linux进程状态分析

linux进程状态分析
linux进程状态分析

Linux进程状态(ps stat)之R、S、D、T、Z、X

Linux是一个多用户,多任务的系统,可以同时运行多个用户的多个程序,就必然会产生很多的进程,而每个进程会有不同的状态。

Linux进程状态:R (TASK_RUNNING),可执行状态。

只有在该状态的进程才可能在CPU上运行。而同一时刻可能有多个进程处于可执行状态,这些进程的task_struct结构(进程控制块)被放入对应CPU的可执行队列中(一个进程最多只能出现在一个CPU的可执行队列中)。进程调度器的任务就是从各个CPU的可执行队列中分别选择一个进程在该CPU上运行。

很多操作系统教科书将正在CPU上执行的进程定义为RUNNING状态、而将可执行但是尚未被调度执行的进程定义为READY状态,这两种状态在linux下统一为 TASK_RUNNING状态。

Linux进程状态:S (TASK_INTERRUPTIBLE),可中断的睡眠状态。

处于这个状态的进程因为等待某某事件的发生(比如等待socket连接、等待信号量),而被挂起。这些进程的task_struct结构被放入对应事件的等待队列中。当这些事件发生时(由外部中断触发、或由其他进程触发),对应的等待队列中的一个或多个进程将被唤醒。

通过ps命令我们会看到,一般情况下,进程列表中的绝大多数进程都处于

TASK_INTERRUPTIBLE状态(除非机器的负载很高)。毕竟CPU就这么一两个,进程动辄几十上百个,如果不是绝大多数进程都在睡眠,CPU又怎么响应得过来。

Linux进程状态:D (TASK_UNINTERRUPTIBLE),不可中断的睡眠状态。

与TASK_INTERRUPTIBLE状态类似,进程处于睡眠状态,但是此刻进程是不可中断的。不可中断,指的并不是CPU不响应外部硬件的中断,而是指进程不响应异步信号。

绝大多数情况下,进程处在睡眠状态时,总是应该能够响应异步信号的。否则你将惊奇的发现,kill -9竟然杀不死一个正在睡眠的进程了!于是我们也很好理解,为什么ps命令看到的进程几乎不会出现TASK_UNINTERRUPTIBLE状态,而总是TASK_INTERRUPTIBLE状态。

而TASK_UNINTERRUPTIBLE状态存在的意义就在于,内核的某些处理流程是不能被打断的。如果响应异步信号,程序的执行流程中就会被插入一段用于处理异步信号的流程(这个插入的流程可能只存在于内核态,也可能延伸到用户态),于是原有的流程就被中断了。(参见《linux 内核异步中断浅析》)

在进程对某些硬件进行操作时(比如进程调用read系统调用对某个设备文件进行读操作,而read系统调用最终执行到对应设备驱动的代码,并与对应的物理设备进行交互),可能需要使用TASK_UNINTERRUPTIBLE状态对进程进行保护,以避免进程与设备交互的过程被打断,造成设备陷入不可控的状态。这种情况下的TASK_UNINTERRUPTIBLE状态总是非常短暂的,通过ps命令基本上不可能捕捉到。

linux系统中也存在容易捕捉的TASK_UNINTERRUPTIBLE状态。执行vfork系统调用后,父进程将进入TASK_UNINTERRUPTIBLE状态,直到子进程调用exit或exec(参见《神奇的vfork》)。

通过下面的代码就能得到处于TASK_UNINTERRUPTIBLE状态的进程:

#include

void main() {

if (!vfork()) sleep(100);

}

编译运行,然后ps一下:

kouu@kouu-one:~/test$ ps -ax | grep a\.out

4371 pts/0 D+ 0:00 ./a.out

4372 pts/0 S+ 0:00 ./a.out

4374 pts/1 S+ 0:00 grep a.out

然后我们可以试验一下TASK_UNINTERRUPTIBLE状态的威力。不管kill还是kill -9,这个TASK_UNINTERRUPTIBLE状态的父进程依然屹立不倒。

Linux进程状态:T (TASK_STOPPED or TASK_TRACED),暂停状态或跟踪状态。

向进程发送一个SIGSTOP信号,它就会因响应该信号而进入TASK_STOPPED状态(除非该进程本身处于TASK_UNINTERRUPTIBLE状态而不响应信号)。(SIGSTOP与SIGKILL信号一样,是非常强制的。不允许用户进程通过signal系列的系统调用重新设置对应的信号处理函数。)

向进程发送一个SIGCONT信号,可以让其从TASK_STOPPED状态恢复到TASK_RUNNING状态。

当进程正在被跟踪时,它处于TASK_TRACED这个特殊的状态。“正在被跟踪”指的是进程暂停下来,等待跟踪它的进程对它进行操作。比如在gdb中对被跟踪的进程下一个断点,进程在断点处停下来的时候就处于TASK_TRACED状态。而在其他时候,被跟踪的进程还是处于前面提到的那些状态。

对于进程本身来说,TASK_STOPPED和TASK_TRACED状态很类似,都是表示进程暂停下来。

而TASK_TRACED状态相当于在TASK_STOPPED之上多了一层保护,处于TASK_TRACED状态的进程不能响应SIGCONT信号而被唤醒。只能等到调试进程通过ptrace系统调用执行PTRACE_CONT、PTRACE_DETACH等操作(通过ptrace系统调用的参数指定操作),或调试进程退出,被调试的进程才能恢复TASK_RUNNING状态。

Linux进程状态:Z (TASK_DEAD – EXIT_ZOMBIE),退出状态,进程成为僵尸进程。

进程在退出的过程中,处于TASK_DEAD状态。

在这个退出过程中,进程占有的所有资源将被回收,除了task_struct结构(以及少数资源)以外。于是进程就只剩下task_struct这么个空壳,故称为僵尸。

之所以保留task_struct,是因为task_struct里面保存了进程的退出码、以及一些统计信息。而其父进程很可能会关心这些信息。比如在shell中,$?变量就保存了最后一个退出的前台进程的退出码,而这个退出码往往被作为if语句的判断条件。

当然,内核也可以将这些信息保存在别的地方,而将task_struct结构释放掉,以节省一些空间。但是使用task_struct结构更为方便,因为在内核中已经建立了从pid到task_struct查找关系,还有进程间的父子关系。释放掉task_struct,则需要建立一些新的数据结构,以便让父进程找到它的子进程的退出信息。

父进程可以通过wait系列的系统调用(如wait4、waitid)来等待某个或某些子进程的退出,并获取它的退出信息。然后wait系列的系统调用会顺便将子进程的尸体(task_struct)也释放掉。

子进程在退出的过程中,内核会给其父进程发送一个信号,通知父进程来“收尸”。这个信号默认是SIGCHLD,但是在通过clone系统调用创建子进程时,可以设置这个信号。

通过下面的代码能够制造一个EXIT_ZOMBIE状态的进程:

#include

void main() {

if (fork())

while(1) sleep(100);

}

编译运行,然后ps一下:

kouu@kouu-one:~/test$ ps -ax | grep a\.out

10410 pts/0 S+ 0:00 ./a.out

10411 pts/0 Z+ 0:00 [a.out]

10413 pts/1 S+ 0:00 grep a.out

只要父进程不退出,这个僵尸状态的子进程就一直存在。那么如果父进程退出了呢,谁又来给子进程“收尸”?

