技术规范

冷却塔设计技术规范8.4.1选型。

1 机械通风冷却塔:分为逆流式和横流式,见图8.4.1—1。

逆流塔又有圆形和方形。

设计时应根据外形,环境条件,占地面积,管线布置,造价和噪声要求等因素,因地制宜,合理选用。

逆流式和横流式的比较见表8.4.1。

2 喷射式冷却塔:是湿式冷却塔中另一种型式的冷却塔。

按工艺构造分为喷雾填料型(见图8.4.1—2)和喷雾通风型(见图8.4.1—3)两种。

喷射式冷却塔具有无电力风机、无振动、噪声相对较低、结构简单等特点,但供水压力和水质要求较高,与机械通风冷却塔相比,在节能、售价和运行管理方面无明显的综合优势,且喷雾通风型冷却塔还存在占地面积较大,塔体偏高,喷雾通风装置上旋转部件有出现生锈卡死不转现象。

因此,该塔目前作为工程设计选用的一种塔型,有待进一步完善和长期运行考察。

8.4.2 位置选择。

1 气流应通畅,湿热空气回流影响小,且应布置在建筑物的最小频率风向的上风侧。

2 冷却塔不应布置在热源、废气和烟气排放口附近,不宜布置在高大建筑物中间的狭长地带上。

3 冷却塔与相邻建筑物之间距离,除满足冷却塔的通风要求外,还应考虑噪声、飘水等对建筑物的影响。

4 有裙房的高层建筑,当机房在裙房地下室时,宜将冷却塔设在靠近机房的裙房屋面上。

5 冷却塔如布置在主体建筑屋面上,应避开建筑物立面和主要入口处,宜减少其外观和水雾对周围的影响。

8.4.3 布置要求。

1 冷却塔宜单排布置,当需多排布置时,长轴位于同一直线的相邻塔排净距不小于4.0m,长轴不在同一直线上相互平行布置的塔排净距不小于塔的进风口高度的4倍。

每排的长度与宽度之比不宜小于5:1。

2 根据冷却塔的通风要求,塔的进风口侧与障碍物的净距不宜小于塔进风口高度的2倍。

3 周围逆风的塔问净距不宜小于冷却塔逆风口高度的4倍。

4 冷却塔周边与塔顶应留有检修通道和管道安装位置,通道净宽距不宜小于1.0m。

5 冷却塔应设置在专用基础上,不得直接设置在屋面上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

冷却塔的选型系数
【实用版】
目录
一、冷却塔选型概述
二、冷却塔的选型系数
三、冷却塔的类型及分类
四、冷却塔选型的方法与考虑因素
五、冷却塔应用场景及实例
六、冷却塔的维护与优化
正文
一、冷却塔选型概述
冷却塔是工业生产和空调系统中重要的散热设备,它的主要功能是通过水循环将产生的热量散发到空气中,以保持设备的正常运行温度。

冷却塔的选型关系到整个系统的运行效率、节能效果和设备寿命,因此合理的冷却塔选型十分重要。

二、冷却塔的选型系数
冷却塔的选型系数主要包括以下几个方面:
1.热负荷:即设备产生的热量,是冷却塔选型的主要依据。

热负荷的计算公式为:Q = W ×ΔT,其中 Q 表示热负荷,W 表示设备的功率,ΔT 表示设备温度与环境温度的差值。

2.冷却能力:冷却塔的冷却能力是指在单位时间内,冷却塔能带走的热量。

冷却能力的计算公式为:q = m × c ×ΔT,其中 q 表示冷却能力,m 表示水的质量流量,c 表示水的比热容,ΔT 表示水的温差。

3.流量:流量是指单位时间内通过冷却塔的水量。

流量的计算公式为:
Q = A × v,其中 Q 表示流量,A 表示冷却塔的横截面积,v 表示水的流速。

4.效率:冷却塔的效率是指冷却塔实际冷却能力与理论冷却能力之比。

效率的计算公式为:η = q 实际 / q 理论× 100%,其中η表示效率,
q 实际表示冷却塔的实际冷却能力,q 理论表示冷却塔的理论冷却能力。

5.噪声:冷却塔的噪声是指冷却塔运行时产生的声音。

噪声的计算公式为:L = 10 × log10 (I / I0),其中 L 表示噪声级,I 表示冷却塔的声功率级,I0 表示参考声功率级(一般取为 10^-12W/m^2)。

三、冷却塔的类型及分类
冷却塔根据热水和空气的流动方向分为逆流式冷却塔、横流式冷却塔和混流式冷却塔;根据用途分为一般空调用冷却塔、工业用冷却塔、高温型冷却塔;根据噪声级别分为普通型冷却塔、低噪型冷却塔、超低噪型冷却塔、超静音型冷却塔;还有其他类型的冷却塔,如喷流式冷却塔、无风机冷却塔、双曲线冷却塔等。

四、冷却塔选型的方法与考虑因素
冷却塔的选型应考虑以下几个方面:
1.设备热负荷:根据设备的热负荷,选择冷却能力相当的冷却塔。

2.环境条件:考虑冷却塔的安装位置、气候条件、空气湿度等因素,选择适合的冷却塔类型。

3.噪声要求:根据噪声控制要求,选择相应噪声级别的冷却塔。

4.运行维护:考虑冷却塔的运行维护成本,选择性价比较高的冷却塔。

5.系统兼容性:确保冷却塔与整个散热系统相容,避免因选型不当导致的系统故障。

五、冷却塔应用场景及实例
冷却塔广泛应用于工业生产、空调系统、热力发电等领域。

例如,在
空调系统中,冷却塔用于将室内产生的热量通过水循环排放到室外,以保持室内温度的稳定。

在热力发电中,冷却塔用于降低汽轮机排出的高温高压蒸汽的温度,以便再次利用。

六、冷却塔的维护与优化
为了保证冷却塔的正常运行和延长使用寿命,应定期进行维护和检查,包括清洁冷却塔内部、检查水泵和电机、更换填料等。

相关文档
最新文档