高中数学二级结论总结归纳
高中高考数学所有二级结论《完整版》

│PF1│=|a+ex|,│PF2│=|a-ex|(对任意x而言,左加右减)
16、任意满足 的二次方程,过函数上一点 的切线方程为
17、平行四边形对角线平方之和等于四条边平方之和
18、在锐角三角形中
定理1:若 是 的不动点, 满足递推关系 ,则 ,即 是公比为 的等比数列.
定理2:设 , 满足递推关系 ,初值条件
(1)若 有两个相异的不动点 ,
(2)则 (这里 )
(2)若 只有唯一不动点 ,则 (这里 )28、三余弦定理:设A为面上一点,过A的斜线AO在面上的射影为AB,AC为面上的一条直线,那么∠OAC,∠BAC,∠OAB三角的余弦关系为:cos∠OAC=cos∠BAC·cos∠OAB(∠BAC和∠OAB只能是锐角)
若把直线依逆时针方向旋转到与第一次重合时所转的角是则22过双曲线上任意一点作两条渐近线的平行线与渐近线围成的四边形面积为过原点的直线与椭圆的两个交点和椭圆上不与左右顶点重合的任一点构成的直线斜率乘积为定值23抛物线焦点弦的中点在准线上的射影与焦点f的连线垂直于该焦点弦24双曲线焦点三角形的内切圆圆心的横坐标为定值a长半轴长推论
29、在Rt△ABC中,C为直角,
内角A,B,C所对的边分别是a,b,c,
则△ABC的内切圆半径为
30、立方差公式: 立方和公式:
31、向量与三角形四心:在△ABC中,角A,B,C所对的边分别是a,b,c
(1) 是 的重心
(2) 为 的垂心
(3) 为 的内心
(4) 为 的外心
32、正弦平方差公式:
33、对任意圆锥曲线,过其上任意一点作两直线,若两射线斜率之积为定值,则两交点连线所在直线过定点
高中二级结论大全

高中数学中的二级结论有很多,它们是一些重要的推论和解题技巧,可以帮助学生快速解决一些疑难问题。
以下是其中的一些:
1. 平行四边形对角线平方之和等于四条边平方之和。
2. 过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点。
3. 圆锥曲线的切线方程求法:隐函数求导。
4. 切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程。
5. 过椭圆上一点做斜率互为相反数的两条直线交椭圆于A、B 两点,则直线AB的斜率为定值。
6. 抛物线焦点弦的中点,在准线上的射影与焦点F的连线垂直于该焦点弦。
7. 双曲线焦点三角形的内切圆圆心的横坐标为定值a(长半轴长)。
8. 对任意圆锥曲线,过其上任意一点作两直线,若两直线斜率之积为定值,两直线交曲线于A,B两点,则直线AB恒过定点。
9. 帕斯卡定理:如果一个六边形内接于一条二次曲线(椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上。
10. 三角形五心的一些性质:内心、外心、重心、垂心和旁心的性质。
这些二级结论是在学习高中数学过程中需要掌握的重要知识点,它们可以帮助你更好地理解数学概念和解决问题。
建议你在学习过
程中认真听讲,及时总结和掌握这些结论,以提高自己的数学水平。
高中高考数学所有二级结论《[完整版]》
![高中高考数学所有二级结论《[完整版]》](https://img.taocdn.com/s3/m/21d883ea09a1284ac850ad02de80d4d8d15a016d.png)
高中高考数学所有二级结论《[完整版]》一、几何结论1、关于点1.1 同一直线上三点,若其中两点间距相等,则三点共线;1.2 直线平分线定理:若直线Ⅰ平分线段AB,则AM/MB=1;1.3 直线的垂直平分线定理:若直线Ⅰ对AB的垂直平分线,则M是A、B中点;1.4 同一直线出发点,夹萝卜角度相等,终足点也在同一直线上;1.5 同一直线上三点,至少有2点共线;1.6 若任意一点位于AB的延长线上,则距AB同侧的距离相等;2、关于直线2.1 齐次直线:若直线上所有点满足y=ax+b,则直线称为齐次直线;2.2 相交线定理:若两条直线相交,则它们的夹角一定是锐角;2.3 相等的夹角可以定位:若两条直线的夹角为有限尺寸夹角,则它们可以定位;2.4 两平行线定理:若两条直线平行,则它们过同一直线上的任意一点都相等;2.5 