当进程退出的时候,会将它的所有子进程都托管给别的进程(使之成为别的进程的子进程)。托管给谁呢?可能是退出进程所在进程组的下一个进程(如果存在的话),或者是1号进程。所以每个进程、每时每刻都有父进程存在。除非它是1号进程。

1号进程,pid为1的进程,又称init进程。

linux系统启动后,第一个被创建的用户态进程就是init进程。它有两项使命:

1、执行系统初始化脚本,创建一系列的进程(它们都是init进程的子孙);

2、在一个死循环中等待其子进程的退出事件,并调用waitid系统调用来完成“收尸”工作;init进程不会被暂停、也不会被杀死(这是由内核来保证的)。它在等待子进程退出的过程中处于TASK_INTERRUPTIBLE状态,“收尸”过程中则处于TASK_RUNNING状态。

Linux进程状态:X (TASK_DEAD – EXIT_DEAD),退出状态,进程即将被销毁。

而进程在退出过程中也可能不会保留它的task_struct。比如这个进程是多线程程序中被

detach过的进程(进程?线程?参见《linux线程浅析》)。或者父进程通过设置SIGCHLD信号的handler为SIG_IGN,显式的忽略了SIGCHLD信号。(这是posix的规定,尽管子进程的退出信号可以被设置为SIGCHLD以外的其他信号。)

此时,进程将被置于EXIT_DEAD退出状态,这意味着接下来的代码立即就会将该进程彻底释放。所以EXIT_DEAD状态是非常短暂的,几乎不可能通过ps命令捕捉到。

进程的初始状态

进程是通过fork系列的系统调用(fork、clone、vfork)来创建的,内核(或内核模块)也可以通过kernel_thread函数创建内核进程。这些创建子进程的函数本质上都完成了相同的功能——将调用进程复制一份,得到子进程。(可以通过选项参数来决定各种资源是共享、还是私有。)

那么既然调用进程处于TASK_RUNNING状态(否则,它若不是正在运行,又怎么进行调用?),则子进程默认也处于TASK_RUNNING状态。

另外,在系统调用调用clone和内核函数kernel_thread也接受CLONE_STOPPED选项,从而将子进程的初始状态置为 TASK_STOPPED。

进程状态变迁

进程自创建以后,状态可能发生一系列的变化,直到进程退出。而尽管进程状态有好几种,但是进程状态的变迁却只有两个方向——从TASK_RUNNING状态变为非TASK_RUNNING状态、或者从非TASK_RUNNING状态变为TASK_RUNNING状态。

也就是说,如果给一个TASK_INTERRUPTIBLE状态的进程发送SIGKILL信号,这个进程将先被唤醒(进入TASK_RUNNING状态),然后再响应SIGKILL信号而退出(变为TASK_DEAD状态)。并不会从TASK_INTERRUPTIBLE状态直接退出。

进程从非TASK_RUNNING状态变为TASK_RUNNING状态,是由别的进程(也可能是中断处理程序)执行唤醒操作来实现的。执行唤醒的进程设置被唤醒进程的状态为TASK_RUNNING,然后将其task_struct结构加入到某个CPU的可执行队列中。于是被唤醒的进程将有机会被调度执行。

而进程从TASK_RUNNING状态变为非TASK_RUNNING状态,则有两种途径:

1、响应信号而进入TASK_STOPED状态、或TASK_DEAD状态;

2、执行系统调用主动进入TASK_INTERRUPTIBLE状态(如nanosleep系统调用)、或

TASK_DEAD状态(如exit系统调用);或由于执行系统调用需要的资源得不到满足,而进入TASK_INTERRUPTIBLE状态或TASK_UNINTERRUPTIBLE状态(如select系统调用)。

显然,这两种情况都只能发生在进程正在CPU上执行的情况下。

内核模块代码:

—————-killd.c—————-

#include #include #include //for_each_process

MODULE_LICENSE(“BSD”);

static int pid = -1;

module_param(pid, int, S_IRUGO);

static int killd_init(void)

{

struct task_struct * p;

printk(KERN_ALERT “killd: force D status process to death\n”);

printk(KERN_ALERT “killd: pid=%d\n”, pid);

//read_lock(&tasklist_lock);

for_each_process(p){

if(p->pid == pid){

printk(“killd: found\n”);

set_task_state(p, TASK_STOPPED);

printk(KERN_ALERT “killd: aha, dead already\n”);

return 0;

}

}

printk(“not found”);

//read_unlock(&tasklist_lock);

return 0;

}

static void killd_exit(void)

{

printk(KERN_ALERT “killd: bye\n”);

}

module_init(killd_init);

module_exit(killd_exit);

—–Makefile————

obj-m := killd.o

编译模块

make -C yourkerneltree M=`pwd` modules

插入模块的时候提供D状态的进程号,就可以将其转换为stopped状态,使用普通kill就可以杀死。

./insmod ./killd.ko pid=1234

基于嵌入式Linux多线程聊天系统的设计与实现

基于嵌入式Linux多线程聊天系统的设计与实现 学生姓名王宣达 学号 S2******* 所在系(院)电子信息工程系 专业名称电路与系统年级 2009级 2011年8月3日

中文摘要

外文摘要

目录 1.引言 (1) 2.Linux多线程聊天系统的设计思想 (3) 2.1 聊天系统中服务器的设计思想 (3) 2.2 聊天系统中客户端的设计思想 (3) 3. Linux多线程聊天系统的实现过程 (5) 3.1 多线程聊天系统中服务器端的实现过程 (5) 3.2 多线程聊天系统中客户端的实现过程 (7) 4.Linux多线程系统设计中出现的问题和解决的方法 (12) 4.1 多线程中资源的释放问题 (12) 4.2 (12) 参考文献 (12)

