遗传参数协同进化的自适应遗传算法

遗传参数协同进化的自适应遗传算法
遗传参数协同进化的自适应遗传算法

自适应遗传算法讲解学习

自适应遗传算法

自适应遗传算法 一.主要流程: 1. 参数的初始化。设定遗传种群规模N ,阵元数M ,信源数P 等。 2. 编码。采用十进制编码方法。 3. 初始种群的产生。随机数生成。 4. 适应度函数的评价。选取 ()() R P ΘA )tr f = (1) 其中, H 1H )(A A A A P A -= (2) P A 是A 的投影矩阵,A 是阵列流型。 ∑==L i L 1 H 1XX R ) (3) R )是数据协方差矩阵的最大似然估计。 5. 选择。比例选择方法与精英选择方法结合使用,在当代种群中选择优良个体遗传到下一代。既保证了种群的多样性,也使最优个体得以保留。 1)比例选择方法(赌轮盘法):每个个体被选中的概率与它的适应度函数值大小成正比,即适应度函数越高的个体被选中的概率也就越高。 2)精英选择方法:让种群中适应度函数值最高的个体不进行配对交叉,直接复制到下一代中。但是容易陷入局部最优解,全局搜索能力差。 6. 交叉。按照概率P c 对种群中个体两两配对,进行交叉操作。本文中选取算数交叉的方式。 算数交叉:是由两个个体的线性组合来产生新的个体,假设第t 代的两个个体为A (t)、B (t),则算数交叉后产生的新个体是

()()()()t t t A B A αα-+=+11 (4) ()()()()t t t B A B αα-+=+11 (5) 其中,α选取(0,1)之间的随机数。 交叉概率:使交叉概率随着遗传代数的增长,逐渐减小,目的是进化前期注重交叉运算,全局搜索能力强。 2.02cos *4.0+?? ? ??*=πK T P c (6) 其中,T 是进化代数,K 是总进化次数。 7. 变异。按照概率P m 对种群个体进行变异。本文中选取均匀变异的方式。 均匀变异:如某基因座上的基因值为X k ,其取值范围为[Umin,Umax],对其进行变异后的值为 )U -r(U +U =X min max min k (7) 其中,r 选取[0,1]之间的随机数。 变异概率:使变异概率随着遗传代数的增长,逐渐增加,目的是进化后期注重变异运算,局部搜索能力强。 005.02sin *045.0+?? ? ??*=πK T P m (8) 其中,T 是进化代数,K 是总进化次数。 8. 终止条件判断。若已达到设定的最大遗传代数,则迭代终止,输出最优解;若不满足终止条件,则返回第4步,进行迭代寻优过程。

基于自适应交叉、变异遗传算法的PID整定

第!"卷第#期 纺织高校基础科学学报$%&’!"()%’##**+年,月-./01/102312/45673.859:2;:082630<27/0:0= =============================================================2/ >?@’(#**+文章编号A !**,B C D +!E #**+F *#B *!,"B *+ 基于自适应交叉G 变异遗传算法的H I J 整定 王莉 E 中国矿业大学信电学院(江苏徐州##!**C F 摘要A 提出了一种带有自适应交叉G 变异算子的遗传算法(并把它应用到H I J 参数的整定当中’仿真结果表明(该方法提高了参数的优化性能(对控制系统具有良好的控制精度G 动态性能和鲁棒性’ 关键词A 自适应遗传算法LH I J L 参数优化 中图分类号A M H#"D 文献标识码A N *前言 H I J 控制算法以其原理简单G 鲁棒性好G 可靠性高等特点(在生产过程自动控制的发展历程中(成为历史悠久G 生命力最强的控制方式’虽然随着科学技术的发展涌现出许多新的控制方法(但是直到现在(H I J 控制由仍然广泛地应用于各类控制系统中’ 常用的H I J 参数整定方法主要由传统整定方法G 最优整定方法和智能整定方法’传统的整定方法包括稳定边界法E 临界比例度法F G 衰减曲线法G 动态特性法和O P Q R &Q S )P T U %&V 经验公式E O )公式法F 等’ 图!H I J 控制图 典型的H I J 控制图如图!所示’ 随着计算机技术和最优控制理论的 发展(出现了基于计算机的H I J 参数最 优整定方法’最优控制理论的应用(加上 计算机的高速运算能力(赋予了H I J 参 数优化等多变量最优化问题以新的生命 力(该方法是针对特定的系统建立数学 模型(运用各种数值解法按照一定的性能指标进行优化’近年来(随着智能控制理论的发展(专家系统G 模糊控制以及神经网络日益受到控制界的重视(出现了一些智能优化手段(主要由专家智能型H I J 参数自整定技术G 基于模糊推理的H I J 自寻优技术G 以及基于先进优化方法的其他智能整定技术W !(#X 等’本文中提出的基于改进遗传算法的H I J 参数整定( 利用遗传算法对优化问题本身没有什么特殊要求(既不要连续也不要求可微的优点(实现了H I J 参数的在线寻优’ K 收稿日期A #**+B *#B #* 作者简介A 王莉E !Y "Z B F (女(安徽省人(中国矿业大学信电学院(硕士研究生(主要从事控制理论与控制工程方面的研究’万方数据

