LVDS信号的PCB设计

合集下载

(完整版)LVDS接口详解

(完整版)LVDS接口详解

1.LVDS输出接口概述液晶显示器驱动板输出的数字信号中,除了包括RGB数据信号外,还包括行同步、场同步、像素时钟等信号,其中像素时钟信号的最高频率可超过28MHz。

采用TTL接口,数据传输速率不高,传输距离较短,且抗电磁干扰(EMI)能力也比较差,会对RGB数据造成一定的影响;另外,TTL 多路数据信号采用排线的方式来传送,整个排线数量达几十路,不但连接不便,而且不适合超薄化的趋势。

采用LVDS输出接口传输数据,可以使这些问题迎刃而解,实现数据的高速率、低噪声、远距离、高准确度的传输。

那么,什么是LVDS输出接口呢?LVDS,即Low Voltage Differential Signaling,是一种低压差分信号技术接口。

它是美国NS公司(美国国家半导体公司)为克服以TTL电平方式传输宽带高码率数据时功耗大、EMI电磁干扰大等缺点而研制的一种数字视频信号传输方式。

LVDS输出接口利用非常低的电压摆幅(约350mV)在两条PCB走线或一对平衡电缆上通过差分进行数据的传输,即低压差分信号传输。

采用LVDS输出接口,可以使得信号在差分PCB线或平衡电缆上以几百Mbit/s的速率传输,由于采用低压和低电流驱动方式,因此,实现了低噪声和低功耗。

目前,LVDS输出接口在17in及以上液晶显示器中得到了广泛的应用。

2.LVDS接口电路的组成在液晶显示器中,LVDS接口电路包括两部分,即驱动板侧的LVDS输出接口电路(LVDS发送器)和液晶面板侧的LVDS输入接口电路(LVDS接收器)。

LVDS发送器将驱动板主控芯片输出的17L电平并行RGB数据信号和控制信号转换成低电压串行LVDS信号,然后通过驱动板与液晶面板之间的柔性电缆(排线)将信号传送到液晶面板侧的LVDS接收器,LVDS接收器再将串行信号转换为TTL电平的并行信号,送往液晶屏时序控制与行列驱动电路。

图1所示为LVDS接口电路的组成示意图。

图1 LVDS接口电路的组成示意图在数据传输过程中,还必须有时钟信号的参与,LVDS接口无论传输数据还是传输时钟,都采用差分信号对的形式进行传输。

完整版LVDS接口详解

完整版LVDS接口详解

1 . LVDS输出接口归纳液晶显示器驱动板输出的数字信号中,除了包括RGB 数据信号外,还包括行同步、场同步、像素时钟等信号,其中像素时钟信号的最高频率可高出28MHz 。

采用 TTL 接口,数据传输速率不高,传输距离较短,且抗电磁搅乱(EMI )能力也比较差,会对RGB 数据造成必然的影响;别的,TTL 多路数据信号采用排线的方式来传达,整个排线数量达几十路,不仅连接不便,而且不适合超薄化的趋势。

采用 LVDS 输出接口传输数据,能够使这些问题瓜熟蒂落,实现数据的高速率、低噪声、远距离、高正确度的传输。

那么,什么是 LVDS 输出接口呢? LVDS ,即 Low Voltage Differential Signaling ,是一种低压差分信号技术接口。

它是美国 NS 公司(美国国家半导体公司)为战胜以 TTL 电平方式传输宽带高码率数据时功耗大、 EMI 电磁搅乱大等缺点而研制的一种数字视频信号传输方式。

LVDS 输出接口利用特别低的电压摆幅(约350mV)在两条PCB走线或一对平衡电缆上通过差分进行数据的传输,即低压差分信号传输。

采用LVDS输出接口,能够使得信号在差分PCB线或平衡电缆上以几百Mbit / s 的速率传输,由于采用低压和低电流驱动方式,因此,实现了低噪声和低功耗。

目前,LVDS输出接口在17in及以上液晶显示器中获取了广泛的应用。

2. LVDS 接口电路的组成在液晶显示器中,LVDS接口电路包括两部分,即驱动板侧的LVDS输出接口电路(LVDS发送器)和液晶面板侧的LVDS输入接口电路(LVDS接收器)。

LVDS发送器将驱动板主控芯片输出的 17L电平并行RGB数据信号和控制信号变换成低电压串行LVDS信号,尔后经过驱动板与液晶面板之间的柔性电缆(排线)将信号传达到液晶面板侧的LVDS接收器,LVDS接收器再将串行信号LVDS接口电路的变换为TTL电平的并行信号,送往液晶屏时序控制与行列驱动电路。