1.引言 在80年代中期,线程技术就应用到了操作系统中,那时在一个进程中只允许有一个线程,这样多线程就意味着多进程,虽然实现了多任务,但是资源消耗还是非常可观的。而到现在,多线程技术已经被许多操作系统所支持,有Windows/NT,还有Linux。 多线程和进程相比有两点优势: 1.它是一种消耗资源非常少的多任务操作方式。在Linux系统下,启动一个新的进程必须分配给它独立的地址空间,建立众多的数据表来维护它的代码段、堆栈段和数据段,这是一种消耗非常大的多任务工作方式。而运行于一个进程中的多个线程,它们彼此之间使用相同的地址空间,共享大部分数据,这样创建一个线程所占用的空间远远小于创建一个进程所花费的空间,而且,线程间彼此切换所需的时间也远远小于进程间切换所需要的时间。当然,随着系统的不同,这个差距也不不同。 2.线程间比进程间的通信机制更为便利。对不同进程来说,它们具有独立的数据空间,要进行数据的传递只能通过通信的方式进行,这种方式不仅费时,而且很不方便。线程则不然,由于同一进程下的线程之间共享数据空间,所以一个线程的数据可以直接为其它线程所用,这不仅快捷,而且方便。当然,数据的共享也带来其他一些问题,有的变量不能同时被两个线程所修改,这时就要用到互斥锁机制来保证线程间的同步。 所以在本文的多线程聊天程序的设计中,采用多线程的方式设计系统更为适宜。其中,系统中用到的操作主要是:线程操作,设置互斥锁。其中,线程操作包括:线程创建,退出,。设置互斥锁包括:创建互斥锁,加锁和解锁。 但是,要实现网络聊天,系统中还要用到linux下的网络编程。 Linux下的网络编程通过socket接口实现。socket 是一种特殊的I/O,可以实现网络上的通信机制。Socket也是一种文件描述符。它具有一个类似于打开文件的函数调用Socket(),该函数返回一个整型的Socket描述符,随后的连接建立、数据传输等操作都是通过该Socket实现的。常用的Socket

Linux 查看进程和删除进程

1. 在 LINUX 命令平台输入 1-2 个字符后按 Tab 键会自动补全后面的部分(前提是要有这个东西,例如在装了 tomcat 的前提下, 输入 tomcat 的 to 按 tab)。 2. ps 命令用于查看当前正在运行的进程。 grep 是搜索 例如: ps -ef | grep java 表示查看所有进程里 CMD 是 java 的进程信息 ps -aux | grep java -aux 显示所有状态 ps 3. kill 命令用于终止进程 例如: kill -9 [PID] -9 表示强迫进程立即停止 通常用 ps 查看进程 PID ,用 kill 命令终止进程 网上关于这两块的内容 ----------------------------------------------------------------------------------- PS ----------------------------------------------------------------------------------- 1. ps 简介 ps 命令就是最根本相应情况下也是相当强大地进程查看命令.运用该命令可以确定有哪些进程正在运行和运行地状态、进程是否结束、进程有没有僵死、哪些进程占用了过多地资源等等.总之大部分信息均为可以通过执行该命令得到地. 2. ps 命令及其参数 ps 命令最经常使用地还是用于监控后台进程地工作情况,因为后台进程是不和屏幕键盘这些标准输入/输出设 备进行通信地,所以如果需要检测其情况,便可以运用 ps 命令了. 该命令语法格式如下: ps [选项] -e 显示所有进程,环境变量 -f 全格式 -h 不显示标题 -l 长格式 -w 宽输出 a 显示终端上地所有进程,包括其他用户地进程 r 只显示正在运行地进程 x 显示没有控制终端地进程 O[+|-] k1 [,[+|-] k2 [,…]] 根据 SHORT KEYS、k1、k2 中快捷键指定地多级排序顺序显示进程列表. 对于 ps 地不同格式都存在着默认地顺序指定.这些默认顺序可以被用户地指定所覆盖.在这里面“+”字符是可选地,“-” 字符是倒转指定键地方向. pids 只列出进程标识符,之间运用逗号分隔.该进程列表必须在命令行参数地最后一个选项后面紧接着给出,中间不能插入空格.比如:ps -f1,4,5.

基于linux的socket多线程通信

1、网络中进程之间如何通信? 本地的进程间通信(IPC)有很多种方式,但可以总结为下面4类: ?消息传递(管道、FIFO、消息队列) ?同步(互斥量、条件变量、读写锁、文件和写记录 锁、信号量) ?共享内存(匿名的和具名的) ?远程过程调用(Solaris门和Sun RPC) 但这些都不是本文的主题!我们要讨论的是网络中进程之间如何通信?首要解决的问题是如何唯一标识一个进程,否则通信无从谈起!在本地可以通过进程PID来唯一标识一个进程,但是在网络中这是行不通的。其实TCP/IP协议族已经帮我们解决了这个问题,网络层的―ip地址‖可以唯一标识网络中的主机,而传输层的―协议+端口‖可以唯一标识主机中的应用程序(进程)。这样利用三元组(ip地址,协议,端口)就可以标识网络的进程了,网络中的进程通信就可以利用这个标志与其它进程进行交互。 使用TCP/IP协议的应用程序通常采用应用编程接口:UNIX BSD的套接字(socket)和UNIX System V的TLI(已经被淘汰),来实现网络进程之间的通信。就目前而言,几乎所有的应用程序都是采用socket,而现在又是网络时代,网络中进程通信是无处不在,这就是我为什么说―一切皆socket‖。 2、什么是Socket? 上面我们已经知道网络中的进程是通过socket来通信的,那什么是socket呢?socket起源于Unix,而Unix/Linux基本哲学之一就是―一切皆文件‖,都可以用―打开open –> 读写write/read –> 关闭close‖模式来操作。我的理解就是Socket就是该模式的一个实现,socket 即是一种特殊的文件,一些socket函数就是对其进行的操作(读/写IO、打开、关闭),这些函数我们在后面进行介绍。 socket一词的起源 在组网领域的首次使用是在1970年2月12日发布的文献IETF RFC33中发现的,撰写者为Stephen Carr、Steve Crocker和Vint Cerf。根据美国计算机历史博物馆的记载,Croker写道:―命名空间的元素都可称为套接字接口。一个套接字接口构成一个连接的一端,而一个连接可完全由一对套接字接口规定。‖计算机历史博物馆补充道:―这比BSD的套接字接口定义早了大约12年。‖ 3、socket的基本操作 既然socket是―open—write/read—close‖模式的一种实现,那么socket就提供了这些操作对应的函数接口。下面以TCP为例,介绍几个基本的socket接口函数。 3.1、socket()函数 int socket(int domain, int type, int protocol); socket函数对应于普通文件的打开操作。普通文件的打开操作返回一个文件描述字,而socket()用于创建一个socket描述符(socket descriptor),它唯一标识一个socket。这个socket描述字跟文件描述字一样,后续的操作都有用到它,把它作为参数,通过它来进行一些读写操作。 正如可以给fopen的传入不同参数值,以打开不同的文件。创建socket的时候,也可以指定不同的参数创建不同的socket描述符,socket 函数的三个参数分别为:

