以2007年高考看向量平移问题

合集下载

2007年全国各地高考数学试题及解答分类汇编大全(14空间向量与立体几何)

2007年全国各地高考数学试题及解答分类汇编大全(14空间向量与立体几何)

2007年高考中的“空间向量与立体几何”试题汇编大全一、选择题:二、填空题:三、解答题:1.(2007安徽文、理)(本小题满分14分)如图,在六面体1111D C B A ABCD -中,四边形ABCD 是边长为2的正方形,四边形1111D C B A 是边长为1的正方形,⊥1DD 平面1111D C B A ,⊥1DD 平面ABCD ,(Ⅰ)求证: 11C A 与AC 共面,11D B 与BD 共面. (Ⅱ)求证:平面;1111BDD B ACC A 平面⊥(Ⅲ)求二面角C BB A --1的大小(用反三角函数值表示).1.本小题主要考查直线与平面的位置关系、平面与平面的位置关系、二面角及其平面角等有关知识,考查空间想象能力和思维能力,应用向量知识解决立体几何问题的能力.本小题满分14分. 解法1(向量法):以D 为原点,以DA ,DC ,1DD 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系xyz D -如图,则有A (2,0,0),B (2,2,0),C (0,2,0),).2,0,0(),2,1,0(),2,1,1(),2,0,1(1111D C B A (Ⅰ)证明:),0,2,2(),0,1,1(11-=-=AC C A),0,2,2(),0,1,1(11==DB B D .2,21111B D DB C A AC ==∴平行,与平行,与1111B D DB C A AC ∴ 于是11C A 与AC 共面,11D B 与BD 共面.(Ⅱ)证明:,)=,,(),,00222001-∙∙DD ,)=,,(),,0022022-∙∙ .1DD ⊥⊥∴,是平面与111BDD B DB DD 内的两条相交直线, .11BDD B AC 平面⊥∴ 又平面,过AC ACC A 11.1111BDD B ACC A 平面平面⊥∴(Ⅲ)解:.210211201111),,),,,),,,----CC BB 设的法向量,为平面11111),,(ABB A z y x n = ,02,021111111==--=∙=+-=∙z y x BB n z x AA n 于是).1,0,2(,2,1,0111====n z z y 则取设的法向量,为平面11222),,(BCC B z y x m = .02,022212221=+-=∙=+--=∙z y CC m z y x BB m 于是).1,2,0(,2,1,0222====m y z x 则取.21=DD.51arccosπ1---∴的大小为二面角C BB A 解法2(综合法):(Ⅰ)证明:,平面平面ABCD D D D C B A D D ⊥⊥111111,111111,D C B A DC D D DA D D 平面,⊥⊥∴∥平面ABCD . 于是11D C ∥CD ,11A D ∥DA.设E ,F 分别为DA ,DC 的中点,连结EF ,,,11F C E A 有E A 1∥F C D D 11,∥.1,1,1==DF DE D D ∴E A 1∥,1F C 于是11C A ∥.EF由DE =DF =1,得EF ∥AC , 故11C A ∥,AC11C A 与AC 共面.过点,,连结,则于点平面作OF OE F C O B E A O B O ABCD O B B . // , // 111111⊥于是. // // 1111OF OE C B OF A B OE =∴,,.,1111AD OE D A A B ⊥∴⊥ .,1111CD OF D C C B ⊥∴⊥所以点O 在BD 上,故.11共面与DB B D (Ⅱ)证明:,11AC D D ABCD D D ⊥∴⊥,平面又BD ⊥AC (正方形的对角线互相垂直),111BDD B BD D D 是平面与内的两条相交直线,.11BDD B AC 平面⊥∴ 又平面,111111BDD B ACC A AC ACC A 平面平面,过⊥∴ (Ⅲ)解:∵直线DB 是直线,1DB AC ABCD B B ⊥上的射影,在平面 根据三垂线定理,有AC ⊥.1B B 过点A 在平面,,111MO MC M B B AM A ABB ,连结于内作⊥ 则,平面AMC B B ⊥1于是,,MO B B MC B B ⊥⊥11所以,∠AMC 是二面角.1的一个平面角C B B A --根据勾股定理,有.6,5,5111===B B C C A A 有,1B B OM ⊥,310,310,32,3211====∙CM AM BM B B OB O B OM =,512cos 222-=∙-+=∠CM AM AC CM AM AMC,51arccos π-=∠AMC二面角.51arccos π1---的大小为C BB A.51,cos =∙=n m n m n m2.(2007北京文) (本小题共14分)如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AOC --的直二面角.D 是AB 的中点. (I )求证:平面COD ⊥平面AOB ;(II )求异面直线AO 与CD 所成角的大小.2.解法一:(I )由题意,CO AO ⊥,BO AO ⊥, BOC ∴∠是二面角B AO C --是直二面角, CO BO ∴⊥,又AO BO O =,CO ∴⊥平面AOB ,又CO ⊂平面COD .∴平面COD ⊥平面AOB .(II )作DE OB ⊥,垂足为E ,连结CE (如图),则DE AO ∥,CDE ∴∠是异面直线AO 与CD 所成的角. 在Rt COE △中,2CO BO ==,112OE BO ==, CE ∴又12DE AO ==∴在Rt CDE △中,tan 3CE CDE DE ===. ∴异面直线AO 与CD 所成角的大小为arctan 3. 解法二:(I )同解法一.(II )建立空间直角坐标系O xyz -,如图,则(000)O ,,,(00A (200)C ,,,D ,(00OA ∴=,,(CD =-cos OA CD OACD OA CD∴<>=,4322==. ∴异面直线AO 与CD 所成角的大小为arccos 43.(2007北京理)(本小题共14分)如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AOC --是直二面角.动点D 的斜边AB 上. (I )求证:平面COD ⊥平面AOB ;(II )当D 为AB 的中点时,求异面直线AO 与CD 所成角的大小;(III )求CD 与平面AOB 所成角的最大值.ADO C ADBO CADBEx3.(共14分) 解法一:(I )由题意,CO AO ⊥,BO AO ⊥, BOC ∴∠是二面角B AO C --是直二面角, 又二面角B AO C --是直二面角, CO BO ∴⊥,又AO BO O =, CO ∴⊥平面AOB , 又CO ⊂平面COD .∴平面COD ⊥平面AOB .(II )作DE OB ⊥,垂足为E ,连结CE (如图),则DE AO ∥, CDE ∴∠是异面直线AO 与CD 所成的角. 在Rt COE △中,2CO BO ==,112OE BO ==,CE ∴又12DE AO ==∴在Rt CDE △中,tan 3CE CDE DE ===. ∴异面直线AO 与CD所成角的大小为. (III )由(I )知,CO ⊥平面AOB ,CDO ∴∠是CD 与平面AOB 所成的角,且2tan OC CDO OD OD==. 当OD 最小时,CDO ∠最大, 这时,OD AB ⊥,垂足为D ,3OA OB OD AB ==,tan CDO = CD ∴与平面AOB 所成角的最大值为arctan 3.解法二:(I )同解法一.(II )建立空间直角坐标系O xyz -,如图,则(000)O ,,,(00A ,(200)C ,,,(013)D ,,,(00OA ∴=,,(21CD =-,,,cos OA CD OACD OA CD∴<>=,322==. ∴异面直线AO 与CD 所成角的大小为 (III )同解法一4.(2007福建文)(本小题满分12分)如图,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1中点.O CADBE(I)求证:AB 1⊥平面A 1BD ; (II)求二面角A -A 1D -B 的大小.4.本小题主要考查直线与平面的位置关系,三面角的大小等知识,考查空间想象能力、逻辑思维能力和运算能力.满分12分. 解法一:(I )取BC 中点O ,连结AO .∵△ABC 为正三角形,∴AO ⊥BC . ∵正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, ∴AO ⊥平面BCC 1B 1, 连结B 1O ,在正方形BB 1C 1C 中,O 、D 分别为BC 、CC 1的中点, ∴B 1O ⊥BD ,∴AB 1⊥BD.在正方形ABB 1A 1中,AB 1⊥A 1B , ∴AB 1⊥平面A 1BD .(II)设AB 1与A 1B 交于点C ,在平面A 1BD 中,作GF ⊥A 1D 于F ,连结AF ,由(I )得AB 1⊥平面A 1BD ,∴∠AFG 为二面A -A 1B -B 的平面角. 在△AA 1D 中,由等面积法可求得AF =554, 又∵AG =121AB =2, ∴sin ∠AFG =4105542==AF AG , 所以二面角A -A 1D -B 的大小为arcsin410. 解法二:(I )取BC 中点O ,连结AO .∵△ABC 为正三角形,∴AO ⊥BC .∵正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, ∴AO ⊥平面BCC 1B 1.取B 1C 1中点O 1,以a 为原点,OO 1的方向为x 、y 、z 轴的正方向建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0), ∴)3,2,1(),0,1,2(),3,2,1(11-=-=-AB ∵,=0341·,0022·111-+-=++-BA AB AB ∴1AB ⊥1AB ⊥1, ∴AB 1⊥平面A 1BD .(II)设平面A 1AD 的法向量为n =(x ,y ,z ).).0,2,0(),3,1,1(1=--∵n ⊥n ,⊥1AA , ∴⎩⎨⎧,,0·0·1AA n AD n ∵⎩⎨⎧==-+-,02,03y y x ∴⎩⎨⎧-==z x y 3,令z =1得a =(-3,0,1)为平面A 1AD 的一个法向量.由(I )知AB 1⊥A 1BD.∴1AB 为平面A 1BD 的法向量. cos<n 11AB 1122·233--=-46. ∴二面角A -A 1D -B 的大小为arccos46. 5.(2007福建理)(本小题满分12分)如图,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1中点。