同一实轴向非相交点所在直线定理:由两条实轴向非相交的直线,所形成的不规则四边形,相较相邻的两边的夹角度数之和为180°;3、关于三角形3.1 相等的边角定理:若两角的大小相等,则它们两理封闭的边也相等;3.2 对角线定理:若一个多边形的对角线相交,则其论线的和为360°;3.3 相等的三角形定理:若三角形的两边和它们之间的夹角相等,则三角形中的任何一点到另外两点的距离也相等;3.4 含有相同角的三角形定理:若两个三角形包含有相同大小的角,则其面积之比,与相应边的比值的平方成正比;3.5 三角形角度和定理:若三角形的三边的长度都不相等,那么它的三内角之和等于180°;3.6 斜边长度定理:若一个三角形的两边长度相等,那么它们所构成的内角一定是锐角;4、关于圆4.1 直径定理:若任意直线与圆相交,则此直线必经过圆心;4.2 垂足定理:若圆上存在一点,使得其到圆心的距离(即圆上点P到垂足M)尽可能的小,则M为圆上某一点P的垂足;4.3 旋转定理:把椭圆上的任意一点A旋转一定的角度,得到的椭圆上的点B,满足AB距离的平方等于AB分别到圆点的距离的积;二、代数结论1、关于一元二次方程1.1 一元二次方程的解:解一元二次方程ax2+bx+c=0(a≠0)的两个解是:x1=(-b+√(b2-4ac))/2a,x2=(-b-√(b2-4ac))/2a;1.2 求解实数解:若b2-4ac>0,那么它有实数解,若b2-4ac=0,那么它有重根,若b2-4ac<0,则无实数解;2、关于一元三次方程2.1 三次方程的解:一元三次方程ax3+bx2+cx+d=0(a ≠ 0)的三个实数解为:x1 = [-b + √(b2-3ac)]/3ax2 = [-b - √(b2-3ac)]/6a + i√3/6ax3 = [-b - √(b2-3ac)]/6a - i√3/6a;2.2 求解实数解:若b2-3ac>0,它有三个不同的实数解;若b2-3ac=0,它有重根;若b2-3ac<0,它有三个不同的实数解;3、关于系数代数方程3.1 二次代数方程:若一个二次代数方程ax2+bx+c=0有实数解,则它的解为x1=(-b+√(b2-4ac)/2a,x2=(-b-√(b2-4ac)/2a;3.2 三次代数方程:若一个三次代数方程ax3+bx2+cx+d=0有实数解,则它的解为x1=(-b+√(b2-3ac)/3a,x2=(-b-√(b2-3ac)/6a + i√3/6a,x3=(-b-√(b2-3ac)/6a - i√3/6a;4、关于函数4.1 闭区间:函数定义域上下端点其值皆有效,叫闭区间;4.2 周期:当变量满足周期函数关系,即变量与函数之间存在正反循环吻合关系时,称其为“周期函数”;4.3 偶函数:若变量x在定义域内变换了一倍角度,f(x)应等于自己,叫作偶函数;4.4 奇函数:若变量x在定义域内变换了一倍定义域,而f(x)值改变了符号,叫作奇函数;5、关于初等函数5.1 线性函数的定义:当关系式为y=ax+b,a、b为有理常数,b≠0时,它称为“线性函数”;5.2 二次曲线的定义:当关系式为y=ax2+bx+c(a≠0),a、b、c 为有理常数时,它称为“二次曲线”;5.3 对称性:定义域内一点同它的对称点在函数图像上所对应的点总是具有相同的函数值,称为函数具有“对称性”;5.4 反函数定义:当函数f(x)在它的定义域内是一一對應的,可以反求f(x)的值的函数,称为“反函数”;。
高中数学二级结论总结

高中数学二级结论总结为了便于理解,现将一些常用的二级结论归纳如下:1。
在集合的运算中,交换两个集合的位置,仍然满足等价性条件;2。
同时有限个不同元素的集合,其对应元素的乘积也是有限的;3。
任意元素的全排列都可以表示成按某一行(a)、(b)、……(c)和每一列(a’)、(b’)、……(c’)重复出现一次的有序表;4。
从集合中选择元素构成新的集合,则新的集合也是原来集合的子集;5。
任意集合A与B的并集的元素都在A内;6。
若所有集合B的对应元素之和都大于或等于所有集合A的对应元素之和,则这两个集合相等;7。
若所有集合A的对应元素之差都小于或等于所有集合B的对应元素之差,则这两个集合相等;8。
若集合A的对应元素都小于所有集合B的对应元素,则A与B相等;9。
若所有集合B的对应元素之差都大于或等于所有集合A的对应元素之差,则这两个集合相等;5。
从集合中任意选取一个元素,所得的集合都是它本身;6。