【IT专家】linux下根据进程号PID查找程序路径

本文由我司收集整编,推荐下载,如有疑问,请与我司联系 linux下根据进程号PID查找程序路径 2017/05/26 0 1、执行ps -u hdfs查看hdfs用户下在运行的进程; ?如:ps -u hdfs PID TTY TIME CMD27939 ? 16:07:09 java31211 ? 00:23:16 HwChrDecode ?2、进入/proc相应进程PID的文件夹 ?#cd /proc/27939#ls –ail ?可以看到对应的程序路径 ?ls -ail总计01831010306 dr-xr-xr-x 5 hdfs hadoop 0 03-23 09:13 . 1 dr-xr-xr-x 280 root root 0 03-18 10:18 ..1831010327 dr-xr-xr-x 2 hdfs hadoop 0 05-26 10:33 attr1831010315 -r-------- 1 hdfs hadoop 0 05-26 10:28 auxv1831010316 -r--r--r-- 1 hdfs hadoop 0 05-26 04:18 cmdline1831010337 -rw-r--r-- 1 hdfs hadoop 0 05-26 10:28 coredump_filter1831010326 -r--r--r-- 1 hdfs hadoop 0 05-26 10:28 cpuset1831010310 lrwxrwxrwx 1 hdfs hadoop 0 05-26 10:28 cwd - /data1/hadoop/uts2-agent1831010314 -r-------- 1 hdfs hadoop 0 05-26 10:28 environ1831010312 lrwxrwxrwx 1 hdfs hadoop 0 05-26 10:28 exe - /usr/java/jdk1.6.0_35/bin/java1831010313 dr-x------ 2 hdfs hadoop 0 05-26 10:33 fd1831010370 -r--r--r-- 1 hdfs hadoop 0 05-26 10:28 io1831010368 -r-------- 1 hdfs hadoop 0 05-26 10:28 limits1831010334 -rw-r--r-- 1 hdfs hadoop 0 05-26 10:28 loginuid1831010319 -r--r--r-- 1 hdfs hadoop 0 05-26 10:28 maps1831010309 -rw------- 1 hdfs hadoop 0 05-26 10:28 mem1831010321 -r--r--r-- 1 hdfs hadoop 0 05-26 04:17 mounts1831010322 -r-------- 1 hdfs hadoop 0 05-26 10:28 mountstats1831010320 -r--r--r-- 1 hdfs hadoop 0 05-26 10:28 numa_maps1831010336 -rw-r--r-- 1 hdfs hadoop 0 05-26 10:28 oom_adj1831010335 -r--r--r-- 1 hdfs hadoop 0 05-26 10:28 oom_score1831010311 lrwxrwxrwx 1 hdfs hadoop 0 05-26 10:28 root - /1831010325 -r--r--r-- 1 hdfs hadoop 0 05-26 10:28 schedstat1831010324 -r--r--r-- 1 hdfs hadoop 0 05-26 10:28 smaps1831010317 -r--r--r-- 1 hdfs hadoop 0 05-26 04:18 stat1831010318 -r--r--r-- 1 hdfs hadoop 0 05-26 10:21 statm1831010308 -r--r--r-- 1 hdfs hadoop 0 05-26 04:18 status1831010307 dr-xr-xr-

Linux 进程管理实验

Linux 进程管理实验 一、实验内容: 1. 利用bochs观测linux0.11下的PCB进程控制结构。 2. 利用bochs观测linux0.11下的fork.c源代码文件,简单分析其中的重要函数。 3. 在fork.c适当位置添加代码,以验证fork函数的工作原理。 二、Linux进程管理机制分析 Linux有两类进程:一类是普通用户进程,一类是系统进程,它既可以在用户空间运行,又可以通过系统调用进入内核空间,并在内核空间运行;另一类叫做内核进程,这种进程只能在内核空间运行。在以i386为平台的Linux系统中,进程由进程控制块,系统堆栈,用户堆栈,程序代码及数据段组成。Linux系统中的每一个用户进程有两个堆栈:一个叫做用户堆栈,它是进程运行在用户空间时使用的堆栈;另一个叫做系统堆栈,它是用户进程运行在系统空间时使用的堆栈。 1.Linux进程的状态: Linux进程用进程控制块的state域记录了进程的当前状态,一个Linux 进程在它的生存期中,可以有下面6种状态。 1.就绪状态(TASK_RUNNING):在此状态下,进程已挂入就绪队列,进入准备运行状态。 2.运行状态(TASK_RUNNING):当进程正在运行时,它的state域中的值不改变。但是Linux会用一个专门指针(current)指向当前运行的

任务。 3.可中断等待状态(TASK_INTERRUPTIBLE):进程由于未获得它所申请的资源而处在等待状态。不管是资源有效或者中断唤醒信号都能使等待的进程脱离等待而进入就绪状态。即”浅睡眠状态”。 4.不可中断等待状态(TASK_UNINTERRUPTIBLE):这个等待状态与上面等待状态的区别在于只有当它申请的资源有效时才能被唤醒,而其它信号不能。即“深睡眠状态”。 5.停止状态(TASK_STOPPED):当进程收到一个SIGSTOP信号后就由运行状态进入停止状态,当收到一个SINCONT信号时,又会恢复运行状态。挂起状态。 6.终止状态(TASK_ZOMBIE):进程因某种原因终止运行,但进程控制块尚未注销。即“僵死状态”。 状态图如下所示: 2.Linux进程控制块:

