气体传感器文献综述精细版.docx

合集下载

气体传感器的设计与优化研究

气体传感器的设计与优化研究

气体传感器的设计与优化研究气体传感技术是现代科研领域中不可或缺的一部分。

它的出现推动了环境监测、医疗护理、工业控制等方面的不断创新。

在这个领域中,气体传感器是最常见、也是最重要的设备。

它可以检测环境中的空气成分,对空气中存在的有害物质进行测量,确保人们生活和工作环境的安全。

本文将从气体传感器的设计与优化研究两个方面来探讨气体传感技术的应用及相关研究。

一、气体传感器的设计气体传感器的设计是指通过技术手段将待检测的气体浓度转变为合适的电信号,以便于实际测量和记录。

设计气体传感器时需要考虑多种因素,包括应用场景、测量精度、灵敏度、响应时间等方面。

下面从两种常见的气体传感器设计出发,分别进行介绍。

1. 热导气体传感器热导气体传感器常用于检测空气中的温度变化。

它的工作原理是利用传感器内部的电阻来检测空气中的温度变化。

当传感器受热时,其电阻值会发生变化,通过计算电阻值的变化,就可以确定空气中的温度。

在设计热导气体传感器时,需要对传感器的材料、大小、形状以及内部电导的布置进行细致的考虑和研究。

在选择传感器的材料时,需要根据其特性来合理选择,比如要考虑材料的导热性、电阻率、耐高温性等因素。

此外,传感器的实际体积也非常关键,一旦体积过大,就难以在小空间内使用。

2. 气敏传感器气敏传感器通常用于检测环境中有毒有害气体的浓度。

它的工作原理是通过感应电极上的气敏材料,检测空气中的有毒气体含量,从而进行测量。

与热导传感器不同的是,气敏传感器需要按物质的吸附理论来设计,通过改变电极的材料来评估空气的成分和浓度。

在制造气敏传感器时,需要注意的是电极材料的选择,因为电极的材料会影响传感器的灵敏度和特性。

此外,还需要考虑电极和气敏材料之间的匹配程度,将电极和气敏材料匹配得好,传感器的测量性能和长期稳定性都会得到很大的提高。

二、气体传感器的优化研究气体传感器并不是一成不变的,其性能可以通过优化来提高。

针对目前实际应用中出现的一些问题,研究人员积极探索优化方案,以达到扩大应用范围、提高测量精度和响应速度等方面的目的。

气体传感技术的研究及应用

气体传感技术的研究及应用

气体传感技术的研究及应用随着人们对环境污染的关注度越来越高,气体传感技术得到了广泛的应用。

气体传感技术是一种检测空气中有害气体浓度的技术,可以应用于环境监测、工业生产、医疗卫生、安全生产等方面。

一、气体传感技术的研究气体传感技术主要通过感测元件将被检测气体的信息转换成电信号,并通过数采系统进行数据处理,最终得到气体浓度信息。

常见的气体传感元件有半导体型、纳米型、红外型、薄膜型等多种类型。

半导体型气体传感器依据原理是当被测气体在半导体氧化物表面吸附时,改变半导体的导电性质,从而实现对气体浓度的检测。

该类型的气体传感器具有响应速度快、重复性好、尺寸小等优点,但是其灵敏度相对较低、易受干扰等缺点也需要考虑。

纳米气体传感器是利用纳米材料的特殊性质制成的气体传感器,其具有灵敏度高、响应速度快、选择性高、稳定性好等特点。

由于纳米材料的特殊性质,纳米气体传感器还可以检测微量的气体,因此在环境监测、医疗卫生等方面得到了广泛应用。

红外气体传感器是通过吸收被检测气体特定波长的红外线来进行检测的。

该类型的气体传感器具有对多种气体的检测能力、高的选择性和灵敏度,但是其生产成本较高,不能用于全波段检测等缺点也需要考虑。

薄膜气体传感器是利用吸附气体对薄膜的电学、光学或磁性等性质的改变来实现气体浓度检测的技术。

该类型的气体传感器具有高稳定性、快速响应、容易集成化等优点,但是其尚需要对薄膜质量和加工工艺进行优化,以提高可靠性和灵敏度。

二、气体传感技术的应用环境监测是气体传感技术的重要应用之一。

通过对空气中有害气体的检测,可以及时发现并预防环境污染。