基于遗传算法的OFDM自适应资源分配算法MATLAB源码

基于遗传算法的OFDM自适应资源分配算法MATLAB源码 OFDM自适应资源分配问题(载波、功率等),是一个既含有离散决策变量,又含有连续决策变量的非线性优化模型,且含有较为复杂的非线性约束,因此适合采用智能优化算法进行求解。 function [BESTX1,BESTX2,BESTY,ALLX1,ALLX2,ALL Y]=GA2(K,N,Pm,H,BBB,P,N0) %% 本源码实现遗传算法,用于RA准则下的多用户OFDM自适应资源分配 %% 输入参数列表 % K 迭代次数 % N 种群规模,要求是偶数 % Pm 变异概率 % H 信道增益矩阵,K*N的矩阵,表示用户k在子信道n上的信道增益,无单位,取值范围0~1 % BBB 总带宽(Hz) % P 总功率(W) % N0 加性高斯白噪声功率谱密度(W/Hz) %% 输出参数列表 % BESTX1 K×1细胞结构,每一个元素是M×1向量,记录每一代的最优个体的第一分量 % BESTX2 K×1细胞结构,每一个元素是M×1向量,记录每一代的最优个体的第二分量 % BESTY K×1矩阵,记录每一代的最优个体的评价函数值 % ALLX1 K×1细胞结构,每一个元素是M×N矩阵,记录全部个体的第一分量 % ALLX2 K×1细胞结构,每一个元素是M×N矩阵,记录全部个体的第二分量 % ALL Y K×N矩阵,记录全部个体的评价函数值 %% 第一步 [KK,NN]=size(H); M=NN;%决策变量个数,子载波个数 farm1=zeros(M,N);%每一列是一个样本 for i=1:N farm1(:,i)=unidrnd(KK,M,1); end farm2=zeros(M,N);%每一列是一个样本 for i=1:N farm2(:,i)=RandSeq(M); end %输出变量初始化 ALLX1=cell(K,1); ALLX2=cell(K,1); ALL Y=zeros(K,N); BESTX1=cell(K,1);

遗传算法的优缺点

遗传算法属于进化算法( Evolutionary Algorithms) 的一种, 它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子: 选择、交叉和变异. 。数值方法求解这一问题的主要手段是迭代运算。一般的迭代方法容易陷入局部极小的陷阱而出现"死循环"现象,使迭代无法进行。遗传算法很好地克服了这个缺点,是一种全局优化算法。 生物在漫长的进化过程中,从低等生物一直发展到高等生物,可以说是一个绝妙的优化过程。这是自然环境选择的结果。人们研究生物进化现象,总结出进化过程包括复制、杂交、变异、竞争和选择。一些学者从生物遗传、进化的过程得到启发,提出了遗传算法( GA)。算法中称遗传的生物体为个体( individual ),个体对环境的适应程度用适应值( fitness )表示。适应值取决于个体的染色体(chromosome),在算法中染色体常用一串数字表示,数字串中的一位对应一个基因 (gene)。一定数量的个体组成一个群体(population )。对所有个体进 行选择、交叉和变异等操作,生成新的群体,称为新一代( new generation )。遗传算法计算程序的流程可以表示如下[3]:第一步准备工作 (i)选择合适的编码方案,将变量(特征)转换为染色体(数字串,串长为m。通常用二 进制编码。 (2 )选择合适的参数,包括群体大小(个体数M)、交叉概率PC和变异概率Pm (3、确定适应值函数f (x、。f (x、应为正值。 第二步形成一个初始群体(含M个个体)。在边坡滑裂面搜索问题中,取已分析的可能滑裂 面组作为初始群体。 第三步对每一染色体(串)计算其适应值fi ,同时计算群体的总适应值。 第四步选择 计算每一串的选择概率Pi=fi/F 及累计概率。选择一般通过模拟旋转滚花轮 ( roulette ,其上按Pi大小分成大小不等的扇形区、的算法进行。旋转M次即可选出M个串来。在计算机 上实现的步骤是:产生[0,1]间随机数r,若rpc ,则该串参加交叉操作,如此选出参加交叉的一组后,随机配对。 (2)对每一对,产生[1 , m]间的随机数以确定交叉的位置。 第六步变异 如变异概率为Pm则可能变异的位数的期望值为Pm x mx M,每一位以等概率变异。具体为 对每一串中的每一位产生[0 , 1]间的随机数r,若r