2007.高考模拟热点交汇试题汇编之解析几何与向量(30题)

2007.高考模拟热点交汇试题汇编之解析几何与向量(30题)

2007年高考模拟热点交汇试题汇编之解析几何与向量(30题)(命题者的首选资料)1.(赣马高级中学)在平面直角坐标系中,已知点A (1,0),向量e = (0,1),点B 为直线1-=x 上的动点,点C 满足+=2,点M 满足0=⋅e BM ,0=⋅CM . (1)试求动点M 的轨迹E 的方程; (2)试证直线CM 为轨迹E 的切线. 解:(1):设B (1-,m ),C (x 1,y 1)),由+=2,得:2(x 1,y 1) = (1,0) + (-1,m ),解得x 1 = 0,21my =设M (x ,y ),由⎪⎩⎪⎨⎧=⋅=⋅00AB CM BM e ,得⎪⎩⎪⎨⎧==⇒⎪⎩⎪⎨⎧=-⋅-=⋅-+my m x m my x m y x 40)2()2(0)10()1(2,,,,,消去m 得E 的轨迹方程x y 42=.(2):由题设知C 为AB 中点,MC ⊥AB ,故MC 为AB 的中垂线,MB ∥x 轴,设M (004y y ,),则B (-1,y 0),C (0,20y),当y 0≠0时,02y k MC =,MC 的方程2200y x y y +=8分将MC 方程与x y 42=联立消x ,整理得:02202=+-y y y y , 它有唯一解0y y =,即MC 与x y 42=只有一个公共点, 又0≠MC k ,所以MC 为x y 42=的切线.当y 0 = 0时,显然MC 方程x = 0为轨迹E 的切线综上知,MC 为轨迹E 的切线. 2.已知圆C 方程为:224x y +=.(Ⅰ)直线l 过点()1,2P ,且与圆C 交于A 、B两点,若||AB =l 的方程;(Ⅱ)过圆C 上一动点M 作平行于x 轴的直线m ,设m 与y 轴的交点为N ,若向量OQ OM ON =+,求动点Q 的轨迹方程,并说明此轨迹是什么曲线.解(Ⅰ)①当直线l 垂直于x 轴时,则此时直线方程为1=x ,l 与圆的两个交点坐标为()3,1和()3,1-,其距离为32 满足题意②若直线l 不垂直于x 轴,设其方程为()12-=-x k y ,即02=+--k y kx 设圆心到此直线的距离为d ,则24232d -=,得1=d∴1|2|12++-=k k ,34k =, 故所求直线方程为3450x y -+= 综上所述,所求直线为3450x y -+=或1=x (Ⅱ)设点M 的坐标为()00,y x (00y ≠),Q 点坐标为()y x ,则N 点坐标是()0,0y ∵OQ OM ON =+,∴()()00,,2x y x y = 即x x =0,20yy =又∵4202=+y x ,∴224(0)4y x y +=≠ ∴Q 点的轨迹方程是221(0)416x y y +=≠, 轨迹是一个焦点在x 轴上的椭圆,除去短轴端点。