气体传感技术在环境监测方面的应用已经得到了广泛的关注,包括对空气中有害气体如二氧化硫、氨气、甲醛等的检测。

气体传感技术在工业生产中也起到了重要的作用。

通过对有害气体的检测,可以及时发现并控制生产过程中的污染物排放,从而保证员工的安全、生产的质量和企业的安全环保。

气体传感技术在工业领域中的主要应用包括汽车尾气检测、煤气检测、石油及化工工艺中的气体检测等方面。

气体传感器技术的发展和应用现状分析

气体传感器技术的发展和应用现状分析

气体传感器技术的发展和应用现状分析一、引言随着科技的不断发展,气体传感器技术已经被广泛应用于不同的领域,如环境监测、工业安全等。

本文将从气体传感器技术的发展历程、传感器的类别以及应用现状等方面进行分析,以期为相关领域的研究者和实践者提供一定的参考价值。

二、气体传感器技术的发展历程自上世纪60年代,传感器技术开始进入人们的视野以来,气体传感器技术也开始逐渐得到发展。

最初的气体传感器使用了半导体材料和金属氧化物等物质来检测气体的存在。

随着气体传感器技术的不断发展,现在市场上已经有了敏感元件采用谷氨酸盐、聚合物、纳米材料等高新技术。

三、气体传感器的类别气体传感器主要包括电化学传感器、光学传感器、半导体传感器以及热电传感器等。

其中,电化学传感器是目前使用最广泛的气体传感器之一。

电化学传感器的感受层通常是一种电化学材料,如金属或半导体氧化物等。

当被检测气体与电极表面接触时,就会发生氧化还原反应,从而产生电流信号。

光学传感器则是将被检测气体中的光学信号(如荧光、吸收等)与气体浓度联系起来,从而确定气体浓度的一种方法。

半导体传感器则是使用半导体材料来感测气体,当气体通过半导体敏感层时,就会影响半导体的电学性质,从而产生电信号。

四、气体传感器的应用现状1. 环境监测方面:气体传感器广泛应用于空气质量监测和室内空气监测。

例如,在社交媒体上,人们常发“PM2.5”照片,这就是拍摄室外空气污染物检测器的数据。

室内空气质量也同样重要,快速检测TVOC等空气污染物对健康检测、厨房燃气泄露检测等都有很大的帮助。

2. 工业安全方面:在石油、煤炭、化工等行业,气体传感器被广泛应用于监测可燃气体浓度,以保障工人的安全。

同时,气体传感器也被应用于汽车尾气排放监测、食品贮藏环境中乙烯和二氧化碳等气体的检测等领域。

3. 运动健康方面:随着智能手环、手表等智能可穿戴设备的逐渐兴起,气体传感器也被应用于这些设备中。

例如,在户外运动过程中,氧气含量的变化对身体健康有很大的影响。

气体传感器的原理和应用实验报告

气体传感器的原理和应用实验报告

气体传感器的原理和应用实验报告1. 概述本文档旨在介绍气体传感器的原理以及其在实际应用中的相关实验报告。

气体传感器是一种用于检测环境中气体浓度的装置,广泛应用于环境监测、工业安全和医疗领域。

本文将首先介绍气体传感器的工作原理,然后详细描述我们进行的实验以及实验结果。

2. 气体传感器的工作原理气体传感器通常基于化学原理工作。

其基本原理是通过与待测气体发生化学反应,产生可测量的物理变化来检测气体浓度。

具体来说,常见的气体传感器如下:2.1 电化学传感器电化学传感器利用氧化还原反应来测量气体浓度。

传感器中通常包含电极和电解质,待测气体与电极反应产生电流或电压变化,从而实现气体浓度的测量。

2.2 热导传感器热导传感器是利用气体热导率的变化来检测气体浓度的传感器。

通常采用热电阻、热敏电阻或热电偶作为传感元件,当待测气体通过传感器时,传感元件的温度发生变化,从而实现气体浓度的测量。

2.3 光学传感器光学传感器利用气体对光的吸收、散射或透射特性来测量气体浓度。

传感器通过光源发出光,经过待测气体后,通过光电二极管或光电倍增管接收光信号,并通过测量光的强度变化来推断气体浓度。

3. 实验方法我们进行了一系列关于气体传感器的实验,以下为实验步骤:3.1 实验材料准备•气体传感器•实验设备•待测气体3.2 实验步骤1.连接气体传感器到实验设备。