LVDS接口标准

LVDS接口标准

LVDS接口标准:LVDS接口是LCD Panel通用的接口标准,以8-bit Panel为例,包括5组传输线,其中4组是数据线,代表Tx0+/Tx0-。

.。

Tx3+/Tx3—。

还有一组是时钟信号,代表TxC+/TxC-。

相应的在Panel一端有5组接收线。

如果是6-bit Panel则只有3组数据线和一组时钟线。

LVDS接口又称RS-644总线接口,是20世纪90年代才出现的一种数据传输和接口技术。

LVDS即低电压差分信号,这种技术的核心是采用极低的电压摆幅高速差动传输数据,可以实现点对点或一点对多点的连接,具有低功耗、低误码率、低串扰和低辐射等特点,其传输介质可以是铜质的PCB连线,也可以是平衡电缆。

LVDS在对信号完整性、低抖动及共模特性要求较高的系统中得到了越来越广泛的应用.目前,流行的LVDS技术规范有两个标准:一个是TIA/EIA(电讯工业联盟/电子工业联盟)的ANSI/TIA/EIA-644标准,另一个是IEEE 1596.3标准.1995年11月,以美国国家半导体公司为主推出了ANSI/TIA/EIA-644标准。

1996年3月,IEEE公布了IEEE 1596。

3标准。

这两个标准注重于对LVDS接口的电特性、互连与线路端接等方面的规范,对于生产工艺、传输介质和供电电压等则没有明确。

LVDS可采用CMOS、GaAs或其他技术实现,其供电电压可以从+5V到+3。

3V,甚至更低;其传输介质可以是PCB 连线,也可以是特制的电缆。

标准推荐的最高数据传输速率是655Mbps,而理论上,在一个无衰耗的传输线上,LVDS的最高传输速率可达1。

923Gbps。

-——— OpenLDI标准在笔记本电脑中得到了广泛的应用,绝大多数笔记本电脑的LCD显示屏与主机板之间的连接接口都采用了OpenLDI标准。

OpenLDI接口标准的基础是低压差分信号(Low Voltage Differential Signaling,LVDS)接口,它具有高效率、低功耗、高速、低成本、低杂波干扰、可支持较高分辨率等特点.LVDS接口在电信、通讯、消费类电子、汽车、医疗仪器中广泛使用,并已经得到了AMP、3M、Samsung、Sharp、Silicon Graphics等公司的支持。

(完整word版)PCI-E的高速PCB布线规则

(完整word版)PCI-E的高速PCB布线规则

PCI-E 布线规则1、从金手指边缘到PCIE芯片管脚的走线长度应限制在4英寸(约100MM)以内。

2、PCIE的PERP/N,PETP/N,PECKP/N是三个差分对线,注意保护(差分对之间的距离、差分对和所有非PCIE信号的距离是20MIL,以减少有害串扰的影响和电磁干扰(EMI)的影响。

芯片及PCIE信号线反面避免高频信号线,最好全GND)。

3、差分对中2条走线的长度差最多5MIL。

2条走线的每一部分都要求长度匹配。

差分线的线宽7MIL,差分对中2条走线的间距是7MIL。

4、当PCIE信号对走线换层时,应在靠近信号对过孔处放置地信号过孔,每对信号建议置1到3个地信号过孔。

PCIE差分对采用25/14的过孔,并且两个过孔必须放置的相互对称。

5、PCIE需要在发射端和接收端之间交流耦合,差分对的两个交流耦合电容必须有相同的封装尺寸,位置要对称且要摆放在靠近金手指这边,电容值推荐为0.1uF,不允许使用直插封装。

6、SCL等信号线不能穿越PCIE主芯片。

合理的走线设计可以信号的兼容性,减小信号的反射和电磁损耗。

PCI-E 总线的信号线采用高速串行差分通信信号,因此,注重高速差分信号对的走线设计要求和规范,确保PCI-E 总线能进行正常通信。

PCI-E是一种双单工连接的点对点串行差分低电压互联。

每个通道有两对差分信号:传输对Txp/Txn,接收对Rxp/Rxn。

该信号工作在2.5 GHz并带有嵌入式时钟。

嵌入式时钟通过消除不同差分对的长度匹配简化了布线规则。

随着PCI-E串行总线传输速率的不断增加,降低互连损耗和抖动预算的设计变得格外重要。

在整个PCI-E背板的设计中,走线的难度主要存在于PCI-E的这些差分对。

图1提供了PCI-E高速串行信号差分对走线中主要的规范,其中A、B、C和D四个方框中表示的是常见的四种PCI-E差分对的四种扇入扇出方式,其中以图中A所示的对称管脚方式扇入扇出效果最好,D为较好方式,B和C 为可行方式。