最新高考-高考数学平面向量题型复习 精品

最新高考-高考数学平面向量题型复习 精品

平面向量题型复习1、(2007年北京卷理4).已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么 ( )A.AO OD = B.2AO OD = C.3AO OD = D.2AO OD =2、(2007年辽宁卷4).若向量a 与b 不共线,0≠a b ,且⎛⎫- ⎪⎝⎭a a c =ab a b ,则向量a 与c 的夹角为 A .0 B .π6 C .π3 D .π2( ) 3、(2007年福建卷理4).对于向量,,a b c 和实数λ,下列命题中真命题是 ( )A .若=0a b ,则0a =或0b =B .若λ0a =,则0λ=或=0aC .若22=a b ,则=a b 或-a =bD .若a b =a c ,则b =c4、(2007年四川卷文8)设A (a,1),B(2,b),C(4,5)为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为 ( )A.4a-5b=3B.5a-4b=3C.4a+5b=14D.5a+4b=125、(2007年上海卷理14)、在直角坐标系xOy 中,,i j 分别是与x 轴,y 轴平行的单位向量,若直角三角形ABC 中,2AB i j =+,3AC i k j =+,则k 的可能值有 ( )A 、1个B 、2个C 、3个D 、4个6、(2007年全国卷二理9).把函数e x y =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x = ( )A .3e 2x -+B .3e 2x +-C .2e 3x -+D .2e 3x +-7、(2007年山东卷理11)在直角ABC △中,CD 是斜边AB 上的高,则下列等式不成立的是 ( ) A 2AC AC AB = B 2BC BA BC = C 2AB AC CD = D 22()()AC AB BA BC CD AB⨯= 8、(2007年湖南卷理4).设,a b 是非零向量,若函数()()()f x x x =+-a b a b 的图象是一条直线,则必有 ( )A .⊥a bB .∥a bC .||||=a bD .||||≠a b9、(2007年湖北卷理2).将π2cos 36x y ⎛⎫=+ ⎪⎝⎭的图象按向量π24⎛⎫=-- ⎪⎝⎭,a 平移,则平移后所得图象的解析式为 ( )Aπ2cos 234x y ⎛⎫=+- ⎪⎝⎭ Bπ2cos 234x y ⎛⎫=-+ ⎪⎝⎭Cπ2cos 2312x y ⎛⎫=-- ⎪⎝⎭Dπ2cos 2312x y ⎛⎫=++ ⎪⎝⎭ 二、填空题10、(2007年天津卷理15).如图,在ABC △中,12021B A C A B A C ∠===,,°,D 是边BC 上一点,2DC BD =,则AD BC =· .11、(2007年天津卷文15)在ABC △中,2AB =,3AC =,D 是边BC 的中点,则AD BC =三、解答题12、(2007年陕西卷理17.)(本小题满分12分)设函数f (x )=a-b ,其中向量a =(m,cos2x ),b =(1+sin2x ,1),x ∈R ,且函数y=f (x )的图象经过点⎪⎭⎫ ⎝⎛2,4π, (Ⅰ)求实数m 的值;(Ⅱ)求函数f (x )的最小值及此时x 的值的集合.14、(2007年湖北卷理16).(本小题满分12分)已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC 的夹角为θ. (I )求θ的取值范围;(II)求函数2()2sin 24f θθθ⎛⎫=+⎪⎝⎭π的最大. A B D C。