2.设置实验设备的参数,如采样间隔、测量时长等。

3.放置待测气体样品在传感器附近。

4.启动实验设备,开始记录气体浓度数据。

5.实验结束后,停止记录数据,并将数据导出。

4. 实验结果与分析基于我们的实验数据,我们得出了以下结论:1.不同类型的气体传感器在不同气体浓度下表现出不同的响应特性。

2.不同气体传感器之间的灵敏度差异较大,选择合适的传感器对于准确测量气体浓度非常重要。

3.在不同温度和湿度条件下,气体传感器的性能可能发生变化,需要根据实际应用环境进行适当调整。

5. 结论本文介绍了气体传感器的原理以及我们进行的相关实验。

气体传感器的工作原理和应用

气体传感器的工作原理和应用

气体传感器的工作原理和应用气体传感器是一种能够检测、测量和监测环境中气体浓度的设备。

它们被广泛应用于工业生产、室内空气质量监测、生命安全保护等领域。

本文将介绍气体传感器的工作原理以及常见的应用。

一、气体传感器的工作原理气体传感器的工作原理主要基于感测材料与目标气体之间发生的物理或化学反应。

以下是几种常见的气体传感器工作原理:1. 电化学传感器:这种传感器基于电化学反应原理,通过材料与目标气体之间的氧化还原过程来测量气体浓度。

传感器中的感测材料通常是一种电导率较高的金属催化剂,例如铂或钨。

当目标气体与感测材料接触时,发生氧化还原反应,导致电流的变化,从而测量气体浓度。

2. 光学传感器:这种传感器利用光学原理来测量目标气体浓度。

传感器中包含一个光源和一个接收器,光源会发出特定波长的光,当目标气体存在时,光的强度会发生变化。

通过测量光的强度变化,可以得出目标气体的浓度。

3. 热导传感器:这种传感器利用材料的热导率来测量目标气体浓度。

传感器中包含一个热电偶和一个加热器,热电偶通过测量目标气体对加热器产生的影响来测量气体浓度。

当目标气体存在时,热导率会发生变化,从而导致热电偶输出的电压发生变化。

二、气体传感器的应用气体传感器在许多领域都有着广泛的应用。

以下是几个常见的应用领域:1. 工业生产:气体传感器在工业生产过程中起到了至关重要的作用。

例如,在化工厂中,气体传感器可以检测有毒气体的泄漏,及时采取措施保障工人的安全。

在煤气行业,气体传感器可以监测燃气的浓度,避免燃气泄漏引发火灾或爆炸。

2. 室内空气质量监测:随着人们对室内空气质量的关注度增加,气体传感器在室内环境监测中得到了广泛应用。

它们可以检测一氧化碳、二氧化碳、甲醛等污染物的浓度,帮助人们提高室内空气质量,保障健康。

3. 环境监测:气体传感器用于监测大气中的气体浓度,例如二氧化碳、二氧化硫、氨气等。

这对于环境保护和预防空气污染非常重要。

气体传感器还可以用于监测厨房、垃圾处理场等地方产生的臭味,及时采取措施减少环境污染。

气体传感器研究报告

气体传感器研究报告

气体传感器研究报告随着人们生活和工作环境的不断恶化,对空气质量与安全性的关注也日益增加。

气体传感器因其高灵敏度、快速响应和简单易用而成为气体检测领域的重要组成部分。

针对气体传感器的研究也在不断推进。

本文将从气体传感器的分类、应用、研究现状和未来发展等方面探讨气体传感器研究的最新动态。

一、气体传感器的分类气体传感器可以根据工作原理和检测气体类型进行分类。

根据工作原理可分为电化学、光学、嗅觉型、压电型和热导型传感器等。

根据检测气体类型可分为一氧化碳传感器、二氧化碳传感器、有机挥发物传感器、氧气传感器、硫化氢传感器等多种类型。

不同的传感器具有不同的检测精度和灵敏度,对于不同的应用场景有着不同的需求。

二、气体传感器的应用气体传感器广泛应用于环境监测、工业生产、医疗卫生、交通运输等方面。