两个集合都是真子集的充分必要条件是这两个集合中至少有一个集合的元素是另一个集合的元素;7。
在两个集合A与B之间插入一个集合C,使得A中没有一个元素是B中的元素,但是集合C中的任何元素都是A中的元素,则称集合C为A的一个元素;8。
在两个集合A与B 之间插入一个集合C,使得A中没有一个元素是B中的元素,且集合C中任何一个元素都不是B中的元素,则称集合C为B的一个元素;9。
在A中加上一个非空元素即可成为一个新的子集;10。
设A=(a,b);B=(b, c);由于对应元素互不相同,因此他们的并集为空集;11。
设A=(a, b, c); B=(b, d);由于对应元素互不相同,因此他们的并集为空集;12。
设A=(a, b, c);B=(b, d, e);由于对应元素互不相同,因此他们的并集为空集;13。
设A=(a, b, c); B=(b, d,e);由于对应元素互不相同,因此他们的并集为空集;14。
高中数学二级结论大全和推导过程

高中数学二级结论大全和推导过程高中数学二级结论是指高中数学中一些重要的结论或定理,这些结论和定理是学习和理解高中数学知识的基础,也是解题的重要工具。
本文将给出一些常见的数学二级结论,并对其推导过程进行简要介绍。
(一)代数运算法则1.加法运算的交换律:对于任意两个实数a和b,有a + b = b + a。
推导过程:根据实数加法的定义,a + b = b + a。
2.加法运算的结合律:对于任意三个实数a、b和c,有(a + b) +c = a + (b + c)。
推导过程:将(a + b) + c按照加法运算定义进行展开,得(a + b) + c = ((a + b) + c)。
将a + (b + c)按照加法运算定义进行展开,得a + (b + c) =(a + (b + c))。
3.加法运算的存在零元:对于任意实数a,有a + 0 = a。
推导过程:根据实数加法的定义,a + 0 = a。
4.加法运算的存在负元:对于任意实数a,存在一个实数-b,使得a + (-b) = 0。
推导过程:根据实数加法的定义,a + (-a) = 0。
5.乘法运算的交换律:对于任意两个实数a和b,有a · b =b · a。
推导过程:根据实数乘法的定义,a · b = b · a。
6.乘法运算的结合律:对于任意三个实数a、b和c,有(a · b) · c = a · (b · c)。
推导过程:将(a · b) · c按照乘法运算定义进行展开,得(a · b) · c = ((a · b) · c)。
将a · (b · c)按照乘法运算定义进行展开,得a ·(b · c) = (a · (b · c))。
7.乘法运算的存在单位元:对于任意实数a,有a · 1 = a。
高中数学二级结论大全

高中数学二级结论大全引言数学作为一门基础学科,对于学生的思维发展和逻辑推理能力的培养起到了重要的作用。
高中数学二级结论作为高中数学的基础,是学生在学习数学过程中需要掌握的一些重要的定理和公式。
本文将总结高中数学二级结论的相关内容,帮助学生更好地理解和记忆这些重要的数学结论。
1.平行线与三角形等腰条件1.1 平行线的判定定理定理 1.1:过平行于两条平行线的一条直线,其内外两部分对应角相等。
证明:设有两条平行线,分别为线 l 和线 m,并且有一条过点 A 的直线 n,与 l 和 m 相交于点 C 和点 D。
则有角 CAB = 角 CDA 和角 ADB = 角 BCD。
1.2 三角形等腰条件定理 1.2:在三角形 ABC 中,若 AB = AC,则有角 B = 角 C。
证明:由定理 1.1,过线段 AB 并平行于线段 AC 的直线与线段 BC 相交于点 D,根据定理1.1,可得角 B = 角 D。
另一方面,由 AB = AC 可得角 ADC = 角 A,再由角 A + 角 D + 角 B = 180°可得角 B + 角 C = 180°,因此角 B = 角 C。
2.直角三角形的性质2.1 勾股定理定理 2.1:在直角三角形 ABC 中,设边长分别为 a、b 和 c,其中 c 为斜边,则有 a^2 + b^2 = c^2。
证明:根据勾股定理中的定义,直角三角形 ABC 中,边长分别为 a、b 和 c,满足 a^2 + b^2 = c^2。