【巧解妙解】高考数学向量与其他问题结合的经典题型

【巧解妙解】高考数学向量与其他问题结合的经典题型

平面向量综合应用与解题技巧【命题趋向】由2019年高考题分析可知:1.这部分内容高考中所占分数一般在10分左右.2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】“平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为:1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式.5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等.6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题. 【例题解析】1. 向量的概念,向量的基本运算(1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法.(3)掌握实数与向量的积,理解两个向量共线的充要条件.(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式.例1(北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( ) A.AO OD = B.2AO OD = C.3AO OD = D.2AO OD = 命题意图:本题考查能够结合图形进行向量计算的能力.解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0, 故选A . 例2.(安徽卷)在ABCD 中,,,3AB a AD b AN NC ===,M 为BC 的中点,则MN =______.(用a b 、表示)命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+由得,12AM a b =+,所以,3111()()4244MN a b a b a b =+-+=-+. 例3.(广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量=( ) (A )BA BC 21+- (B ) 21--(C ) 21- (D )21+命题意图: 本题主要考查向量的加法和减法运算能力. 解:21+-=+=,故选A.例4. (重庆卷)与向量a =71,,22b ⎛⎫= ⎪⎝⎭⎪⎭⎫ ⎝⎛27,21的夹解相等,且模为1的向量是 ( ) (A) ⎪⎭⎫- ⎝⎛53,54 (B) ⎪⎭⎫- ⎝⎛53,54或⎪⎭⎫ ⎝⎛-53,54 (C )⎪⎭⎫- ⎝⎛31,322 (D )⎪⎭⎫- ⎝⎛31,322或⎪⎭⎫ ⎝⎛-31,322 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题.解:设所求平面向量为,c 由433,,, 1.555c c ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭4或-时5另一方面,当7413431,,cos ,.5527a c c a c a c ⎛⎫⨯+⨯- ⎪⋅⎛⎫=-=== ⎪⋅⎝⎭⎛⎫时 当7413431,,cos ,.5527a c c a c a c ⎛⎫⎛⎫⨯-+⨯ ⎪ ⎪⋅⎛⎫=-==- ⎪⋅⎝⎭⎛⎫时 故平面向量c 与向量a =71,,22b ⎛⎫= ⎪⎝⎭⎪⎭⎫ ⎝⎛27,21的夹角相等.故选B. 例5.(天津卷)设向量a 与b 的夹角为θ,且)3,3(=a,)1,1(2-=-a b ,则=θcos __. 命题意图: 本题主要考查平面向量的坐标运算和平面向量的数量积,以及用平面向量的数量积处理有关角度的问题.解: ()()()()(),,22,3,323,231,1.b x y b a x y x y =-=-=--=-设由 ()2311,1,2.231 2.x xb y y -=-=⎧⎧⇒∴=⎨⎨-==⎩⎩得 2cos ,33a b a b a b⋅===⋅+例6.(2006年湖北卷)已知向量()3,1a =,b 是不平行于x 轴的单位向量,且3a b ⋅=,则b = ()(A ) ⎪⎪⎭⎫⎝⎛21,23 (B ) ⎪⎪⎭⎫ ⎝⎛23,21 (C )⎪⎪⎭⎫ ⎝⎛433,41 (D ) ()0,1 命题意图: 本题主要考查应用平面向量的坐标运算和平面向量的数量积,以及方程的思想解题的能力.解:设(),()b x y x y =≠,则依题意有1,y +=1,2x y ⎧=⎪⎪⎨⎪⎪⎩ 故选B.例7.设平面向量1a 、2a 、3a 的和1230a a a ++=.如果向量1b 、2b 、3b ,满足2i i b a =,且i a 顺时针旋转30o 后与i b 同向,其中1,2,3i =,则( )(A )1230b b b -++= (B )1230b b b -+= (C )1230b b b +-= (D )1230b b b ++=命题意图: 本题主要考查向量加法的几何意义及向量的模的夹角等基本概念.常规解法:∵1230a a a ++=,∴ 1232220.a a a ++=故把2i a (i=1,2,3),分别按顺时针旋转30 后与i b 重合,故1230b b b ++=,应选D.巧妙解法:令1a =0,则2a =3a -,由题意知2b =3b -,从而排除B ,C ,同理排除A ,故选(D). 点评:巧妙解法巧在取1a =0,使问题简单化.本题也可通过画图,利用数形结合的方法来解决.2. 平面向量与三角函数,解析几何等问题结合(1) 平面向量与三角函数、三角变换、数列、不等式及其他代数问题,由于结合性强,因而综合能力较强,所以复习时,通过解题过程,力争达到既回顾知识要点,又感悟思维方法的双重效果,解题要点是运用向量知识,将所给问题转化为代数问题求解.(2)解答题考查圆锥曲线中典型问题,如垂直、平行、共线等,此类题综合性比较强,难度大. 例8.(2007年陕西卷理17.)设函数f (x )=a-b ,其中向量a =(m,cos2x ),b =(1+sin2x ,1),x ∈R ,且函数y=f (x )的图象经过点⎪⎭⎫⎝⎛2,4π,(Ⅰ)求实数m 的值;(Ⅱ)求函数f (x )的最小值及此时x 的值的集合. 解:(Ⅰ)()(1sin 2)cos 2f x a b m x x ==++,由已知πππ1sin cos 2422f m ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()1sin 2cos 2124f x x x x ⎛⎫=++=+⎪⎝⎭,∴当πsin 214x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1,由πsin 214x ⎛⎫+=- ⎪⎝⎭,得x 值的集合为3ππ8x x k k ⎧⎫=-∈⎨⎬⎩⎭Z , 例2.(2007年陕西卷文17)设函数b a x f 、=)(.其中向量2)2π(R,),1,sin 1(),cos ,(=∈+==f x x b x m a 且.(Ⅰ)求实数m 的值; (Ⅱ)求函数)(x f 的最小值.解:(Ⅰ)()(1sin )cos f x m x x ==++a b ,πππ1sin cos 2222f m ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()sin cos 114f x x x x ⎛⎫=++=++ ⎪⎝⎭,∴当πsin 14x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1例9.(湖北卷理16)已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC 的夹角为θ. (I )求θ的取值范围;(II )求函数2()2sin 24f θθθ⎛⎫=+⎪⎝⎭π的最大 解:(Ⅰ)设ABC △中角A B C ,,的对边分别为a b c ,,, 则由1sin 32bc θ=,0cos 6bc θ≤≤,可得0cot 1θ≤≤,ππ42θ⎡⎤∈⎢⎥⎣⎦,∴.(Ⅱ)2π()2sin 24f θθθ⎛⎫=+⎪⎝⎭π1cos 222θθ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦(1sin 2)2θθ=+-πsin 2212sin 213θθθ⎛⎫=-+=-+ ⎪⎝⎭.ππ42θ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2363θ⎡⎤-∈⎢⎥⎣⎦,,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤.即当5π12θ=时,max ()3f θ=;当π4θ=时,min ()2f θ=. 例10.(广东卷理)已知ABC 的三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c,0) (1)若c=5,求sin ∠A 的值;(2)若∠A 为钝角,求c 的取值范围; 解:(1)(3,4)AB =--,(3,4)AC c =--,若c=5, 则(2,4)AC =-,∴cos cos ,A AC AB ∠=<>=sin ∠A ; (2)∠A 为钝角,则39160,0,c c -++<⎧⎨≠⎩解得253c >,∴c 的取值范围是25(,)3+∞例11.(山东卷文17)在ABC △中,角A B C ,,的对边分别为tan a b c C =,,,(1)求cos C ;(2)若52CB CA =,且9a b +=,求c .解:(1)sin tan cos CC C=∴=又22sin cos 1C C +=解得1cos 8C =±. tan 0C >,C ∴是锐角. 1cos 8C ∴=. (2)52CB CA =, 5cos 2ab C ∴=,20ab ∴=. 又9a b += 22281a ab b ∴++=. 2241a b ∴+=.2222cos 36c a b ab C ∴=+-=.6c ∴=.例12. (湖北卷)设函数()()f x a b c =⋅+,其中向量()()sin ,cos ,sin ,3cos a x x b x x =-=-, ()cos ,sin ,c x x x R =-∈.(Ⅰ)求函数()x f 的最大值和最小正周期;(Ⅱ)将函数()x f y =的图像按向量d 平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的d . 命题意图:本小题主要考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力.解:(Ⅰ)由题意得,f(x)=a ·(b c +)=(sinx,-cosx)·(sinx-cosx,sinx -3cosx)=sin 2x -2sinxcosx+3cos 2x =2+cos2x -sin2x =2+2sin(2x+43π).所以,f(x)的最大值为2+2,最小正周期是22π=π.(Ⅱ)由sin(2x+43π)=0得2x+43π=k.π,即x =832ππ-k ,k ∈Z ,于是d =(832ππ-k ,-2),(k d π=-k ∈Z.因为k 为整数,要使d 最小,则只有k =1,此时d =(―8π,―2)即为所求.例13.(2006年全国卷II )已知向量a =(sin θ,1),b =(1,cos θ),-π2<θ<π2.(Ⅰ)若a ⊥b ,求θ;(Ⅱ)求|a +b |的最大值. 命题意图:本小题主要考查平面向量数量积和平面向量的模的计算方法、以及三角公式、三角函数的性质等基本知识,考查推理和运算能力.解:(Ⅰ)若a ⊥b ,则sin θ+cos θ=0,由此得 tan θ=-1(-π2<θ<π2),所以 θ=-π4;(Ⅱ)由a =(sin θ,1),b =(1,cos θ)得|a +b |=(sin θ+1)2+(1+cos θ)2=3+2(sin θ+cos θ)=3+22sin(θ+π4),当sin(θ+π4)=1时,|a +b |取得最大值,即当θ=π4时,|a +b |最大值为2+1.例14.(2006年陕西卷)如图,三定点(2,1),(0,1),(2,1);A B C --,,AD t AB BE tBC == ,[0,1].DM tDE t =∈(I )求动直线DE 斜率的变化范围; (II )求动点M 的轨迹方程。

2007年(全国卷II)(含答案)高考理科数学

2007年(全国卷II)(含答案)高考理科数学

2007年普通高等学校招生全国统一考试(2全国Ⅱ卷)数学(理)试题一、选择题 ( 本大题 共 12 题, 共计 60 分) 1.sin 210= ( ) A .32B .32-C .12D .12-2.函数sin y x =的一个单调增区间是( )A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π ⎪2⎝⎭,3.设复数z 满足12ii z+=,则z =( ) A .2i -+B .2i --C .2i -D .2i +4.下列四个数中最大的是( ) A .2(ln 2)B .ln(ln 2)C .ln 2D .ln 25.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( )A .23B .13C .13-D .23-6.不等式2104x x ->-的解集是( ) A .(21)-, B .(2)+∞, C .(21)(2)-+∞ ,, D .(2)(1)-∞-+∞ ,,7.已知正三棱柱111ABC A B C -的侧棱长与底面边长相等,则1AB 与侧面11ACC A 所成角的正弦值等于( ) A .64B .104C .22D .328.已知曲线23ln 4x y x =-的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .129.把函数e x y =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( ) A .3e 2x -+B .3e 2x +-C .2e 3x -+D .2e 3x +-10.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( ) A .40种B .60种C .100种D .120种11.设12F F ,分别是双曲线2222x y a b-的左、右焦点,若双曲线上存在点A ,使1290F AF ∠= 且123AF AF =,则双曲线的离心率为( ) A .52B .102C .152D .512.设F 为抛物线24y x =的焦点,A B C ,,为该抛物线上三点,若FA FB FC ++=0,则FA FB FC ++= ( )A .9B .6C .4D .3二、填空题:本大题共4小题,每小题5分,共20分.13.821(12)x x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为 .(用数字作答)14.在某项测量中,测量结果ξ服从正态分布2(1)(0)N σσ>,.若ξ在(01),内取值的概率为0.4,则ξ在(02),内取值的概率为 .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2. 16.已知数列的通项52n a n =-+,其前n 项和为n S ,则2limnn S n ∞=→ . 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)在ABC△中,已知内角Aπ=3,边23BC=.设内角B x=,周长为y.(1)求函数()y f x=的解析式和定义域;(2)求y的最大值.18.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率()0.96P A=.(1)求从该批产品中任取1件是二等品的概率p;(2)若该批产品共100件,从中任意抽取2件,ξ表示取出的2件产品中二等品的件数,求ξ的分布列.19.(本小题满分12分)如图,在四棱锥S ABCD-中,底面A B C D为正方形,侧棱SD⊥底面A B C D E F,,分别为AB SC,的中点.(1)证明EF∥平面SAD;(2)设2SD DC=,求二面角A EF D--的大小.A EB CF SD20.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线34x y -=相切. (1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P 使PA PO PB ,,成等比数列,求PA PB的取值范围.21.(本小题满分12分)设数列{}n a 的首项113(01)2342n n a a a n --∈==,,,,,,…. (1)求{}n a 的通项公式;(2)设32n n n b a a =-,证明1n n b b +<,其中n 为正整数.22.(本小题满分12分) 已知函数3()f x x x =-.(1)求曲线()y f x =在点(())M t f t ,处的切线方程;(2)设0a >,如果过点()a b ,可作曲线()y f x =的三条切线,证明:()a b f a -<<.2007年普通高等学校招生全国统一考试(2全国Ⅱ卷)数学(理)试题答案解析: 一、选择题 1.答案:D解析:sin2100 =1sin 302-︒=-,选D 。