LVDS什么是

LVDS什么是

什么是LVDS?现在的液晶显示屏普遍采用LVDS接口,那么什么是LVDS 呢?LVDS(Low Voltage Differential Signaling)即低压差分信号传输,是一种满足当今高性能数据传输应用的新型技术。

由于其可使系统供电电压低至2V,因此它还能满足未来应用的需要。

此技术基于ANSI/TIA/EIA-644LVDS接口标准。

LVDS技术拥有330mV的低压差分信号(250mV MIN and 450mV MAX)和快速过渡时间。

这可以让产品达到自100 Mbps至超过1Gbps的高数据速率。

此外,这种低压摆幅可以降低功耗消散,同时具备差分传输的优点。

LVDS技术用于简单的线路驱动器和接收器物理层器件以及比较复杂的接口通信芯片组。

通道链路芯片组多路复用和解多路复用慢速TTL信号线路以提供窄式高速低功耗LVDS接口。

这些芯片组可以大幅节省系统的电缆和连接器成本,并且可以减少连接器所占面积所需的物理空间。

LVDS解决方案为设计人员解决高速I/O接口问题提供了新选择。

LVDS为当今和未来的高带宽数据传输应用提供毫瓦每千兆位的方案。

更先进的总线LVDS(BLVDS)是在LVDS 基础上面发展起来的,总线LVDS(BLVDS)是基于LVDS技术的总线接口电路的一个新系列,专门用于实现多点电缆或背板应用。

它不同于标准的LVDS,提供增强的驱动电流,以处理多点应用中所需的双重传输。

BLVDS(总线LVDS)具备大约250mV的低压差分信号以及快速的过渡时间。

这可以让产品达到自100Mbps至超过1Gbps的高数据传输速率。

此外,低电压摆幅可以降低功耗和噪声至最小化。

差分数据传输配置提供有源总线的+/-1V 共模范围和热插拔器件。

BLVDS(总线LVDS)产品有两种类型,可以为所有总线配置提供最优化的接口器件。

两个系列分别是:线路驱动器和接收器和串行器/解串器芯片组。

总线LVDS(BLVDS)可以解决高速总线设计中面临的许多挑战。

基于长线级联的m-lvds总线硬件设计与实现

基于长线级联的m-lvds总线硬件设计与实现

• 149•在FPGA上实现M-LVDS总线逻辑功能,通过隔离芯片实现总线的对外隔离,再通过总线驱动器实现M-LVDS总线的电平转换。

实现M-LVDS总线的长线传输,需要在背板上做终端匹配和滤波处理,以滤除高频干扰。

级联线使用双绞屏蔽线。

在轨道交通行业中,高速、实时、可靠的数据传输变得越来越重要。

在多种高速串行总线通信的方式中,M-LVDS总线的通信速率可达到200Mbps以上,且隔离后的M-LVDS总线的通信速率可以做到100Mbps以上。

这种高速串行总线还具有多主、实时性强的特点。

但目前,M-LVDS总线基本上都是以背板或短距离插槽形式的载体实现传输线功能,这就限制了需要具有A,B两个冗余系统或扩展系统之间级联的布线长度,从而进一步影响系统功能的实现和可扩展性。

在系统级联的应用中,短距离M-LVDS总线数据传输面临如下问题:1、可扩展性:标准尺寸的机箱,可以插入的电路板数量有限,如果需要插入更多的电路板来实现更多的功能,就无法在固定长度的背板上实现。