2.2 特殊直角三角形性质定理 2.2:在直角三角形 ABC 中,若角 A = 30°,则b = a/√3,c = 2a。
证明:由角 A = 30°可知角 B = 90° - 30° = 60°。
根据 30° - 60° - 90°三角形性质,设边长为a 的边对应的角为 A,边长为b 的边对应的角为 B,边长为c 的边对应的角为 C,则有b = a/√3,c = 2a。
高中数学二级结论大全
高中数学二级结论目录函数二级结论 (1)三角函数二级结论 (3)平面向量二级结论 (6)数列二级结论 (8)圆锥曲线二级结论 (10)导数二级结论 (14)立体几何二级结论 (17)1函数二级结论1.若奇函数在原点处有定义,则,若奇函数周期为T,则;2.幂函数,当a为奇数时为奇函数,当a为偶数时为偶函数;3.形如4.形如5.形如的函数为奇函数;6.形如的函数为奇函数;7.形如的函数为偶函数;8.形如的函数关于点9.形如的函数关于形如的函数关于中心对称;10.形如的函数关于轴对称;11.若,则函数关于12.若13.函数与函数关于2);14.函数与函数中心对称;15.若满足;16.若同时关于和轴对称,则周期为;若同时关于和轴对称,则周期为;若同时关于和轴对称,则周期为;17.若函数满足:(c为常数),则周期为;;18.若函数c为常数),则周期为;特殊地:若;19.若函数满足:,则;若函数满足:,则;若函数满足:,则;若函数满足:,则;20.函数奇偶性的叠加:,21.函数f(x)具有对称轴,则f(x)为周期函数且一个正周期为22.已知函数是定义在区间D上的奇函数,,都有.特别地,若奇函数在D上有最值,则,若0∈D,则.三角函数二级结论1.当;2.射影定理:;;;3.;tan A+tan B+tan C<04.当时,;当时,;当时,;5.6.a,b,c7.8.9.余弦平方差公式:10.在锐角三角形中11.正弦平方差公式:12.(1),(2)若,则:①②⑤⑧(3)在任意△ABC中,有:⑦⑧⑨⑩⑭(4)在任意锐角△ABC中,有:②③④平面向量二级结论1.向量平方差公式:①D为BC中点,则②如图,平行四边形ABCD中,2.三角形四心的向量表达:(1)奔驰定理:已知O;(2)三角形四心的向量表达:①已知O的重心,则;②已知O的垂心,则;③已知O的外心,则;④已知O的内心,则;3.单位向量:(1)对于非零向量表示与方向相同的单位向量;(2),夹角平分线共线的向量;(3)任意单位向量可设坐标为;4.三点共线的向量表达:如图,A,B,C三点共线,O为线外一点:①,则,反之也成立;②若,则;5.向量的等和线:如图,向量不共线,若直线l与直线AB平行(或重合),称直线l为基底的等和线.若P在直线l上,且为定值,且随O与l的距离比例扩大或缩小;①当l与AB重合时,;②当l过点O时,;③当l在O与AB之间时,;④当l在O与AB同侧,O到AB这一侧时,;⑤当l在O与AB同侧,AB到O这一侧时,;6.平行四边形对角线定理:平行四边形的两条对角线平方和等于四边平方之和;7.矩形对角线定理:矩形所在平面内任意一点到矩形两对角线端点距离的平方和相等.8.A、B、C三点共线同时除以m+n)9.已知△ABC,O为其外心,H为其垂心,则10.三角形五心的一些性质:(1)三角形的重心与三顶点的连线所构成的三个三角形面积相等(2)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心(3)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心(4)三角形的外心是它的中点三角形的垂心(5)三角形的重心也是它的中点三角形的重心(6)三角形的中点三角形的外心也是其垂足三角形的外心(7)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍11.在△ABC中,角A,B,C所对的边分别是a,b,c,则数列二级结论1.等差数列中,若;2.等差数列中,若;3.等差数列;4.等差数列和前n项和分别为和5.等差数列中,若,则;最大,6.等差数列中,,且为偶数,则当时,S最大,为奇数,则当时,S7.等差数列的公差为d,则也称等差数列,且公差为;8.等差数列的公差为d;9.等差数列前2n项和中:2n-1项和中:;10.等差数列的首项为a1,公差为d,前n项和为S n,,公差为;11.