【高三数学试题精选】2007高考数学的考点分解与解析

【高三数学试题精选】2007高考数学的考点分解与解析

2007高考数学的考点分解与解析
2007高考数学的考点分解与解析 2007高考数学的考点分解与解析
c 根据2007全国高考年数学科《考试大纲》的要求,高考科数学的考试内容(包括考试考点、考试要求)有如下13大块。

特别注意的是,根据《2007年高考对数学科的定性要求》中对各个知识点考查的“了解”、“理解”、“掌握”三个层次的定性要求,在后期复习中,一定要突出重点、控难度,做到考点明晰,心中有数,各个击破,逐个落实。

1、平面向量考试要求(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念。

(2)掌握向量的加法与减法。

(3)掌握实数与向量的积。

理解两个向量共线的充要条。

(4)了解平面向量的基本定理,理解平面向量的坐标概念,掌握平面向量的坐标运算。

(5)掌握平面向量的数量积及几何意义,了解平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条。

(6)掌握平面两点间的距离式以及线段的定比分点和中点坐标式,并能够熟练运用平移式。

2、集合、简易逻辑考试要求(1)理解集合、子集、补集、并集的概念,了解空集和全集的意义,了解属于、包含、相等关系的意义,掌握有关的术语的符号,并学会用它们表示一些简单的集合。

(2)理解逻辑联结词“或”、“且”、“非”的含义,理解四种命题及其相互关系,掌握充分条、必要条及充要条的意义。

3、函数考试要求(1)了解映射的概念,理解函数的概念。

(2
[1][2][3][4][5]下一页
c。

高三数学 坐标平移和向量的应用 知识精讲 通用版

高三数学 坐标平移和向量的应用 知识精讲 通用版【本讲主要内容】一. 本周教学内容:坐标平移和向量的应用【知识掌握】 【知识点精析】1. 平移(1)图形的平移:设F 是坐标平面内的一个图形,将F 上所有点按同一方向,移动同样的长度,得到图形F ′,这一过程叫图形的平移。

(2)平移公式:如果点(,)P x y 按向量(),a h k =平移至(,)P x y '',则x x hy y k '=+⎧⎨'=+⎩,这就是点的平移公式,→a 为平移法则。

它反映了点P 在平移前后的新坐标与原坐标之间的关系。

在点P 新、旧坐标及平移法则三组坐标中,已知两组坐标,一定可以求第三组坐标。

公式中反映的平移可以分解为两步来完成:1°沿x 轴方向的平移:当h 为正时,向右平移h 个单位;当h 为负时,向右平移|h|个单位。

2°沿y 轴方向的平移:当k 为正时,向上平移k 个单位;当k 为负时,向下平移|k|个单位。

(3)用平移化简函数解析式(函数图象的变换)在一个选定的坐标系下,有时一个图像的函数表达式比较复杂,通过平移图像,往往能使其函数表达式变得非常简单,如函数y=2x-5x-3可变形为y=1x-3+2,这时只要按向量a =(-3,-2)平移图像,即得y ′=1x ′,由此可见,平移是研究函数的一种重要方法。

通过恰当的平移,较复杂的函数表达式可转化为较简单的函数表达式。

一般地:将图象左移个单位右移个单位y f x a a a a y f x a y f x a =>−→−−−−−−−−>=+=-()()()()()00 上移个单位下移个单位b b b b y f x a b y f x a b()()()()>−→−−−−−−−−>=++=+-00 以上变换相当于函数y=f(x)的图像按照向量a =(m,n)(左移时m=-a ;右移时m=a 。

高考数学(全国文理通用)一轮复习: 考点15 平面向量的数量积、线段的定比分点与平移

温馨提示:此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word 文档返回原板块。

考点15 平面向量的数量积、线段的定比分点与平移一、选择题1.(2012·大纲版全国卷高考文科·T9)与(2012·大纲版全国卷高考理科·T6)相同△ABC 中,AB 边的高为CD ,若CB a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD =( )(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b - 【解题指南】本题考查向量的基础知识,根据向量点乘积为0,得垂直.再根据三角形相似,求出AD 的模长,得出AB AD 54=.再把AB 转化成)(-,最后得出AD =5454-.【解析】选D. 0=⋅,则⊥,即BC AC ⊥, 又AB CD ⊥,522=+=BC AC AB ,ADC ∽ACB ,AB AC AC AD =∴,522=AD,解得554=AD .b a CA CB AB AD 5454)(5454-=-==∴. 2.(2012·重庆高考理科·T6)设R y x ∈,,向量)1,(x a =,),1(y b =,)4,2(-=c且⊥ ,//,=+( )(A)5 (B)10 (C)52 (D)10 【解题指南】先利用向量垂直与平行的坐标表示求出y x ,的值,再进一步求解即可.【解析】选B.由⊥ ,//可知2x 40,42y 0,-=⎧⎨--=⎩解得x 2,y 2,=⎧⎨=-⎩)1,3()2,1()1,2(-=-+=+10)1(322=-+=+.3.(2012·重庆高考文科·T6)设,R x ∈向量)2,1(),1,(-==b x a ,且⊥ ,则a b +=( )(A)5 (B)10 (C)52 (D)10 【解题指南】根据向量垂直求出实数x 的值,然后根据公式求向量的模.【解析】选B. 由⊥,所以02=-=•x ,所以2=x ,)1,3()2,1()1,2(-=-+=+,2a b 3+=+=.4.(2012·四川高考理科·T7)设a ,b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( ) (A)a b =- (B)//a b (C)2a b = (D)//a b 且||||a b =【解题指南】由向量相等的概念,单位向量的概念及向量共线的定义求解.【解析】选C.||a a 表示与a 同向的单位向量,||bb 表示与b 同向的单位向量,仅a b 与 方向相同,有||||a ba b =.当 2a b =时,a b 与方向相同,故选C.5.(2012·四川高考文科·T7)设a ,b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( ) (A)||||a b =且//a b (B)a b =- (C)//a b (D)2a b = 【解题指南】由向量相等的概念,单位向量的概念及向量共线的定义求解.【解析】选D.||a a 表示与a 同向的单位向量,||bb 表示与b 同向的单位向量,仅a b 与 方向相同,有||||a ba b =.当 2a b =时,a b 与方向相同,故选D.关闭Word 文档返回原板块。