自适应Simpson积分算法MATLAB及C实现代码.docx

自适应Simpson积分算法(MATLAB及C++实现代码) (计算数学课用) 在CSDN论坛中找到了却要金币,无奈之下自己写了一份。 对于类似问题,改一下积分函数和区间即可。 针对问题:数学上已经证明了 ∫ 4 1+x2 dx=π 1 成立,所以可以通过数值积分来求π的近似值。 试利用自适应Simpson算法计算积分近似值。 C++版:(直接复制粘贴在VC++6.0即可运行) /*用自适应Simpson积分方法计算积分值*/ #include #include int n=0; //设置全局变量n,用来记录最高迭代次数,避免递归一直进行下去。double pi=3.141592653589793238462643 ; //设置近似精确值,用以比较 double e1=0.00001 ; //设置误差容限为10^-5 double f(double); //要积分的函数 double Simpson (double,double,double,double); // 迭代函数 using namespace std; //主函数 int main() { double a=0,b=1,t,h,S;//积分区间 h=(b-a)/2; S=h/3*(f(a)+f(b)+4*f((a+b)/2)); //第一次Simpson公式积分值 t=Simpson(a,b,e1,S); cout<<"积分值为:"<

matlab自适应遗传算法

function [xv,fv]=AdapGA(fitness,a,b,NP,NG,Pc1,Pc2,Pm1,Pm2,eps) %×?êêó|ò?′???·¨ L = ceil(log2((b-a)/eps+1)); x = zeros(NP,L); for i=1:NP x(i,:) = Initial(L); fx(i) = fitness(Dec(a,b,x(i,:),L)); end for k=1:NG sumfx = sum(fx); Px = fx/sumfx; PPx = 0; PPx(1) = Px(1); for i=2:NP PPx(i) = PPx(i-1) + Px(i); end for i=1:NP sita = rand(); for n=1:NP if sita <= PPx(n) SelFather = n; break; end

end Selmother = round(rand()*(NP-1))+1; posCut = round(rand()*(L-2)) + 1; favg = sumfx/NP; fmax = max(fx); Fitness_f = fx(SelFather); Fitness_m = fx(Selmother); Fm = max(Fitness_f,Fitness_m); if Fm>=favg Pc = Pc1*(fmax - Fm)/(fmax - favg); else Pc = Pc2; end r1 = rand(); if r1<=Pc nx(i,1:posCut) = x(SelFather,1:posCut); nx(i,(posCut+1):L) = x(Selmother,(posCut+1):L); fmu = fitness(Dec(a,b,nx(i,:),L)); if fmu>=favg Pm = Pm1*(fmax - fmu)/(fmax - favg); else Pm = Pm2;

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

matlab遗传算法工具箱函数及实例讲解(转引) 核心函数:? (1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数?【输出参数】? ?pop--生成的初始种群?【输入参数】? ?num--种群中的个体数目? ?bounds--代表变量的上下界的矩阵? ?eevalFN--适应度函数? ?eevalOps--传递给适应度函数的参数? ?options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如? precision--变量进行二进制编码时指定的精度? F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度)? (2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts.? ?termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs ,mutOps)--遗传算法函数?【输出参数】? x--求得的最优解? endPop--最终得到的种群?

bPop--最优种群的一个搜索轨迹?【输入参数】? bounds--代表变量上下界的矩阵? evalFN--适应度函数? evalOps--传递给适应度函数的参数? startPop-初始种群? opts[epsilon prob_ops display]--opts(1:2)等同于initializega 的options参数,第三个参数控制是否输出,一般为0。如[1e-6 termFN--终止函数的名称,如['maxGenTerm']? termOps--传递个终止函数的参数,如[100]? selectFN--选择函数的名称,如['normGeomSelect']? selectOps--传递个选择函数的参数,如[0.08]? xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover']? xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0]? mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']? mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]?注意】matlab工具箱函数必须放在工作目录下?【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0=x=9?【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08?【程序清单】?