等比数列中,12.是公比为q的正项等比数列,则是公差为的等差数列;13.等比数列公比为q,前n项和为S n,n项和为,数列前n项为,则;14.等比数列公比为q,则也成等比数列,且公比为;15.等比数列公比为q,前n项连乘积为也称等比,且公比为;16.为公比不为0的等差数列,且;17.等比数列.18.{a n}为公差为d的等差数列,{b n}为公比为q的等比数列,若数列{c n}满足,则数列{c n}的前n项和S n为19.数列不动点:定义:方程的根称为函数的不动点利用递推数列的不动点,可将某些递推关系数列,这种方法称为不动点法满足递推关系,则定理1:若,p是的不动点,a,即是公比为a的等比数列.定理2:设,{a}满足递推关系,初值条件(1)若有两个相异的不动点p,q,则)(2)若只有唯一不动点P,则)定理3:设函数有两个不同的不动点,确定着数列,那么当且仅当时,20.三角函数数列求和裂项相消:圆锥曲线二级结论1.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点2.的面积S为;3.圆锥曲线的切线方程求法:推论:①过圆上任意一点的切线方程为②过椭圆上任意一点的切线方程为③上任意一点的切线方程为4.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程①圆的切点弦方程为②②椭圆的切点弦方程为③双曲线的切点弦方程为④抛物线的切点弦方程为⑤二次曲线的切点弦方程为5.与直线②双曲线相切的条件是6.若A、B、C、D是圆锥曲线(二次曲线)上顺次四点,则四点共圆(常用相交弦定理)的一个充要条件是:直线AC、BD的斜率存在且不等于零,(k,k BD分别表示AC和BD的斜率),F2,设焦点三角形PF1F2,7.,两焦点分别为F则8.椭圆的焦半径(椭圆的一个焦点到椭圆上一点横坐标为x的点P的距离)公式9.已知k1,k2,k3为过原点的直线l1,l2,l3的斜率,其中l2是l1和l3的角平分线,则k1,k2,k3满足下述转化关系:,,10.任意满足的二次方程,过函数上一点11.绕Ox坐标轴旋转所得的旋转体的体积为12.y=kx+m与椭圆13.圆锥曲线的第二定义:椭圆的第二定义:平面上到定点F距离与到定直线间距离之比为常数e(即椭圆的偏心率)的点的集合(定点F不在定直线上,该常数为小于1的正数)双曲线第二定义:平面内,到给定一点及一直线的距离之比大于1且为常数的点的轨迹称为双曲线14.到角公式:若把直线l1依逆时针方向旋转到与l2第一次重合时所转的角是,则15.过双曲线上任意一点作两条渐近线的平行线,与渐近线围成的四边形面16.反比例函数17.过原点的直线与椭圆的两个交点和椭圆上不与左右顶点重合的任一点构成的直线斜率乘积为定值推论:椭圆上不与左右顶点重合的任一点与左右顶点构成的直线斜率乘积为定值18.帕斯卡定理:如果一个六边形内接于一条二次曲线(椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上19.抛物线焦点弦的中点,在准线上的射影与焦点F的连线垂直于该焦点弦20.双曲线焦点三角形的内切圆圆心的横坐标为定值a(长半轴长)21.对任意圆锥曲线,过其上任意一点作两直线,若两射线斜率之积为定值,则两交点连线所在直线过定点22.点(x,y)关于直线Ax+By+C=0的对称点坐标为23.圆锥曲线统一的极坐标方程:(e为圆锥曲线的离心率)24.若圆的直径端点,则圆的方程为25.过椭圆上一点做斜率互为相反数的两条直线交椭圆于A、B两点,则直线AB的斜率为定值26.AB是过抛物线y2=2px(p>0)焦点F的弦(焦点弦),过A,B分别作准线的垂线,垂足分别为A1,B1,E为A1B1的中点.(1)如图①所示,以AB为直径的圆与准线l相切于点E.(2)如图②所示,以A1B1为直径的圆与弦AB相切于点F,且EF2=A1A·BB1.(3)如图③所示,以AF为直径的圆与y轴相切.27.若圆锥曲线中内接直角三角形的直角顶点与圆锥曲线的顶点重合,则斜边所在直线过定点.(1)上异于右顶点的两动点A,B,以AB为直径的圆经过右顶点,则直线AB.同理,当以AB时,直线AB过定点.(2)对于双曲线上异于右顶点的两动点A,B,以AB为直径的圆经过右顶点(a,0),则直线AB.同理,对于左顶点(-a,0),.