Linux操作系统进程管理的分析与应用

Linux操作系统进程管理的分析与应用(1)发布时间:2006.05.19 07:12来源:LinuxSir作者:北南南北目录 1、程序和进程; 1.1 进程分类; 1.2 进程的属性; 1.3 父进程和子进程; 2、进程管理; 2.1 ps 监视进程工具; 2.1.1 ps参数说明; 2.1.2 ps 应用举例; 2.2 pgrep 3、终止进程的工具 kill 、killall、pkill、xkill; 3.1 kill 3.2 killall 3.3 pkill 3.4 xkill 4、top 监视系统任务的工具; 4.1 top 命令用法及参数; 4.2 top 应用举例; 5、进程的优先级: nice和renice; 6、关于本文; 7、后记; 8、参考文档; 9、相关文档; 1、程序和进程; 程序是为了完成某种任务而设计的软件,比如OpenOffice是程序。什么是进程呢?进程就是运行中的程序。 一个运行着的程序,可能有多个进程。比如 https://www.360docs.net/doc/e012989076.html, 所用的WWW服务器是apache服务器,当管理员启动服务后,可能会有好多人来访问,也就是说许多用户来同时请求httpd服务,

apache服务器将会创建有多个httpd进程来对其进行服务。 1.1 进程分类; 进程一般分为交互进程、批处理进程和守护进程三类。 值得一提的是守护进程总是活跃的,一般是后台运行,守护进程一般是由系统在开机时通过脚本自动激活启动或超级管理用户root来启动。比如在Fedora或Redhat中,我们可以定义httpd 服务器的启动脚本的运行级别,此文件位于/etc/init.d目录下,文件名是httpd, /etc/init.d/httpd 就是httpd服务器的守护程序,当把它的运行级别设置为3和5时,当系统启动时,它会跟着启动。 [root@localhost ~]# chkconfig --level 35 httpd on 由于守护进程是一直运行着的,所以它所处的状态是等待请求处理任务。比如,我们是不是访问 https://www.360docs.net/doc/e012989076.html, ,https://www.360docs.net/doc/e012989076.html, 的httpd服务器都在运行,等待着用户来访问,也就是等待着任务处理。 Linux操作系统进程管理的分析与应用(2)发布时间:2006.05.19 07:12来源:LinuxSir作者:北南南北 1.2 进程的属性; 进程ID(PID):是唯一的数值,用来区分进程; 父进程和父进程的ID(PPID); 启动进程的用户ID(UID)和所归属的组(GID); 进程状态:状态分为运行R、休眠S、僵尸Z; 进程执行的优先级; 进程所连接的终端名; 进程资源占用:比如占用资源大小(内存、CPU占用量); 1.3 父进程和子进程; 他们的关系是管理和被管理的关系,当父进程终止时,子进程也随之而终止。但子进程终止,父进程并不一定终止。比如httpd服务器运行时,我们可以杀掉其子进程,父进程并不会因为子进程的终止而终止。 在进程管理中,当我们发现占用资源过多,或无法控制的进程时,应该杀死它,以保护系统的稳定安全运行;

linux进程管理篇

目录:(内容较多,加个目录) |-进程管理 进程常用命令 |- w查看当前系统信息 |- ps进程查看命令 |- kill终止进程 |- 一个存放内存中的特殊目录/proc |- 进程的优先级 |- 进程的挂起与恢复 |- 通过top命令查看进程 计划任务 |- 计划任务的重要性 |- 一次性计划at和batch |- 周期性计划crontab 进程管理的概念 进程和程序区别 1.程序是静态概念,本身作为一种软件资源长期保存;而进程是程序的执行过程,它是动态概念,有一定的生命期,是动态产生和消亡的。 2.程序和进程无一一对应关系。一个程序可以由多个时程公用;另一一方面,一个进程在活动中有可顺序地执行若干个程序 父子进程的关系 1.子进程是由一个进程所产生的进程,产生这个子进程的进程称为父进程 2.在linux系统中,使用系统调用fork创建进程。fork复制的内容包括父进程的数据和堆栈段以及父进程的进程环境。 3.父进程终止子进程自然终止。 前台进程和后台进程 前台进程 在shell提示处理打入命令后,创建一个子进程,运行命令,Shell等待命令退出,然后返回到对用户给出提示符。这条命令与Shell异步运行,即在前台运行,用户在它完成之前不能执行别一个命令

很简单,我们在执行这个查找命令时,无法进行其它操作,这个查找就属于前台进程 后台进程 在Shell提示处打入命令,若后随一个&,Shell创建子进程运行此命令,但不等待命令退出,而直接返回到对用户给出提示。这条命令与Shell同步运行,即在后台运行。“后台进程必须是非交互式的” 再来看这个命令就变成了后台进程,我们用同样的条件进行查找,把查找记过放到hzh/test/init.find这个文件中。不影响我们前台其它的操作。 进程的状态

Linux下查看进程和线程

在Linux中查看线程数的三种方法 1、top -H 手册中说:-H : Threads toggle 加上这个选项启动top,top一行显示一个线程。否则,它一行显示一个进程。 2、ps xH 手册中说:H Show threads as if they were processes 这样可以查看所有存在的线程。 3、ps -mp 手册中说:m Show threads after processes 这样可以查看一个进程起的线程数。 查看进程 1. top 命令 top命令查看系统的资源状况 load average表示在过去的一段时间内有多少个进程企图独占CPU zombie 进程:不是异常情况。一个进程从创建到结束在最后那一段时间遍是僵尸。留在内存中等待父进程取的东西便是僵尸。任何程序都有僵尸状态,它占用一点内存资源,仅仅是表象而已不必害怕。如果程序有问题有机会遇见,解决大批量僵尸简单有效的办法是重起。kill是无任何效果的stop模式:与sleep进程应区别,sleep会主动放弃cpu,而stop 是被动放弃cpu ,例单步跟踪,stop(暂停)的进程是无法自己回到运行状态的。 cpu states: nice:让出百分比irq:中断处理占用 idle:空间占用百分比iowait:输入输出等待(如果它很大说明外存有瓶颈,需要升级硬盘(SCSI)) Mem:内存情况 设计思想:把资源省下来不用便是浪费,如添加内存后free值会不变,buff值会增大。判断物理内存够不够,看交换分区的使用状态。 交互命令: [Space]立即刷新显示 [h]显示帮助屏幕

linux进程线程管理实验报告

linux进程线程管理实验报告

————————————————————————————————作者:————————————————————————————————日期:

西安郵電學院 操作系统LINUX实验报告 题目1:进程______ 题目2:线程管理__ 题目3:互斥_____系部名称:计算机学院 专业名称:软件工程 班级:0802 学号:04085048 学生姓名:郭爽乐 时间:2010-10-31