2007年全国统一高考数学试卷(理科)(全国卷一)及答案

2007年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题4分,满分48分)1.(4分)α是第四象限角,,则sinα=()A.B.C.D.2.(4分)设a是实数,且是实数,则a=()A.B.1 C.D.23.(4分)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向4.(4分)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.5.(4分)设a,b∈R,集合{1,a+b,a}={0,,b},则b﹣a=()A.1 B.﹣1 C.2 D.﹣26.(4分)下面给出的四个点中,到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点是()A.(1,1) B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)7.(4分)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.8.(4分)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.49.(4分)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件10.(4分)的展开式中,常数项为15,则n=()A.3 B.4 C.5 D.611.(4分)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.812.(4分)函数f(x)=cos2x﹣2cos2的一个单调增区间是()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有种.(用数字作答)14.(5分)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=.15.(5分)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.16.(5分)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为.三、解答题(共6小题,满分82分)17.(12分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)求cosA+sinC的取值范围.18.(12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ12345P0.40.20.20.10.1商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.19.(14分)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.20.(14分)设函数f(x)=e x﹣e﹣x(Ⅰ)证明:f(x)的导数f′(x)≥2;(Ⅱ)若对所有x≥0都有f(x)≥ax,求a的取值范围.21.(14分)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.22.(16分)已知数列{a n}中,a1=2,,n=1,2,3,…(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n}中,b1=2,,n=1,2,3,…,证明:,n=1,2,3,…2007年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.(4分)(2007•全国卷Ⅰ)α是第四象限角,,则sinα=()A.B.C.D.【分析】根据tanα=,sin2α+cos2α=1,即可得答案.【解答】解:∵α是第四象限角,=,sin2α+cos2α=1,∴sinα=﹣.故选D.2.(4分)(2007•全国卷Ⅰ)设a是实数,且是实数,则a=()A.B.1 C.D.2【分析】复数分母实数化,化简为a+bi(a、b∈R)的形式,虚部等于0,可求得结果.【解答】解.设a是实数,=是实数,则a=1,故选B.3.(4分)(2007•全国卷Ⅰ)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向【分析】根据向量平行垂直坐标公式运算即得.【解答】解:∵向量,,得,∴⊥,故选A.4.(4分)(2007•全国卷Ⅰ)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.【分析】根据焦点坐标求得c,再根据离心率求得a,最后根据b=求得b,双曲线方程可得.【解答】解.已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则c=4,a=2,b2=12,双曲线方程为,故选A.5.(4分)(2007•全国卷Ⅰ)设a,b∈R,集合{1,a+b,a}={0,,b},则b ﹣a=()A.1 B.﹣1 C.2 D.﹣2【分析】根据题意,集合,注意到后面集合中有元素0,由集合相等的意义,结合集合中元素的特征,可得a+b=0,进而分析可得a、b 的值,计算可得答案.【解答】解:根据题意,集合,又∵a≠0,∴a+b=0,即a=﹣b,∴,b=1;故a=﹣1,b=1,则b﹣a=2,故选C.6.(4分)(2007•全国卷Ⅰ)下面给出的四个点中,到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点是()A.(1,1) B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)【分析】要找出到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点,我们可以将答案中的四个点逐一代入验证,不难得到结论.【解答】解.给出的四个点中,(1,1),(﹣1,1),(﹣1,﹣1)三点到直线x ﹣y+1=0的距离都为,但∵,仅有(﹣1,﹣1)点位于表示的平面区域内故选C7.(4分)(2007•全国卷Ⅰ)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.【分析】先通过平移将两条异面直线平移到同一个起点B,得到的锐角∠A1BC1就是异面直线所成的角,在三角形中A1BC1用余弦定理求解即可.【解答】解.如图,连接BC1,A1C1,∠A1BC1是异面直线A1B与AD1所成的角,设AB=a,AA1=2a,∴A1B=C1B=a,A1C1=a,∠A1BC1的余弦值为,故选D.8.(4分)(2007•全国卷Ⅰ)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.4【分析】因为a>1,函数f(x)=log a x是单调递增函数,最大值与最小值之分别为log a2a、log a a=1,所以log a2a﹣log a a=,即可得答案.【解答】解.∵a>1,∴函数f(x)=log a x在区间[a,2a]上的最大值与最小值之分别为log a2a,log a a,∴log a2a﹣log a a=,∴,a=4,故选D9.(4分)(2008•上海)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g (x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件【分析】本题主要是抽象函数奇偶性的判断,只能根据定义,而要否定奇偶性,一般用特值.【解答】解.若“f(x),g(x)均为偶函数”,则有f(﹣x)=f(x),g(﹣x)=g (x),∴h(﹣x)=f(﹣x)+g(﹣x)=f(x)+g(x)=h(x),∴“h(x)为偶函数”,而反之取f(x)=x2+x,g(x)=2﹣x,h(x)=x2+2是偶函数,而f(x),g(x)均不是偶函数”,故选B10.(4分)(2007•全国卷Ⅰ)的展开式中,常数项为15,则n=()A.3 B.4 C.5 D.6【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为0求出常数项,据n的特点求出n的值.【解答】解:的展开式中,常数项为15,则,所以n可以被3整除,当n=3时,C31=3≠15,当n=6时,C62=15,故选项为D11.(4分)(2007•全国卷Ⅰ)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8【分析】先根据抛物线方程求出焦点坐标和准线方程,进而可得到过F且斜率为的直线方程然后与抛物线联立可求得A的坐标,再由AK⊥l,垂足为K,可求得K的坐标,根据三角形面积公式可得到答案.【解答】解:∵抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A(3,2),AK⊥l,垂足为K(﹣1,2),∴△AKF的面积是4故选C.12.(4分)(2007•全国卷Ⅰ)函数f(x)=cos2x﹣2cos2的一个单调增区间是()A.B.C.D.【分析】化简函数为关于cosx的二次函数,然后换元,分别求出单调区间判定选项的正误.【解答】解.函数=cos2x﹣cosx﹣1,原函数看作g(t)=t2﹣t﹣1,t=cosx,对于g(t)=t2﹣t﹣1,当时,g(t)为减函数,当时,g(t)为增函数,当时,t=cosx减函数,且,∴原函数此时是单调增,故选A二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2007•全国卷Ⅰ)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有36种.(用数字作答)【分析】由题意知本题是一个有约束条件的排列组合问题,先从除甲与乙之外的其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,写出即可.【解答】解.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,∵先从其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,∴不同的选法共有C31•A42=3×4×3=36种.14.(5分)(2007•全国卷Ⅰ)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=3x(x∈R).【分析】由题意推出f(x)与函数y=log3x(x>0)互为反函数,求解即可.【解答】解.函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x 对称,则f(x)与函数y=log3x(x>0)互为反函数,f(x)=3x(x∈R)故答案为:3x(x∈R)15.(5分)(2007•全国卷Ⅰ)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.【分析】先根据等差中项可知4S2=S1+3S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.【解答】解:∵等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,∴a n=a1q n﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为16.(5分)(2007•全国卷Ⅰ)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为2.【分析】由于正三棱柱的底面ABC为等边三角形,我们把一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,结合图形的对称性可得,该三角形的斜边EF上的中线DG的长等于底面三角形的高,从而得出等腰直角三角形DEF的中线长,最后得到该三角形的斜边长即可.【解答】解:一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,∠EDF=90°,已知正三棱柱的底面边长为AB=2,则该三角形的斜边EF上的中线DG=,∴斜边EF的长为2.故答案为:2.三、解答题(共6小题,满分82分)17.(12分)(2007•全国卷Ⅰ)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)求cosA+sinC的取值范围.【分析】(1)先利用正弦定理求得sinB的值,进而求得B.(2)把(1)中求得B代入cosA+sinC中利用两角和公式化简整理,进而根据A 的范围和正弦函数的性质求得cosA+sinC的取值范围.【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)===.由△ABC为锐角三角形知,0<A<,0<﹣A<,∴<A<,,所以.由此有<,所以,cosA+sinC的取值范围为(,).18.(12分)(2007•全国卷Ⅰ)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ12345P0.40.20.20.10.1商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.【分析】(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,根据对立事件的概率公式得到结果.(2)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率,写出变量的分布列和期望.【解答】解:(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,设A表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知表示事件“购买该商品的3位顾客中无人采用1期付款”,∴.(Ⅱ)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率P(η=200)=P(ξ=1)=0.4,P(η=250)=P(ξ=2)+P(ξ=3)=0.2+0.2=0.4,P(η=300)=1﹣P(η=200)﹣P(η=250)=1﹣0.4﹣0.4=0.2.∴η的分布列为η200250300P0.40.40.2∴Eη=200×0.4+250×0.4+300×0.2=240(元).19.(14分)(2007•全国卷Ⅰ)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.【分析】解法一:(1)作SO⊥BC,垂足为O,连接AO,说明SO⊥底面ABCD.利用三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,设AD∥BC,连接SE.说明∠ESD为直线SD与平面SBC所成的角,通过,求出直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,通过证明,推出SA⊥BC.(Ⅱ).与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC 的法向量,利用α与β互余.通过,,推出直线SD与平面SBC所成的角为.【解答】解法一:(1)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥底面ABCD.因为SA=SB,所以AO=BO,又∠ABC=45°,故△AOB为等腰直角三角形,AO⊥BO,由三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,依题设AD∥BC,故SA⊥AD,由,,.又,作DE⊥BC,垂足为E,则DE⊥平面SBC,连接SE.∠ESD为直线SD与平面SBC所成的角.所以,直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥平面ABCD.因为SA=SB,所以AO=BO.又∠ABC=45°,△AOB为等腰直角三角形,AO⊥OB.如图,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,因为,,又,所以,,.S(0,0,1),,,,所以SA⊥BC.(Ⅱ),.与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,所以α与β互余.,,所以,直线SD与平面SBC所成的角为.20.(14分)(2007•全国卷Ⅰ)设函数f(x)=e x﹣e﹣x(Ⅰ)证明:f(x)的导数f′(x)≥2;(Ⅱ)若对所有x≥0都有f(x)≥ax,求a的取值范围.【分析】(Ⅰ)先求出f(x)的导函数,利用a+b≥2当且仅当a=b时取等号.得到f'(x)≥2;(Ⅱ)把不等式变形令g(x)=f(x)﹣ax并求出导函数令其=0得到驻点,在x ≥0上求出a的取值范围即可.【解答】解:(Ⅰ)f(x)的导数f'(x)=e x+e﹣x.由于,故f'(x)≥2.(当且仅当x=0时,等号成立).(Ⅱ)令g(x)=f(x)﹣ax,则g'(x)=f'(x)﹣a=e x+e﹣x﹣a,(ⅰ)若a≤2,当x>0时,g'(x)=e x+e﹣x﹣a>2﹣a≥0,故g(x)在(0,+∞)上为增函数,所以,x≥0时,g(x)≥g(0),即f(x)≥ax.(ⅱ)若a>2,方程g'(x)=0的正根为,此时,若x∈(0,x1),则g'(x)<0,故g(x)在该区间为减函数.所以,x∈(0,x1)时,g(x)<g(0)=0,即f(x)<ax,与题设f(x)≥ax 相矛盾.综上,满足条件的a的取值范围是(﹣∞,2].21.(14分)(2007•全国卷Ⅰ)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.【分析】(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,由此可以证出.(Ⅱ)设BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),由题意知|BD|=再求出|AC|=,由此可以求出四边形ABCD的面积的最小值.【解答】证明:(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,所以,.(Ⅱ)(ⅰ)当BD的斜率k存在且k≠0时,BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),则,|BD|=;因为AC与BD相交于点P,且AC的斜率为,所以,|AC|=.四边形ABCD的面积•|BD||AC|=.当k2=1时,上式取等号.(ⅱ)当BD的斜率k=0或斜率不存在时,四边形ABCD的面积S=4.综上,四边形ABCD的面积的最小值为.22.(16分)(2007•全国卷Ⅰ)已知数列{a n}中,a1=2,,n=1,2,3,…(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n}中,b1=2,,n=1,2,3,…,证明:,n=1,2,3,…【分析】(Ⅰ)先对进行整理可得到,即数列是首项为,公比为的等比数列,再由等比数列的通项公式可得到,进而得到.(Ⅱ)用数学归纳法证明.当n=1时可得到b1=a1=2满足条件,然后假设当n=k 时满足条件进而得到当n=k+1时再对进行整理得到=,进而可得证.【解答】解:(Ⅰ)由题设:==,.所以,数列是首项为,公比为的等比数列,,即a n的通项公式为,n=1,2,3,.(Ⅱ)用数学归纳法证明.(ⅰ)当n=1时,因,b1=a1=2,所以,结论成立.(ⅱ)假设当n=k时,结论成立,即,也即.当n=k+1时,==,又,所以=.也就是说,当n=k+1时,结论成立.根据(ⅰ)和(ⅱ)知,n=1,2,3,.。