(3)对于抛物线上异于顶点的两动点A,B,则弦AB所在直线过点.同理,抛物线上异于顶点的两动点A,B,,则直线AB过定点.28.在圆锥曲线(椭圆、双曲线、抛物线)中,曲线上的一定点P(非顶点)与曲线上的两动点A,B满足直线PA与PB的斜率互为相反数(倾斜角互补),则直线AB的斜率为定值.(1),定点在椭圆上,设A,B是椭圆上的两个动为定值.点,直线P A,PB的斜率分别为,且满足.直线AB的斜率k(2)已知双曲线,定点在双曲线上,设A,B是双曲线为定上的两个动点,直线P A,PB的斜率分别为,且满足.直线AB的斜率k值.(3)已知抛物线,定点在抛物线上,设A,B是抛物线上的两个动点,直线P A,PB的斜率分别为,且满足.直线AB的斜率k为定值.29.在椭圆E:中:(1)如图①所示,若直线与椭圆E交于A,B两点,过A,B,有,设其斜率为,则;(2)如图②所示,若直线与椭圆E交于A,B两点,P为椭圆上异于A,B的点,若直线PA,PB的斜率存在,且分别为k1,k2,则(3)如图③所示,若直线y=kx+m(k≠0且m≠0)与椭圆E交于A,B两点,P为弦AB的中点,设直线PO的斜率为k0,则;30.在双曲线E中,类比上述结论有:(1) (2) (3),F2分别为左、右焦点,P为椭圆上一点,的面积31.在椭圆中,F;其中.,F2分别为左、右焦点,P为双曲线上一点,的面32.在双曲线中,F,其中;导数二级结论一、基础结论1.曲线2.处取得极值,则;反之,不成立;3.对于可导函数,不等式的解集决定函数的递增(减)区间;4.函数在区间I恒成立(不恒为零);5.函数(非常数函数)在区间I上不单调等价于在区间I上有极值,则可等价于方程在区间I上有实根且为非二重根;6.函数在区间I上无极值等价于在区间I上是单调函数,等价于或在I上恒成立;7.恒成立,则;8.若,若,使得,则;9.设与的定义域的交集为D;10.;恒成立,则;恒成立,则;上的值域为A,的区间I2上值域为B,,使得,11.已知在区间I则;12.若三次函数f(x)有三个零点,则方程有两个不同的零点,且极大值大于0,极小值小于0;13.证明中常用的不等式:(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)二、构造函数模型1.对于不等式,构造函数2.对于不等式,构造函数3.对于不等式,构造函数;4.对于不等式,构造函数5.对于不等式,构造函数6.对于不等式,构造函数; 7.对于不等式,构造函数 8.对于不等式,构造函数; 9.对于不等式10.对于不等式11.对于不等式,构造函数; 12.对于不等式,构造函数;13.对于不等式,构造函数14.对于不等式,构造函数三、常用函数图像四、高级不等式 1.麦克劳林公式:(1);(2 (3(4) (5)2.(待续)立体几何二级结论1.倍2.面体的表面积为S,体积为V3.设点为面上一点,过点A的斜边AO在面上的射影为AB,另外AC为面上任意一条直线,4.面积射影定理:设平面α外的△ABC所在平面α的射影为△ABO,分别记△ABC和△ABO的面积为S△ABC所在的平面与平面α所成的角为,则有5.正四面体的常用结论:假设正四面体的边长为a,则有:①②相邻两个面的二面角:③三条侧棱与底面的夹角:④外接球和内切球的球心重合,且球心在高对应的线段上,它是高的四等分点,球心到顶点的距离⑤顶点在底面的射影是底面三角形的中心(四心合一)⑥对棱相互垂直,且对棱中点的连线为对棱的公垂线,距离为点为该正四面体外接球(或内切球)的球心.6.直三棱柱的外接球半径,其中r为底面三角形的外接圆半径,l为侧棱长。
高中数学二级结论(经典实用)
高中数学二级结论(经典实用)1、余弦定理:在任何三角形中,$a^2=b^2+c^2-2bc\cos A$,$b^2=a^2+c^2-2ac\cos B$,$c^2=a^2+b^2-2ab\cos C$。
2、正弦定理:在任何三角形中,$\frac{a}{\sinA}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$,其中$R$为该三角形的外接圆半径。
3、勾股定理:对于任意直角三角形,斜边的平方等于两条直角边平方和。
4、解二元一次方程组:当方程组$ax+by=c$,$dx+ey=f$的系数矩阵的行列式不为零时,解得$x=\frac{ce-bf}{ae-bd}$,$y=\frac{af-cd}{ae-bd}$。