实验一: 进程管理 一.实验目的 通过观察、分析实验现象,深入理解进程及进程在调度执行和内存空间等方面的特点, 掌握在POSIX 规范中fork和kill系统调用的功能和使用。 二.实验要求 2.1 实验环境要求 1. 硬件 (1) 主机:Pentium III 以上; (2) 内存:128MB 以上; (3) 显示器:VGA 或更高; (4) 硬盘空间:至少100MB 以上剩余空间。 2. 软件 Linux 操作系统,内核2.4.26 以上,预装有X-Window 、vi、gcc、gdb 和任意web 浏览器。 2.2 实验前的准备工作 学习man 命令的用法,通过它查看fork 和kill 系统调用的在线帮助,并阅读参 考资料,学会fork 与kill 的用法。 复习C 语言的相关内容。 三、实验内容 3.1 补充POSIX 下进程控制的残缺版实验程序 3.2回答下列问题: 1. 你最初认为运行结果会怎么样? 2. 实际的结果什么样?有什么特点?试对产生该现象的原因进行分析。 3. proc_number 这个全局变量在各个子进程里的值相同吗?为什么? 4. kill 命令在程序中使用了几次?每次的作用是什么?执行后的现象是什么? 5. 使用kill 命令可以在进程的外部杀死进程。进程怎样能主动退出?这两种退出方式哪种更好一些? 四、实验结果 4.1 补充完全的源程序 #include #include #include

linux进程管理(一)

进程介绍 程序和进程 程序是为了完成某种任务而设计的软件,比如OpenOffice是程序。什么是进程呢?进程就是运行中的程序。 一个运行着的程序,可能有多个进程。比如自学it网所用的WWW服务器是apache服务器,当管理员启动服务后,可能会有好多人来访问,也就是说许多用户来同时请求httpd服务,apache服务器将会创建有多个httpd进程来对其进行服务。 进程分类 进程一般分为交互进程、批处理进程和守护进程三类。 值得一提的是守护进程总是活跃的,一般是后台运行,守护进程一般是由系统在开机时通过脚本自动激活启动或超级管理用户root来启动。比如在 Redhat中,我们可以定义httpd 服务器的启动脚本的运行级别,此文件位于/etc/init.d目录下,文件名是httpd,/etc/init.d/httpd 就是httpd服务器的守护程序,当把它的运行级别设置为3和5时,当系统启动时,它会跟着启动。 [root@localhost ~]# chkconfig --level 35 httpd on 进程的属性: 进程ID(PID):是唯一的数值,用来区分进程; 父进程和父进程的ID(PPID); 启动进程的用户ID(UID)和所归属的组(GID); 进程状态:状态分为运行R、休眠S、僵尸Z; 进程执行的优先级; 进程所连接的终端名; 进程资源占用:比如占用资源大小(内存、CPU占用量); 父进程和子进程: 他们的关系是管理和被管理的关系,当父进程终止时,子进程也随之而终止。但子进程终止,父进程并不一定终止。比如httpd服务器运行时,我们可以杀掉其子进程,父进程并不会因为子进程的终止而终止。 在进程管理中,当我们发现占用资源过多,或无法控制的进程时,应该杀死它,以保护系统的稳定安全运行; 进程管理

Linux进程管理-实验报告

(1) 加深对进程概念的理解,明确进程和程序的区别。 (2) 进一步认识并发执行的实质。 (3) 学习通过进程执行新的U 标程序的方法。 (4) 了解Linux 系统中进程信号处理的基本原理。 Red Hat Linux (1)进程的创建 编写一段程序,使用系统调用fork ()创建两个子进程,当此进程运 行时,在系统中有一个父进程和两个子进程活动,让每一个进程在 屏幕上显示一个字符,父进程显示字符“a” ;子进程分别显示字符 “b”和字符“c” ,试观察记录屏幕上的显示结果,并分析原因。 程序代码: # include int main() { int pl ,p2 ; while((p 1 =fork())==-1); if(pl==0) putchar(b); else { while((p2=fork())==-1); if(p2==0) putchar( c 1); else putchar( a r ); } return 0; ) 运行结果:bca 分析:第一个while 里调用fork()函数一次,返回两次。子进程P1 得到的返回值是0,父进程得到的返回值是新子进程的进程ID (正 整数);接下来父进程和子进程P1两个分支运行,判断P1二二0,子 进程P1符合条件,输出%";接下来else 里面的while 里再调用 fork()函数一次,子进程P2得到的返回值是0,父进程得到的返回值 是新子进程的进程ID (正整数);接下来判断P2=:0,子进程P2符 合条件,输出,接下来父进程输出“a” ,程序结束。 (2)进程的控制 ① 修改已编写的程序,将每个进程输出一个字符改为每个进程输出 一 《Linux 实验目的: 实验环境: 实验内容: 操作系统设计实践》实验一:进程管理

Linux系统中的ps进程查看命令使用实例集锦

这篇文章主要介绍了Linux系统中的ps进程查看命令使用实例集锦,包括对ps命令的常用参数总结,整理得非常全面,需要的朋友可以参考下 linux 中ps命令是Process Status的缩写。ps命令可以列出系统中当前运行的进程,所列出的进程是执行ps命令这个时刻正在运行的进程。 如果要动态显示进程信息,需要使用top命令。 通过ps命令,可以确定哪些进程正在运行和运行状态、进程是否结束、进程是否僵死,哪些进程占用过多资源等。 要杀死进程,使用kill命令,例:kill 12345 (12345为进程的pid) linux进程有5种状态 1.运行(正在运行或在运行队列中等待) 2.中断(休眠中,受阻,或等待某个条件的形成或接受到信号) 3.不可中断(收到信号不唤醒和不可运行,进程必须等待直到有中断发生) 4.僵死(进程已终止,但进程描述符存在,直到父进程调用wait4()系统调用后释放) 5.停止(进程受到SIGSTOP,SIGSTP,SIGTIN,SIGTOU信号后停止运行) ps 5种进程状态的标识码如下: R 运行runnable(on run queue) S 中断sleeping D 不可中断uninterruptible sleep (usually IO) Z 僵死a defunct("zombie") process T 停止traced or stopped 命令参数 a 显示所有进程 -a 显示同一终端下的所有程序 -A 显示所有进程 c 显示进程的真实名称 -N 反向选择