而且,如果电路板发热量较大,固定长度背板可以插入电路板的数量变得更少,不可扩展性的缺点变得更明显;2、灵活性:对于二乘二取二架构的系统或需要扩展机箱的系统,如果连接两个机箱的M-LVDS级联线长度太短,在安装到机柜上时就会造成布线长度不够,导致无法安装的问题,这样会限制用户的布局布线;3、成本:通过定制非标准的背板和机箱来延长背板长度,会导致成本升高,且定制产品需要花费更多成本进行测试和验证,同时,管理成本也会相应增加;为了克服上述技术缺陷,本文提供一种实时性强、灵活性高、可靠性高、可扩展的长线级联M-LVDS总线的硬件设计方案,该设计方案通过以下技术要求来实现:(1)提供多块支持M-LVDS总线协议的电路板,电路板上M-LVDS总线接口电路包括隔离电源模块、M-LVDS总线隔离芯片、M-LVDS总线驱动芯片。

通过这些模块实现带隔离的M-LVDS总线接口电路。

LVDS

LVDS2010-08-25 21:41:18| 分类:论文| 标签:|字号大中小订阅今天接到了一个TI的电路(SN65LVDT352)要求测试,以前没有接触过,今天在网上收集点资料, 拿来和大家分享.以后可能会用的上这种器件.LVDS:Low Voltage Differential Signaling,低电压差分信号。

LVDS传输支持速率一般在155Mbps(大约为77MHZ)以上。

LVDS是一种低摆幅的差分信号技术,它使得信号能在差分PCB线对或平衡电缆上以几百Mbps 的速率传输,其低压幅和低电流驱动输出实现了低噪声和低功耗。

IEEE在两个标准中对LVDS信号进行了定义。

ANSI/TIA/EIA-644中,推荐最大速率为655Mbps,理论极限速率为1.923Mbps。

1.1 LVDS信号传输组成LVDS信号传输一般由三部分组成:差分信号发送器,差分信号互联器,差分信号接收器。

差分信号发送器:将非平衡传输的TTL信号转换成平衡传输的LVDS信号。

通常由一个IC来完成,如:DS90C031差分信号接收器:将平衡传输的LVDS信号转换成非平衡传输的TTL信号。

通常由一个IC来完成,如:DS90C032差分信号互联器:包括联接线(电缆或者PCB走线),终端匹配电阻。

按照IEEE规定,电阻为100欧。

我们通常选择为100,120欧。

1.2 LVDS信号电平特性LVDS物理接口使用1.2V偏置电压作为基准,提供大约400mV摆幅。

LVDS驱动器由一个驱动差分线对的电流源组成(通常电流为3.5mA),LVDS接收器具有很高的输入阻抗,因此驱动器输出的电流大部分都流过100Ω的匹配电阻,并在接收器的输入端产生大约350mV 的电压。

电流源为恒流特性,终端电阻在100――120欧姆之间,则电压摆动幅度为:3.5mA * 100 =350mV ;3.5mA * 120 = 420mV 。

LVDS与PECL(光收发器使用的电平)电平变化。

(完整版)LVDS接口详解

1.LVDS输出接口概述液晶显示器驱动板输出的数字信号中,除了包括RGB数据信号外,还包括行同步、场同步、像素时钟等信号,其中像素时钟信号的最高频率可超过28MHz。

采用TTL接口,数据传输速率不高,传输距离较短,且抗电磁干扰(EMI)能力也比较差,会对RGB数据造成一定的影响;另外,TTL 多路数据信号采用排线的方式来传送,整个排线数量达几十路,不但连接不便,而且不适合超薄化的趋势。

采用LVDS输出接口传输数据,可以使这些问题迎刃而解,实现数据的高速率、低噪声、远距离、高准确度的传输。

那么,什么是LVDS输出接口呢?LVDS,即Low Voltage Differential Signaling,是一种低压差分信号技术接口。

它是美国NS公司(美国国家半导体公司)为克服以TTL电平方式传输宽带高码率数据时功耗大、EMI电磁干扰大等缺点而研制的一种数字视频信号传输方式。

LVDS输出接口利用非常低的电压摆幅(约350mV)在两条PCB走线或一对平衡电缆上通过差分进行数据的传输,即低压差分信号传输。

采用LVDS输出接口,可以使得信号在差分PCB线或平衡电缆上以几百Mbit/s的速率传输,由于采用低压和低电流驱动方式,因此,实现了低噪声和低功耗。

目前,LVDS输出接口在17in及以上液晶显示器中得到了广泛的应用。

2.LVDS接口电路的组成在液晶显示器中,LVDS接口电路包括两部分,即驱动板侧的LVDS输出接口电路(LVDS发送器)和液晶面板侧的LVDS输入接口电路(LVDS接收器)。