变异概率自适应调整的遗传算法GA程序

变异概率自适应调整的遗传算法算例 一:优化函数:()()*sin 10*2,[1,2] f x x x x =+∈-+ A.变异概率自适应调整公式: B.遗传算法参数 (1)种群规模设为80,遗传算子分别为轮盘法选择,多点点交叉和多点自适应变异; (2)交叉概率0.7,变异概率0.01; (3)最大进化代数为100代,保优操作。 C.程序框图 图 1 程序流程框图 ()()12max 1max 1 ,,m m m avg avg m m avg P P f f P f f f f P P f f --?-≥?-=??

二:程序及运行结果 (1)%变异概率自适应调整的GA程序 %优化函数为f=x*sin(10*x)+2,其中,-1=

多方式进化遗传算法Matlab源代码

多方式进化遗传算法Matlab源代码 对于单种群进化,多方式进化是提高全局搜索能力和收敛速度的一种有效策略 该程序采用: 编码:二进制编码、实数编码(默认) 选择:非线性排名选择(主要表现在前期),锦标赛选择(主要表现在后期,含精英保留),由于单纯的转轮盘选择存在诸多弊端,这里没有采用 交叉:二进制编码采用多点交叉和均匀交叉,并逐步增大均匀交叉概率 实数编码采用离散交叉(前期)、算术交叉(中期)、AEA重组(后期) 变异:二进制编码采用随机变异 实数编码采用两种自适应变异和两种随机变异,且尽量采用前者 到位:适当的到位可以提高种群的多样性 function [X,MaxFval,BestPop,Trace]=fga(FUN,bounds,MaxEranum,PopSize,options,pCross,pMutation,pInversion) % [X,MaxFval,BestPop,Trace]=fga(FUN,bounds,MaxEranum,PopSize,options,pCross,pMutation,pInversion) % Finds a maximum of a function of several variables. % fga solves problem s of the form: % max F(X) subject to: LB <= X <= UB % BestPop - 最优的群体即为最优的染色体群 % Trace - 每代最佳个体所对应的目标函数值 % FUN - 目标函数 % LB - 自变量下限 % UB - 自变量上限 % eranum - 种群的代数,取50--500(默认200) % popsize - 每一代种群的规模;此可取50--200(默认100) % pcross - 交叉概率,一般取0.5--0.85之间较好(默认0.8) % pmutation - 初始变异概率,一般取0.05-0.2之间较好(默认0.1) % pInversion - 倒位概率,一般取0.05-0.3之间较好(默认0.2) % options - 1*2矩阵,options(1)=0二进制编码(默认0),option(1)~=0十进制编码,option(2)设定求解精度(默认1e-4) T1=clock; %检验初始参数 if nargin<2, error('FMAXGA requires at least three input arguments'); end if nargin==2, MaxEranum=100;PopSize=100;options=[1 1e-4];pCross=0.85;pMutation=0.1;pInversion=0.25;end if nargin==3, PopSize=100;options=[1 1e-4];pCross=0.85;pMutation=0.1;pInversion=0.25;end if nargin==4, options=[1 1e-4];pCross=0.85;pMutation=0.1;pInversion=0.25;end if nargin==5, pCross=0.85;pMutation=0.1;pInversion=0.25;end if nargin==6, pMutation=0.1;pInversion=0.25;end if nargin==7, pInversion=0.25;end if (options(1)==0|options(1)==1)&find((bounds(:,1)-bounds(:,2))>0) error('数据输入错误,请重新输入:'); end %s=sprintf('程序运行需要约%.4f 秒钟时间,请稍等......',(eranum*popsize/1000)); %disp(s); % 定义全局变量 global m n NewPop children1 children2 VarNum % 初始化种群和变量