-e 等于“-A” e 显示环境变量 f 显示程序间的关系 -H 显示树状结构 r 显示当前终端的进程 T 显示当前终端的所有程序 u 指定用户的所有进程 -au 显示较详细的资讯 -aux 显示所有包含其他使用者的进程 -C<命令> 列出指定命令的状况 –lines<行数> 每页显示的行数 –width<字符数> 每页显示的字符数 –help 显示帮助信息 –version 显示版本显示 输出列的含义 F 代表这个程序的旗标(flag),4 代表使用者为super user S 代表这个程序的状态(STAT),关于各STAT 的意义将在内文介绍 UID 程序被该UID 所拥有 PID 进程的ID PPID 则是其上级父程序的ID C CPU 使用的资源百分比 PRI 这个是Priority (优先执行序) 的缩写,详细后面介绍 NI 这个是Nice 值,在下一小节我们会持续介绍 ADDR 这个是kernel function,指出该程序在内存的那个部分。如果是个running的程序,一般就是“-“

实验一——Linux环境下的进程管理之欧阳光明创编

软件学院 欧阳光明(2021.03.07) 上机实验报告 课程名称:操作系统 实验项目:实验一:Linux环境下进程管理 实验室:耘慧402 姓名:学号: 专业班级:实验时间:

一、实验目的及要求 1.加深对进程概念的理解,明确进程和程序的区别; 2.进一步认识并发执行的实质; 3.分析进程争用资源的现象,学习解决进程互斥的方法; 4.了解Linux系统中进程通信的基本原理; 二、实验性质 1.进程的创建:编写一段程序,使用系统调用fork()创建两个子进程。当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示字符“a”;子进程分别显示字符“b”和字符“c”。试观察记录屏幕上的显示结果,并分析原因。 2.进程的控制:修改已编写的程序,将每个进程输出一个字符改为每个进程输出一句话,再观察程序执行时屏幕上出现的现象,并分析原因。如果在程序中使用系统调用lockf ()来给每一个进程加锁,可以实现进程之间的互斥,观察并分析出现的现象。 3.用fork( )创建一个进程,再调用exec( )用新的程序替换该子进程的内容;利用wait( )来控制进程执行顺序。 三、实验学时 实验性质:验证性 实验学时: 4学时 实验要求:必做 四、实验环境 1.实验环境: Linux系统开发环境 2.知识准备: (1) Linux系统开发环境搭建; (2) Linux环境下GCC编译器的使用; (3)语言中函数定义与调用、指针和类型的定义与使用、结构的定义、动态

内存的申请等预备知识。 五、实验内容及步骤 ①实验内容: (1)进程的创建 编写一段程序,使用系统调用fork()创建两个子进程。当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示字符“a”;子进程分别显示字符“b”和字符“c”。试观察记录屏幕上的显示结果,并分析原因。 (2)进程的控制 修改已编写的程序,将每个进程输出一个字符改为每个进程输出一句话,再观察程序执行时屏幕上出现的现象,并分析原因。 如果在程序中使用系统调用lockf()来给每一个进程加锁,可以实现进程之间的互斥,观察并分析出现的现象。 (3)用fork( )创建一个进程,再调用exec( )用新的程序替换该子进程的内容;利用wait( )来控制进程执行顺序。 ②实验步骤: 1.进程的创建 1.1 进程 UNIX中,进程既是一个独立拥有资源的基本单位,又是一个独立调度的基本单位。一个进程实体由若干个区(段)组成,包括程序区、数据区、栈区、共享存储区等。每个区又分为若干页,每个进程配置有唯一的进程控制块PCB,用于控制和管理进程。 PCB的数据结构如下: (1)进程表项(Process Table Entry)。包括一些最常用的核心数据: 进程标识符PID、用户标识符UID、进程状态、事件描述符、进程和U区在内存或外存的地址、软中断信号、计时域、进程的大小、偏置值nice、指向就绪队列中下一个PCB的指针P_Link、指向U区进程正文、数据及栈在内存区域的指针。 (2)U区(U Area)。用于存放进程表项的一些扩充信息。 每一个进程都有一个私用的U区,其中含有:进程表项指针、真正用户标识符

Linux 进程的启动方式

Linux 进程的启动方式 程序或者命令的执行实际上是通过进程实现的。通常情况下,程序或者命令是保存在硬盘上的,当在命令行中输入一个可执行程序的文件名或者命令并按下Enter 键后,系统内核就将该程序或者命令的相关代码加载到内存中开始执行。 系统会为该程序或者命令创建一个或者多个相关的进程,通过进程完成特定的任务。启动进程的方式有两种,分别为前台启动方式和后台启动方式。 1.以前台方式启动进程 在终端窗口的命令行上输入一个Linux命令并按Enter键,以前台方式启动了一个进程。例如,在终端窗口上执行“find /-name myfile.txt”命令,就可以以前台的方式启动一个进程。而在该进程还未执行完时,可按下Ctrl+z组合键将该进程暂时挂起。然后,可以使用ps命令查看该进程的有关信息,如图41所示。 图41 前台方式启动进程 2.以后台方式启动进程 在前台运行的进程是正在进行交互操作的进程,它可以从标准输入设备接收输入,并将输出结果送到标准输出设备,在同一时刻只能有一个进程在前台运行。而在后台运行的进程一般不需要进行交互操作,不接收终端的输入。 通常情况下,可以让一些运行时间较长而且不接受终端输入的程序以后台方式运行,让操作系统调度它。 要在命令行上以后台方式启动进程,需要在执行的命令后添加一个“&”。例如,在终端窗口的命令行上输入命令“find / -name myfile2.txt &”并按下Enter键后将从后台启动一个进程。启动后,系统会显示如下所示的信息: 这里的数字2表示该进程是运行于后台的第2个进程,数字3516是该进程的PID(即进程标识码,用于惟一地标识一个进程)。 然后,出现了shell提示符,这表示已返回到前台。这时,执行ps命令将能够看到现在在系统中有两个由find命令引起的进程,它们的标识号是不同的,因而是两个不同的进程,其中,PID为3385的进程就是刚才被挂起的进程。 如果执行jobs命令可以查看当前控制台中的后台进程,可以看到当前在后台有两个进程,其中一个处于运行(Running)状态,另一个,即被挂起的进程处于停止