5、解二次方程:对于方程$ax^2+bx+c=0$,当$\Delta=b^2-4ac>0$时,有两个不同实根$x_1=\frac{-b+\sqrt{\Delta}}{2a}$,$x_2=\frac{-b-\sqrt{\Delta}}{2a}$;当$\Delta=0$时,有一个实根$x=-\frac{b}{2a}$;当$\Delta<0$时,有两个虚根$x_1=\frac{-b+\sqrt{-\Delta}}{2a}i$,$x_2=\frac{-b-\sqrt{-\Delta}}{2a}i$。
6、二次函数的解析式:对于二次函数$y=ax^2+bx+c$,它的顶点坐标为$\left(-\frac{b}{2a},-\frac{\Delta}{4a}\right)$,其中$\Delta=b^2-4ac$;当$a>0$时,开口向上,当$a<0$时,开口向下。
7、解一元高次方程:对于方程$a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0=0$,如果存在有理根$p/q$,则必有$p\mid a_0$,$q\mid a_n$,且$p,q$互质。
高中数学常用二级结论汇总
1.立方差公式:/=(4-6)(/_仍 + 〃);立方和公式:a3+b3=(a + b\a2-ab + b2).3P2.任意的简单H面体内切球半径为一(J,是简单〃面 S表体的体积,S表是简单〃面体的表面积).3.在中,。
为直角,内角4B, C所对的边分别是4, b,C,则△力3c的内切圆半径为竺三.2五4.斜二测画法直观图面积为原图形面积的?二倍.45.平行四边形对角线平方之和等于四条边平方之和.6.函数人力具有对称轴x-a, x=力(。
工人),则/x)为周期函数且一个正周期为2 |。
-6|.7.导数题常用放缩e'Nx + 1, _l<Izl<inx<_i, X Xxe x >ex(x > 1).8.点(x, y)关于直线4x + 8y + C = 0的对称点坐标(2A(Ax + By + C)28(a+ 为 +。
)]『77^ ―”产了一/9.已知三角形三边x, y, z,求面积可用下述方法(一些情况下比海伦公式更实用,如质,而,V29):2A-^B = x2, d + C = V,S = C + A = z2^ Y AB + BV + CA10.若圆的直径端点山为,乂),玳与/),则圆的方程为(1玉)(%-%)+()'->0(>-%)=0.11.椭圆]+ £ = 1(。
> 0,力> 0)的面积 S 为3 = nab.12.过椭圆准线上•点作椭网的两条切线,两切点连战所在内线必经过桶网相应的焦点.13.圆锥曲线的切线方程求法:I泡函数求导.推论:)的切线方程为(q一 a)(x - “)十(% ①过圆。
-0)2+(y力2 = "上任意一点P(X。
Jo- b)[y-b":②过椭圆=+[ = 1(。
>0力> 0)上任意一点P(x Qt y Q)的切线方程为华+迫=1;a b2③过双曲线:=1("0力>0)上任意一点〃("o)的切线方程为笑-辛=1 q- b214.任意满足勿〃=/•的二元方程,过曲线上•点(x],K)的切埃方程为+奶)产।15.切点弦方程:平面内•点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程.①过世|/+/+小+城+ /=0外一点〃(今,及)的切点弦方程为七14乂》+少尸。
高中高考数学所有二级结论《完整版》Word版
高中高考数学所有二级结论《完整版》Word版1. 余弦定理:对于任意三角形ABC,有$a^2=b^2+c^2-2bc\cos{A},b^2=a^2+c^2-2ac\cos{B}, c^2=a^2+b^2-2ab\cos{C}$2. 正弦定理:对于任意三角形ABC,有$\dfrac{a}{\sin{A}}=\dfrac{b}{\sin{B}}=\dfrac{c}{\sin{C}}$3. 高线定理:对于任意三角形ABC,设D为BC上的垂足,则AD为该三角形的高线,有$AD=\dfrac{2S}{a}, BD=\dfrac{2S}{c},CD=\dfrac{2S}{b}$,其中S为该三角形的面积。