LVDS发送器将驱动板主控芯片输出的17L电平并行RGB数据信号和控制信号转换成低电压串行LVDS信号,然后通过驱动板与液晶面板之间的柔性电缆(排线)将信号传送到液晶面板侧的LVDS接收器,LVDS接收器再将串行信号转换为TTL电平的并行信号,送往液晶屏时序控制与行列驱动电路。

图1所示为LVDS接口电路的组成示意图。

图1 LVDS接口电路的组成示意图在数据传输过程中,还必须有时钟信号的参与,LVDS接口无论传输数据还是传输时钟,都采用差分信号对的形式进行传输。

LVDS_LVPECL_CML之间的电路和参数

LVDS到LVPECL信号之间的连接LVDS到LVPECL得连接也分为直流耦合和交流耦合两种方式。

直流耦合方式:LVDS到LVPECL得直流耦合结构中需要加一个电阻网络,该电阻网络完成直流电平得转换。

LVDS输出电平为1.2V,LVPECL得输入电平为VCC-1.3V。

LVDS的输出是以地为基准,而LVPECL的输入是以电源为基准,这就要求考虑电阻网络时应注意输出电位不应对供电电源敏感;另一个问题是需要在功耗和速度方面折衷考虑,如果电阻阻值取的比较小,可以允许电路在更高的速度下工作,但功耗较大,LVDS的输出性能容易受电源的波动影响;还有一个问题就是要考虑电阻网络与传输线的匹配。

电阻转换网络如下所示:LVDS到LVPECL的转换需要满足如下方程式。

电压VCC在3.3V时,解上面方程得:R1=374ohm,R2=249ohm,R3=402ohm,VA=1.2V,VB=2.0V,RIN=49ohm,Gain=0.62。

LVDS得最小差分输出信号摆幅为500mV,在上面结构中加到LVPECL输入端得信号摆幅变为310mV,该幅度低于LVPECL的输入标准。

但大多数LVPECL 电路输入端有较高的增益。

耦合方式如下所示。

交流耦合方式:LVPECL芯片内有直流偏置情况:LVPECL芯片内没有直流偏置情况:LVPECL信号到LVDS信号之间的连接LVPECL到LVDS的连接方式有直流耦合和交流耦合两种方式。

直流耦合方式: LVPECL到LVDS的直流耦合结构需要一个电阻网络,设计网络时需要考虑以下几点:首先,我们知道当负载是50ohm接到VCC-2V时,LVPECL的输出性能是最优的,因此我们考虑该电阻网络应该与最优负载等效;然后我们还要考虑该电阻网络引入的衰减不应太大,LVPECL输出信号经衰减后仍能落在LVDS的有效输入范围内。

注意LVDS的输入差分阻抗为100ohm,或者每个单端到虚拟地为50ohm,该阻抗不提供直流通路,这里意味着LVDS输入交流阻抗与直流阻抗不等。

lvds概述

概述LVDS接口又称RS-644总线接口,是20世纪90年代才出现的一种数据传输和接口技术。

LVDS即低电压差分信号,这种技术的核心是采用极低的电压摆幅高速差动传输数据,可以实现点对点或一点对多点的连接,具有低功耗、低误码率、低串扰和低辐射等特点,其传输介质可以是铜质的PCB连线,也可以是平衡电缆。

LVDS在对信号完整性、低抖动及共模特性要求较高的系统中得到了越来越广泛的应用。

目前,流行的LVDS技术规范有两个标准:一个是TIA/EIA(电讯工业联盟/电子工业联盟)的ANSI/TIA/EIA-644标准,另一个是IEEE 1596.3标准。

1995年11月,以美国国家半导体公司为主推出了ANSI/TIA/EIA-644标准。

1996年3月,IEEE公布了IEEE 1596.3标准。

这两个标准注重于对LVDS接口的电特性、互连与线路端接等方面的规范,对于生产工艺、传输介质和供电电压等则没有明确。

LVDS可采用CMOS、GaAs或其他技术实现,其供电电压可以从+5V到+3.3V,甚至更低;其传输介质可以是PCB连线,也可以是特制的电缆。

标准推荐的最高数据传输速率是655Mbps,而理论上,在一个无衰耗的传输线上,LVDS的最高传输速率可达1.923Gbps。

LVDS接口的原理及电特性一个简单的LVDS传输系统由一个驱动器和一个接收器通过一段差分阻抗为100Ω的导体连接而成,如图1所示。

驱动器的电流源(通常为3.5mA)来驱动差分线对,由于接收器的直流输入阻抗很高,驱动器电流大部分直接流过100Ω的终端电阻,从而在接收器输入端产生的信号幅度大约350mV 。