LINUX 查找进程及终止进程操作的相关命令

使用linux操作系统,难免遇到一些软件卡壳的问题,这时就需要使用linux下强大的kill命令来结束相关进程。这在linux系统下是极其容易的事情,你只需要kill xxx即可,这里xxx代表与此软件运行相关的进程PID号。 首先,我们需要使用linux下另外一个命令ps查找与进程相关的PID号:ps aux | grep program_filter_word 1)ps a 显示现行终端机下的所有程序,包括其他用户的程序。 2)ps -A 显示所有程序。 3)ps c 列出程序时,显示每个程序真正的指令名称,而不包含路径,参数或常驻服务的标示。 4)ps -e 此参数的效果和指定A参数相同。 5)ps e 列出程序时,显示每个程序所使用的环境变量。 6)ps f 用ASCII字符显示树状结构,表达程序间的相互关系。 7)ps -H 显示树状结构,表示程序间的相互关系。 8)ps -N 显示所有的程序,除了执行ps指令终端机下的程序之外。 9)ps s 采用程序信号的格式显示程序状况。 10)ps S 列出程序时,包括已中断的子程序资料。 11)ps -t<终端机编号; 指定终端机编号,并列出属于该终端机的程序的状况。 12)ps u 以用户为主的格式来显示程序状况。 13)ps x 显示所有程序,不以终端机来区分。 最常用的方法是ps aux,然后再通过管道使用grep命令过滤查找特定的进程,然后再对特定的进程进行操作。 其次,使用kill命令结束进程:kill xxx 1)作用 kill命令用来中止一个进程。

2)格式 kill [ -s signal | -p ] [ -a ] pid ... kill -l [ signal ] 3)参数 -s:指定发送的信号。 -p:模拟发送信号。 -l:指定信号的名称列表。 pid:要中止进程的ID号。 Signal:表示信号。 4)说明 进程是Linux系统中一个非常重要的概念。Linux是一个多任务的操作系统,系统上经常同时运行着多个进程。我们不关心这些进程究竟是如何分配的,或者是内核如何管理分配时间片的,所关心的是如何去控制这些进程,让它们能够很好地为用户服务。 Linux操作系统包括三种不同类型的进程,每种进程都有自己的特点和属性。交互进程是由一个Shell启动的进程。交互进程既可以在前台运行,也可以在后台运行。批处理进程和终端没有联系,是一个进程序列。监控进程(也称系统守护进程)是Linux系统启动时启动的进程,并在后台运行。例如,httpd 是著名的Apache服务器的监控进程。 kill命令的工作原理是,向Linux系统的内核发送一个系统操作信号和某个程序的进程标识号,然后系统内核就可以对进程标识号指定的进程进行操作。比如在top命令中,我们看到系统运行许多进程,有时就需要使用kill中止某些进程来提高系统资源。在讲解安装和登陆命令时,曾提到系统多个虚拟控制台的作用是当一个程序出错造成系统死锁时,可以切换到其它虚拟控制台工作关闭这个程序。此时使用的命令就是kill,因为kill是大多数Shell内部命令可以直接调用的。 5)应用实例 (1)强行中止(经常使用杀掉)一个进程标识号为324的进程: #kill -9 324 (2)解除Linux系统的死锁

最新整理Linux操作系统的进程管理详解

L i n u x操作系统的进程管理详解 L i n u x操作系统中进程的管理是很重要的一部分,下面由学习啦小编为大家整理了L i n u x操作系统的进程管理详解的相关知识,希望对大家有帮助! L i n u x操作系统的进程管理详解 对于L i n u x的进程的管理,是通过进程管理工具实现的,比如p s、k i l l、p g r e p等工具; L i n u x操作系统的进程管理/1、 p s监视进程工具; p s为我们提供了进程的一次性的查看,它所提供的查看结果并不动态连续的;如果想对进程时间监控,应该用t o p工具; 1.p s的参数说明; p s提供了很多的选项参数,常用的有以下几个; l长格式输出; u按用户名和启动时间的顺序来显示进程; j用任务格式来显示进程; f用树形格式来显示进程; a显示所有用户的所有进程(包括其它用户); x显示无控制终端的进程; r显示运行中的进程;

w w避免详细参数被截断; 我们常用的选项是组合是a u x或l a x,还有参数f 的应用; p s a u x或l a x输出的解释; U S E R进程的属主; P I D进程的I D; P P I D父进程; %C P U进程占用的C P U百分比; %M E M占用内存的百分比; N I进程的N I C E值,数值大,表示较少占用C P U时间; V S Z进程虚拟大小; R S S驻留中页的数量; W C H A N T T Y终端I D S T A T进程状态 D U n i n t e r r u p t i b l e s l e e p(u s u a l l y I O) R正在运行可中在队列中可过行的; S处于休眠状态; T停止或被追踪;

linux进程间通讯

linux进程间通讯 管道(FIFO): 管道可分为命名管道和非命名管道(匿名管道),匿名管道只能用于父、子进程间通讯,命名管道可用于非父子进程。命名管道就是FIFO,管道是先进先出的通讯方式。 消息队列: 消息队列用于2个进程间通讯,首先在1个进程中创建1个消息队列,然后可向消息队列中写数据,而另一进程可从该消息队列中读取数据。 注意,消息队列是以创建文件的方式建立的,若1个进程向某消息队列中写入数据后,另一进程并未读取这些数据,则即使向消息队列中写数据的进程已退出,但保存在消息队列中的数据并未消失,也就是说下次再从这个消息队列中读数据时,还是会读出已退出进程所写入的数据。 信号量: linux中的信号量类似于windows中的信号量。 共享内存: 共享内存,类似于windows中dll的共享变量,但linux下的共享内存区不需要象DLL这样的东西,只要先创建1个共享内存区,其它进程按照一定步骤就能访问到这个共享内存区中的数据(可读可写)。 信号——signal 套接字——socket 各种ipc机制比较: 1.匿名管道:速度较慢,容量有限,且只有父、子进程间能通讯; 2.命名管道(FIFO):任何进程间都能通讯,但速度较慢; 3.消息队列:容量受系统限制,且要对读出的消息进行测试(读出的是新写入的消息,还是以前写入的, 尚未被读取的消息); 4.信号量:不能传递复杂信息,只能用来同步; 5.共享内存:容量大小可控,速度快,但共享内存区不包含同步保护,对共享内存区的访问需由用户实 现同步保护。 另外,共享内存同样可用于线程间通讯,不过没必要,线程间本来就已共享了同一进程内的一块内存。 线程间同步方法: 1.临界区:使多线程间串行访问公共资源或1段代码,速度较快,适合控制数据访问; 2.互斥量:为同步对共享资源的单独访问而设计的; 3.信号量:为控制1个具有有限数量用户资源而设计; 4.事件对象:用来通知线程有一些事件已发生,从而启动后继任务。

相关文档
最新文档