遗传算法

遗传算法的基本理论 一、起源: 早在20世纪50年代和60年代,就有少数人几个计算机科学家独立地进行了所谓的“人工进化系统”研究,其出发点是进化的思想可以发展成为许多工程问题的优化工具。早期的研究形成了遗传算法的雏形,如大多数系统都遵循“适者生存”的仿自然法则,有些系统采用了基于群体(population)的设计方案,并且加入了自然选择与变异操作,还有一些系统对生物染色体编码进行了抽象处理,应用二进制编码。由于缺乏一种通用的编码方案,人们只能依赖变异而非交叉来产生新的基因结构,早期的算法收敛甚微。20世纪60年代中期,美国Michigan大学的John Holland在A.S.Fraser和H.J.Bremermann等人工作的基础上提出了位串编码技术。这种编码既适用于变异操作,又适用于交叉(即杂交)操作。并且强调将交叉作为主要的遗传操作。随后,Holland将该算法用于自然和人工系统的自适应行为的研究中,并于1975年出版了其开创性著作“Adaption in Natural and Artificial System”。以后,Holland等人将该算法加以推广,应用到优化及机器学习等问题中,并正式定名为遗传算法。遗传算法的通用编码技术和简单有效的遗传操作作为其广泛、成功地应用奠定了基础。Holland早期有关遗传算法的许多概念一直沿用至今,可见Holland对遗传算法的贡献之大。他认为遗传算法本质上是适应算法,应用最多的是系统最优化的研究。 二、发展: 年份贡献者内容 1962Holland程序漫游元胞计算机自适应系统框架 1968Holland模式定理的建立 1971Hollstein具有交配和选择规则的二维函数优化 1972Bosworth、Foo、Zeigler提出具有复杂变异、类似于遗传算法的基因操作1972Frantz位置非线性和倒位操作研究 1973Holland遗传算法中试验的最优配置和双臂强盗问题 1973Martin类似遗传真法的概率算法理论 1975De Jong用于5个测试函数的研究基本遗传算法基准参数 1975Holland 出版了开创性著作《Adaptation in Natural and Artificial System》 1981Bethke应用Walsh函数分析模式 1981Brindle研究遗传算法中的选择和支配问题 1983Pettit、Swigger遗传算法应用于非稳定问题的粗略研究1983Wetzel用遗传算法解决旅行商问题(TSP) 1984Mauldin基本遗传算法小用启发知识维持遗传多样性1985Baker试验基于排序的选择方法 1985Booker建议采用部分匹配计分、分享操作和交配限制法1985Goldberg、Lingle TSP问题个采用部分匹配交叉 1985Grefenstette、Fitzpattrick对含噪声的函数进行测试 1985Schaffer多种群遗传算法解决多目标优化问题1986Goldberg最优种群大小估计 1986Grefenstette元级遗传算法控制的遗传算法 1987Baker选择中随机误差的减少方法 1987Goldberg复制和交叉时最小欺骗问题(MDP) 1987Goldberg、Richardson借助分享函数的小生境和物种归纳法

遗传算法的数学基础-Read

第3章遗传算法的数学基础 遗传算法在机理方面具有搜索过程和优化机制等属性,数学方面的性质可通过模式定理和构造块假设等分析加以讨论,Markov链也是分析遗传算法的一个有效工具。遗传算法的选择操作是在个体适应度基础上以概率方式进行的,在概率选择方式上与模拟退火法有些类似。 本章将较全局地介绍遗传算法的基础数学理论和分析工具,包括验证基础遗传算法(SGA)的有效性的模式定理,分析遗传算法过程的Walsh模式变换方法,遗传算法的欺骗问题以及遗传算法的动态分析工具—Markov链分析。 3.1 模式定理 1. 模式 我们将种群中的个体即基因串中的相似样板称为“模式”,模式表示基因串中某些特征位相同的结构,因此模式也可能解释为相同的构形,是一个串的子集。 在二进制编码中,模式是基于三个字符集{0,1,*}的字符串,符号* 代表0或1。 例1.*1*表示四个元的子集{010 011 110 111} 对于二进制编码串,当串长为L时,共有3L个不同的模式。 例2.串长L=3,则其模式共有{*** *1* *0* **1 **0 1** 0** *10 *00 *01 1*1 1*0 0*1 0*0 11* 10* 01* 00* 111 110 101 011 001 010