通过驱动器的开关,改变直接流过电阻的电流的有无,从而产生“1”和“0”的逻辑状态。

在有些最新生产的LVDS接收器中,100Ω左右的电阻直接集成在片内输入端上了,如MAXIM公司的MAX9121/9122等。

在LVDS系统中,采用差分方式传送数据,有着比单端传输方式更强的共模噪声抑制能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LVDS信号的PCB设计
1、LVDS信号的工作原理和特点
对于高速电路,尤其是高速数据总线,常用的器件一般有:ECL、BTL、GTL和GTL+
等。这些器件的工艺成熟,应用也较为广泛,但都存在一个共同的弱点,即功耗大。新兴的
CMOS工艺的低电压差分信号器件(即Low Voltage Differencial Signal 简称LVDS )给了我
们另一种选择。可以说LVDS器件为高速低功耗电路设计提供了新的选择,得到广大硬件
工程师的钟爱。
LVDS器件的工作原理如下:

其中发送端是一个为3.5mA的电流源,产生的3.5mA的电流通过差分线的其中一路到接
收端。由于接收端对于直流表现为高阻,电流通过接收端的100欧姆的匹配电阻产生350mA
的电压,同时电流经过差分线的另一条流回发送端。当发送端进行状态变化时它通过改变流
经100欧姆电阻的电流的方向产生有效的'0'和'1'态。
LVDS的特点是电流驱动模式,低电压摆幅350mV可以提供更高的信号传输率,使用差
分传输的方式可以使信号的噪声和EMI都减少:LVDS有以下主要特点:
A、低的输出电压摆幅(350mV)
B、 低的信号边缘变化率, dV/dt 0.350V/0.5ns = 0.7V/ns
C、差分特征是磁干扰相互抵销,消除共模噪声,减少EMI。

2、LVDS信号在PCB上的要求
1)只要有LVDS信号的板最少都要有四层。LVDS信号布在与地平面相邻的布线层。例如,
对于四层板而言,通常可以按以下进行层排布;LVDS信号层、地层、电源层、其他信号层。
2)对于LVDS信号,必须进行阻抗控制(通常将差分阻抗控制在100欧姆)。对于不能控
制阻抗的PCB布线必须小于500MIL。这样的情况主要表现在连接器上,所以在布局时要注
意将LVDS器件放在靠近连接器处,让信号从器件出来后就经过连接器到达另一单板。同
样,让接收端也靠近连接器,这样就可以保证板上的噪声不会或很少耦合到差分线上。
3)对LVDS信号和其它信号比如TTL信号,最好使用不同的走线层,如果因为设计限制
必须使用同一层走线,LVDS和TTL的距离应该足够远,至少应该大于3~5倍差分线间距。
4)对收发器的电源和地进行滤波处理,滤波电容的位置应该尽量靠近电源和地管脚,滤波
电容的值可以参照器

5)对电源和地管脚与参考平面的连接应该使用短和粗的连线连接。同时使用多点连接。
6)保证信号的回流路径最短,同时没有相互间的干扰。
7)对走线方式的选择没有限制,微带线和带状线均可,但是必须注意有良好的参考平面。
对不同差分线之间的间距要求间隔不能太小,至少应该大于3~5倍差分线间距。
8)对于点到点的拓扑,走线的阻抗通常控制在100欧,但匹配电阻可以根据实际的情况进
行调整。电阻的精度最好是1%-2%。因为根据经验,10%的阻抗不匹配就会产生5%的反
射。
9)对接收端的匹配电阻到接收管脚的距离要尽量的靠近,一般应小于7mm,最大不能超
过12mm。

由此可见:在PCB设计上,我们主要关心的是阻抗的控制和线长。阻抗的计算可以通过
相关阻抗计算软件算出。在某些大型的PCB设计工具中也内嵌了阻抗计算模块(如
CADENCE的ALLEGRO)。
保持差分线的等长也是设计的重点,特别是经过连接器的LVDS信号,我们不仅要考虑
互联单板的线长,更要关心连接器的信号排布对线长的影响。SKEW是和线长成比例的。

LVDS器件由于它的低功耗,在现在注重环保的大环境下的使用是越来越广泛。对于它的
设计经验还望大家去

相关文档
最新文档