4. 中线定理:对于任意三角形ABC,设E,F为AB,AC上的中点,则BE,CF为该三角形的中线,有$BE=\dfrac{1}{2}AC, CF=\dfrac{1}{2}AB$5. 角平分线定理:在任意三角形ABC中,设D为BC上一点,AD为角A的平分线,则$\dfrac{BD}{CD}=\dfrac{AB}{AC}$。
6. 高尔夫球定理:一条直线与圆相切时,从切点到圆心的距离就是该直线的斜率。
7. 根号2定理(勾股定理):对于直角三角形ABC,设$\angle A=90^{\circ}$,BC 为斜边,则$AB^2+AC^2=BC^2$8. 等腰三角形的角平分线定理:对于等腰三角形ABC,设D为AB,AC的交点,则AD 为角A的平分线。
9. 任意三角形的角平分线定理:在任意三角形ABC中,设D为BC上一点,AD为角A 的平分线,则$\dfrac{AB}{AC}=\dfrac{BD}{CD}$。
10. 三角形内角和定理:在任意三角形ABC中,$\angle A+\angle B+\angleC=180^{\circ}$。
11. 垂直平分线定理:在平面上,对于任意两点A,B,所有到A,B的距离相等的点P 构成的直线为AB的垂直平分线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学二级结论总结归纳数学作为一门学科,是一种严谨而美妙的知识体系。
在数学的学习过程中,结论的总结归纳是非常重要的一环。
通过总结归纳,我们可以更好地理解和掌握数学知识,提高解题能力和思维逻辑能力。
在本文中,我将对高中数学二级结论进行总结归纳,帮助大家更好地学习和掌握这一部分知识。
一、平面几何结论
1. 垂直性结论:两条直线垂直的充分必要条件是它们的斜率互为负倒数。
证明:设直线L1的斜率为k1,直线L2的斜率为k2,则L1和L2垂直的充分必要条件是k1 * k2 = -1。
2. 平行性结论:两条直线平行的充分必要条件是它们的斜率相等。
证明:设直线L1的斜率为k1,直线L2的斜率为k2,则L1和L2平行的充分必要条件是k1 = k2。
3. 三角形中位线定理:三角形中位线的交点是三条中位线的共同中点。
证明:设三角形ABC的中位线AD、BE和CF交于点G,则AG = GB = CG。
4. 垂心结论:垂心是三角形三条高的交点。
证明:设三角形ABC的高AD、BE和CF交于点H,则H是三条
高的交点。
二、立体几何结论
1. 空间几何关系:两条直线垂直的充分必要条件是它们所在平面的
法向量垂直。
证明:设直线L1所在平面的法向量为n1,直线L2所在平面的法
向量为n2,则L1和L2垂直的充分必要条件是n1·n2 = 0。
2. 球面几何关系:切线和半径于切点垂直。
证明:设球面上一点P的坐标为(x0, y0, z0),球心的坐标为(a, b, c),则切线的方程为(x - x0) / (x0 - a) = (y - y0) / (y0 - b) = (z - z0) / (z0 - c)。
三、数列与数列极限结论
1. 等差数列求和公式:等差数列前n项和的公式为Sn = (a1 + an) *
n / 2。
证明:分别对等差数列的首项a1和末项an列出求和公式,然后相
加得到Sn = (a1 + an) * n / 2。
2. 等比数列求和公式:等比数列前n项和的公式为Sn = a1 * (1 -
q^n) / (1 - q),其中q ≠ 1。
证明:对等比数列的前n项和进行列方程推导,得到Sn = a1 * (1 -
q^n) / (1 - q)。
四、概率与统计结论
1. 离散型随机变量期望值公式:设随机变量X的取值有k个,对应
的概率分别为p1, p2, ..., pk,则随机变量X的期望值为E(X) = p1 * x1 + p2 * x2 + ... + pk * xk。
证明:根据期望值的定义,将随机变量X的取值和对应的概率代入
公式,进行求和得到期望值。
2. 正态分布标准差定理:对于任意正态分布,约68%的数据位于均
值±标准差之间,约95%的数据位于均值±2倍标准差之间,约99.7%的
数据位于均值±3倍标准差之间。
证明:根据正态分布的性质,应用数学统计方法进行推导。
通过对高中数学二级结论的总结归纳,我们可以更好地理解和掌握
这些数学知识,提高解题能力。
希望本文对大家的数学学习有所帮助!。