100 000 }共27个 1+2*3+22*3+23=33 遗传算法中串的运算实际上是模式的运算。如果各个串的每一位按等概率生成0或1,则模式为n 的种群模式种类总数的期望值为: 12(1(1(1/2)))L i i i n l i C =--∑ 种群最多可以同时处理2l n g 个模式,见下例 例 一个个体(种群中只有一个),父个体011 要通过变异变为子个体001,其可能影响的模式为: 被处理的模式总数为8个,8=1*23 如果独立的考虑种群中的各个串,则仅能得到n 条信息,然而当把适应值与各个串结合考虑,发掘串群体的相似点,就可得到大量的信息来帮助指导搜索,相似点的大量信息包含在规模不大的种群中。 2. 模式阶和定义距 定义1:模式阶 模式H 中确定位置的个数成为模式H 的模式阶, 记作O(H) 例 O(011**1**0)=5

协同进化数值优化算法及其应用分析

Vol.32No.9 Sep.2016 赤峰学院学报(自然科学版)JournalofChifengUniversity(NaturalScienceEdition)第32卷第9期(上) 2016年9月协同进化数值优化算法及其应用分析 梁树杰 (广东石油化工学院高州师范学院,广东 高州525200) 摘 要:探讨协同进化数值优化算法在无约束优化、约束优化、多目标优化问题及其在不同领域的应用情况,旨在充分发 挥协同进化数值优化算法的作用,进而为各领域的发展奠定基础. 关键词:协同进化算法;数值优化;应用中图分类号:O224;TP273.1 文献标识码:A 文章编号:1673-260X(2016)09-0006-02 协同进化作为一种自然现象,具有普遍性,超过两个种群间经相互影响,便会出现此现象,可用于解释种群间的适应性,将其用于生物学研究,促进了生物进化.在进化计算研究方面,协同进化算法作为一种快速发展的最优化算法,他是传统进化算法的一种扩展.这种算法的模型包含了两个和多个种群.不同的种群在生态系统中协同进化,并且相互作用,最终使得生态系统不断进化[1].协同进化算法在许多领域得到了广泛的应用[2].在许多非常困难的问题上,协同进化算法都证明了其作为优化算法的有效性.文章综述了国内外学者的研究内容,介绍了进化算法、协同进化算法等,重点阐述了其在各类问题中的应用,旨在为协同进化数值优化算法的推广提供可靠的理论保障.1协同进化数值优化算法的概况1.1进化算法 在人类生存与发展过程中涉及众多的优化问题,与分析问题相比,优化问题属于逆问题,在求解方面具有较大的难度,造成此情况的原因主要为优化问题的可行解为无穷多个,但要在可行解集合中获取最优化解,通常情况下,利用数学规划法可实现对相关问题的处理,但实际计算过于繁琐,进而难以保证计算的准确性与有效性.为了满足实际需求,进化算法随之出现,它作为算法工具具有创新性与高效性,适应了数值优化问题的求解奠定了坚实的基础. 进化计算技术属于人工智能技术,它主要是通过对自然界生物进化过程及机制的模拟,以此实现了对相关问题的求解,其具有自组织、自适应与自学习的特点.进化算法是由生物学知识逐渐发展而来的,即:生物种群的优胜劣汰、遗传变异等,在此过程中生命个体对环境的适应力不断在 增强.通过国内外学者的不断探索与研究,进化算法及其相关的计算智能方法日渐丰富,其中进化数值优化算法吸引了众多学者的目光[3]. 与传统优化算法相比, 进化算法具有一定的特殊性,其优势显著,主要表现在以下几方面:处理对象为编码,通过编码操作,使参数集成为个体,进而利于实现对结构对象的直接操作;便于获得全局最优解,借助进化算法,可对群体中的多个个体进行同时处理,从而提高了计算准确性,降低了计算风险性;不需要连续可微要求,同时可利用随机操作与启发式搜索,从而保证了搜索的明确性与高效性,在此基础上,它在各个领域的应用均取得了显著的成效,如:函数优化、自动控制、图像处理等.但进化算法也存在不足,主要表现为其选择机制仍为人工选择,在实际问题处理过程中,难以发挥指导作用;同时,局部搜索能力相对较差,难以保证解的质量[4]. 为了弥补进化算法的不足,相关学者通过研究提出了新型计算智能方法,具体包括免疫进化算法,它主要是利用自然免疫系统功能获得的,此方法在数据处理、故障诊断等方面均扮演着重要的角色;Memetic算法属于混合启发式搜索算法,其利用了不同的搜索策略,从而保证了其应用效果;群智能算法主要分为两种,一种为蚁群算法,另一种为粒子群算法,前者可用于多离散优化问题方面;后者主要利用迭代从而获取了最优解,由于其具有简便性与实用性,因此其应用较为广泛;协同进化算法作为新型进化算法,其分析了种群与环境二者间的关系,并对二者进化过程中的协调给予了高度关注[5].1.2协同进化算法 收稿日期:2016-05-23 基金项目:广东省教育研究院课题项目(GDJY-2015_F-b057);茂名市青年名师培养项目成果 传统优化算法 协同进化算法 简化问题无法简化复杂的问题.简化问题,利用分解分解问题等方式,对复杂问题的简化,从而实现求解.兼容性相对简单,算法相对独立.兼具了不同优点,发挥了不同搜索算法的作用,保证了种群间的有效协同进化. 应用领域 应用领域相对独立. 适应了各领域的需求,在各个领域均涉及协同思想. 表一 协同进化算法与传统优化算法的对比 在数值优化领域中应用协同进化算法,相关的研究成果主要体现在无约束优化、约束优化与多目标优化等方面. 在第一类问题方面.对于进化算法而言,其经典的应用领域 便是无约束数值优化,经过不断实际,此技术的应用日渐成 6-- DOI:10.13398/https://www.360docs.net/doc/df9787324.html,ki.issn1673-260x.2016.17.003