高考数学平移测试- 附参考答案

专题考案(4)向量板块 第3课 平移(时间:90分钟 满分:100分)题型示例设函数f (x )=a ·b ,其中向量a =(2cos x ,1),b =(cos x ,3sin2x ),x ∈R .(1)若f (x )=1-3且x ∈⎥⎦⎤⎢⎣⎡ππ-3,3,求x ; (2)若函数y =2sin2x 的图象按向量c =(m ,n )(|m |<2π)平移后得到函数y =f (x )的图象,求实数m 、n 的值.分析 (1)由已知列出有关x 的方程,再求解.(2)两函数为同一函数,只需在m 的允许范围内对应项系数相等.解 (1)依题设,f (x )=2cos 2x +3sin2x =1+2sin(2x +6π). 由1+2sin(2x +6π)=1-3,得sin(2x +6π)=-23. ∵-3π≤x ≤3π,∴-2π≤2x+6π≤65π,∴2x+6π=-3π,即x =-4π. (2)函数y =2sin2x 的图象按向量c =(m ,n )平移后得到函数y =2sin2(x -m )+n 的图象,即函数 y =f (x )的图象.由(1)得f (x )=2sin2(x +12π)+1.∵|m |<2π,∴m =-12π,n =1. 点评 本题以向量为载体主要考查平面向量的概念和计算,三角函数的恒等变形及图象变换的基本技能,考查学生的运算能力.一、选择题(9×3′=27′)1.将A (3,4)按a =(1,2)平移,得到的对应点为 ( )A.(4,6)B.(2,2)C.(4,2)D.(2,6)2.一函数图象沿向量a =(3π,2)平移,得到函数y =2cos x +1的图象,则原函数在[0,π]上的最大值为 ( )A.3B.1C.0D.23.函数y =sin3x 的图象按a =(6π,2)平移得到的图象的解析式为 ( ) A.y =sin(3x +6π)+2 B.y =sin(3x -6π)-2 C.y =cos3x +2 D.y =-cos3x +24.若将函数y =f (x )的图象按向量a 平移,使图象上点P 的坐标由(1,0)变为(2,2),则平移后的图象的解析式为 ( )A.y =f (x -1)+2B.y =f (x -1)-2C.y =f (x +1)-2D.y =f (x +1)+25.按一个向量a 将点(-1,1)平移到点(2,-3),则a 的坐标是 ( )A.(1,-2)B.(-3,4)C.(3,-4)D.(3,4)6.函数y =f (x )的图象按a =(-3π,-2)平移得到的图象的解析式为y =cos x ,则原函数的解析式是( ) A.y =cos(x +3π) B.y =cos(x -3π)-2 C.y =cos(x +3π)-2 D.y =cos(x -3π)+2 7.把x -2y +c =0按向量a =(-1,2)平移,得到的直线与圆x 2+y 2+2x -4y =0相切,则c 等于( )A.±5B.10或0C.±5D.13或3 8.为了得到y =f (-2x )的图象,可以把函数y =f (1-2x )的图象按向量a 进行平移,则a 等于( )A.(1,0)B.(-1,0)C.(21,0)D.(-21,0) 9.已知f 1(x )=cos x +sin x ,f 2(x )=2cos x +2,f 3(x )=2cos|x |,则它们的图象经过若干次平移后可能出现 ( )A.f 1(x ),f 2(x ),f 3(x )分别重合B.f 1(x ),f 2(x )重合但不能与f 3(x )重合C.f 1(x ),f 3(x )重合但不能与f 2(x )重合D.f 2(x ),f 3(x )重合但不能与f 1(x )重合二、填空题(5×4′=20′)10.按a =(m ,n )平移,使方程4x 2+9y 2+16x -18y -11=0变为4x 2+9y 2=36,则a = .11.一抛物线F ′按a =(-1,3)平移得到抛物线F ,F 的解析式为y =2(x +1)2+3,则F ′的解析式为 .12.抛物线y =4x 2按a =(1,2)平移后,其顶点在一次函数y =2121+x b 的图象上, 则b = .13.将一次函数y =kx +m 的图象按向量a =(-3,2)平移后得到的图象为l ′;同样将y =kx +m 的图象按向量b =(4,-5)平移后得到的图象也为l ′,则k = .14.设向量=(7,-5),按a =(3,6)平移后得,则的坐标为 .三、解答题(3×10′=30′)15.已知函数f (x )=x 2+(a +1)x +b 的图象按向量a =(1,-1)平移后,所得图象过点(4,2),且对一切实数x ,f (x )≥x 恒成立.求实数a 、b 的值.16.将直线y =kx +b 向右平移3个单位再向上平移2个单位,所得直线与原来的直线重合,求k的值.17.已知抛物线y =x 2-2x -8.(1)求抛物线顶点的坐标;(2)将这条抛物线平移到顶点与(2,-3)重合,求函数解析式;(3)将这条抛物线沿x 轴平移到通过原点时,求函数解析式.四、思考与讨论(12′+11′=23′)18.将函数y =-x 2的图象进行平移,使得到的图象与函数y =x 2-x -2的图象的两个交点关于原点对称,求平移后的解析式.19.已知a =(1+cos2x ,1),b =(1,m +3sin2x )(x ∈R ,m 为常数),且y =a ·b .(1)求y 关于x 的函数关系式y =f (x );(2)当x ∈[0,2π]时,f (x )的最大值为3,求m 的值;若此时函数y =f (x )的图象可由函数y =2sin2x 的图象按向量c =(h ,k )(|h |<2π)平移后得到,求实数h 、k 的值.参考答案1.A x ′=3+1=4,y ′=4+2=6.2.C 原函数为y =2cos(x +3π)-1,其在[0,π]上的最大值为0. 3.D ⎪⎩⎪⎨⎧-'=π-'=26y y x x ,解析式为y ′-2=sin3(x ′-6π),即y ′=-cos3x ′+2. 4.A 2=1+h ,2=0+k ,h =1,k =2.∴x ′=x +1,y ′=y +2,∴y ′-2=f (x ′-1).5.C 2=-1+h ,-3=1+k ,∴h =3,k =-4.6.D 原题可转化为求函数y =cos x 的图象按向量b =(3π,2)平移后所得的图象解析式,故函数f (x )的解析式为y =cos(x -3π)+2. 7.C x ′=x -1,y ′=y +2,直线方程变为(x +1)-2(y -2)+c =0,即x -2y +5+c =0, 由d=55|5221|=++⨯--c =r ⇒c =±5.8.D x ′=x +h ,y ′=y +k ,则1-2(x ′-h )=-2x ′,y ′-k =y ′,∴h =-21,k =0. 9.A f 1(x )=2sin(x +4π),f 2(x )=2cos x +2,f 3(x )=2cos x 都可看作由2cos x 进行平移得来. 10.(2,-1) 4x 2+9y 2+16x -18y -11=0⇒4(x +2)2+9(y -1)2=36,令.12,12⎩⎨⎧-==⎩⎨⎧-='+='n m y y x x 则 11.y =2x 2 F ′的解析式为y =2[(x -1)+1]2+3-3,即y =2x 2.12.3 ⎩⎨⎧-'=-'=⇒⎩⎨⎧+='+='2121y y x x y y x x ,故新顶点为(1,2).∴2=21×1+21b ,b =3. 13.-1 y =kx +m 按(-3,2)平移后的方程为y ′-2=k (x ′+3)+m ,y =kx +m 按(4,-5)平移后的方程为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档