遗传算法总结【精品毕业设计】(完整版)

遗传算法总结 遗传算法是借鉴生物的自然选择和遗传进化机制而开发出的一种全局自适应概率搜索算法。 一、遗传算法流程图 算法开始 原问题参数集 染色体编码,产生初始种群 计算种群中个体的适应值 终止条件判断 N 选择 交叉 Y 变异 新种群 输出结果 算法结束 图1 遗传算法流程图 二、遗传算法的原理和方法 1)染色体编码 把一个问题的可行解从其解空间转换到遗传算法所能处理的搜索空间的转换方法就称为编码。

De Jong 曾提出了两条操作性较强的实用编码原则:编码原则一:应使用能易于产生与所求问题相关的且具有低阶、短定义长度模式的编码方案;编码原则二:应使用能使问题得到自然表示或描述的具有最小编码字符集的编码方案。 编码方法主要有以下几种:二进制编码方法、格雷码编码方法、浮点数编码方法、符号编码方法、参数级联编码方法、多参数交叉编码方法。 2) 适应值计算 由解空间中某一点的目标函数值()f x 到搜索空间中对应个体的适应度函数值 (())Fit f x 的转换方法基本上有一下三种: a . 直接以待解的目标函数值()f x 转化为适应度函数值(())Fit f x ,令 () (())=() f x Fit f x f x ?? -?目标函数为最大化函数 目标函数为最小化函数 b . 对于最小值的问题,做下列转化max max () () (())0 C f x f x C Fit f x -

遗传算法解释及代码(一看就懂)

遗传算法( GA , Genetic Algorithm ) ,也称进化算法。遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。因此在介绍遗传算法前有必要简单的介绍生物进化知识。 一.进化论知识 作为遗传算法生物背景的介绍,下面内容了解即可: 种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。 个体:组成种群的单个生物。 基因 ( Gene ) :一个遗传因子。 染色体 ( Chromosome ):包含一组的基因。 生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。适应度低的个体参与繁殖的机会比较少,后代就会越来越少。 遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。 简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。 二.遗传算法思想 借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。这样进化N代后就很有可能会进化出适应度函数值很高的个体。 举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中

自适应遗传算法

自适应遗传算法 一.主要流程: 1. 参数的初始化。设定遗传种群规模N ,阵元数M ,信源数P 等。 2. 编码。采用十进制编码方法。 3. 初始种群的产生。随机数生成。 4. 适应度函数的评价。选取 ()() R P ΘA tr f = (1) 其中, H 1H )(A A A A P A -= (2) P A 是A 的投影矩阵,A 是阵列流型。 ∑==L i L 1 H 1XX R (3) R 是数据协方差矩阵的最大似然估计。 5. 选择。比例选择方法与精英选择方法结合使用,在当代种群中选择优良个体遗传到下一代。既保证了种群的多样性,也使最优个体得以保留。 1)比例选择方法(赌轮盘法):每个个体被选中的概率与它的适应度函数值大小成正比,即适应度函数越高的个体被选中的概率也就越高。 2)精英选择方法:让种群中适应度函数值最高的个体不进行配对交叉,直接复制到下一代中。但是容易陷入局部最优解,全局搜索能力差。 6. 交叉。按照概率P c 对种群中个体两两配对,进行交叉操作。本文中选取算数交叉的方式。 算数交叉:是由两个个体的线性组合来产生新的个体,假设第t 代的两个个体为A (t)、B (t),则算数交叉后产生的新个体是 ()()()()t t t A B A αα-+=+11 (4) ()()()()t t t B A B αα-+=+11 (5) 其中,α选取(0,1)之间的随机数。 交叉概率:使交叉概率随着遗传代数的增长,逐渐减小,目的是进化前期注重交叉运算,全局搜索能力强。 2.02cos *4.0+?? ? ??*=πK T P c (6) 其中,T 是进化代数,K 是总进化次数。 7. 变异。按照概率P m 对种群个体进行变异。本文中选取均匀变异的方式。 均匀变异:如某基因座上的基因值为X k ,其取值范围为[Umin,Umax],对其进行变异后的值为 )U -r(U +U =X min max min k (7)

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

遗传算法入门(上)代码中的进化学说与遗传学说 写在之前 算法所属领域 遗传算法的思想解析 为什么要用遗传算法? 科研现状 应用现状 遗传算法入门系列文章: (中篇)遗传算法入门(中)实例,求解一元函数最值(MATLAB版)(下篇)遗传算法入门(下)实例,求解TSP问题(C++版) 写在之前 说明:本想着用大量篇幅写一篇“关于遗传算法的基本原理”作为本系列入门的第一篇,但是在找寻资料的过程中,看到网络上有大量的关于遗传算法的介绍,觉得写的都挺好,所以本文我就简单写点自己的理解。 推荐几篇关于遗传算法的介绍性文章: 遗传算法详解(GA)(个人觉得很形象,很适合初学者) 算法所属领域 ? 相信每个人学习一门知识之前,都会想知道这门知识属于哪一门学科范畴,属于哪一类技术领域? ? 首先对于这种问题,GA是没有绝对的归属的。算法的定义是解决问题的一种思想和指导理论。而遗传算法也是解决某一问题的一种思想,用

某一编程语言实现这种思想的程序具有很多特点,其中一个便是智能性和进化性,即,不需要大量的人为干涉,程序本身能够根据一定的条件自我筛选,最终得出令人满意的结果。所以按照这种特性,把它列为人工智能领域下的学习门类毫无疑问是可以的。遗传算法的思想是借鉴了达尔文的进化学说和孟德尔的遗传学说,把遗传算法说成是一门十足的仿生学一点都不过分。然而从应用的角度出发,遗传算法是求最优解问题的好方法,如信号处理中的优化、数学求解问题、工业控制参数最优解、神经网络中的激活函数、图像处理等等,所以把遗传算法说成优化范畴貌似也说的过去。为了方便理解,我们可以暂时将其定位为人工智能–智能优化,这也是很多书中描述遗传算法的惯用词汇。 遗传算法的思想解析 遗传算法(gentic algorithms简称GA)是模拟生物遗传和进化的全局优化搜索算法 ? 我们知道,在人类的演化中,达尔文的进化学说与孟德尔的遗传学说起着至关重要的理论指导。每个人作为一个个体组成一个人类种群,正是经历着物竞天择,才会让整个群体慢慢变的更好,即更加适应周围的环境。而每一代正是靠着基因交叉与变异才能繁衍出更加适应大自然规律的下一代个体。总之,在漫长的迭代进化中,一个不适应环境的群体,在物竞天择和交叉变异中慢慢变的适应了环境。 ? GA的思想完全模拟了生物的进化和遗传方式。我们在求解一个问题的最优解时,先人为的产生很多任意的解,组成一个解集(一个解是一个个体,一个解集是一个种群),这些解有好有坏。我们的最终目的是让这

相关文档
最新文档