例如,气体传感器可应用于室内空气质量监测、汽车尾气检测、火灾探测、工业废气检测等领域。

三、气体传感器研究现状目前,气体传感器研究主要围绕着传感器灵敏度、反应速度、选择性和稳定性等方面展开。

其中,灵敏度和反应速度是气体传感器研究的重点,其决定了传感器的检测精准度和实时性。

选择性和稳定性方面则是保证传感器具有长期可靠性的基础。

四、气体传感器的未来发展气体传感器的未来发展方向是实现更高的灵敏度、更精准的选择性和更长久的稳定性。

在技术方面,先进的纳米材料和微电子技术可在传感器材料和器件的制备上不断发挥作用。

在工业应用中,气体传感器还将更好地适应自动化生产和智能制造的需要。

总之,气体传感器在环保和气体检测领域的应用,将会越来越广泛,而它的功能和性能的提升,也将为环境保护提供更加有效的手段。

光纤气体传感器专利技术综述

光纤气体传感器专利技术综述

光纤气体传感器专利技术综述摘要:本文立足于专利文献,对光纤气体传感器的专利申请进行了梳理,分析了光纤气体传感器专利技术的申请趋势和关键技术的发展历程,有助于技术人员了解技术的发展脉络及相关技术的分布。

关键词:光纤,气体,传感器,专利分析Summary of Patent Technology for Fiber Gas SensorLi Weiwei Wu Shanshan1 Li Zhan Yuan Li(Patent Examination Cooperation Henan Center of the Patent Office, CNIPA, Zhengzhou Henan 450018)Abstracts: From the perspective of the patent, this paper combs the patent applications of optical fiber gas sensor, and analyses the application trends and development history of key technologies of fiber gas sensing patent technology. It helps technicians to learn the development of the technology and the relevant technical distribution in the field.Key words: fiber; gas; sensor; patent analysis一、引言随着工业发展、人口增加、森林砍伐等原因,空气中有毒有害气体的含量不断上升,而人们对生态环境的变化越来越关注,因此对各种污染气体进行实时监测具有重要的现实意义。

光纤气体传感器是把气体中的特定成分检测出来,并转换成电信号的器件,从很早就进入人们的视线,将其用来对有毒、有害气体的探测,可安全地用于易燃易爆或其他恶劣环境的气体检测。

气体传感器的设计和优化研究

气体传感器的设计和优化研究

气体传感器的设计和优化研究第一章:引言气体传感器是一种能够感知周围环境气态成分的传感器,广泛应用于空气污染监测、气体检测以及日常生活中火灾报警等领域。

目前市面上的气体传感器种类繁多,但是在实际应用中出现了可以测量干扰物的误差峰值,这些误差值介于低到中等。

根据不同的应用需求,需要设计出不同的气体传感器,使误差值能够得到进一步的减小,以便提高气体传感器的准确性和实时性。

第二章:气体传感器的原理气体传感器是基于物理、化学、电学等原理设计而来的一种用于测量气态物质浓度的设备。

气体传感器并不仅仅指单一的传感器,还包括了包括传感器的控制、信号处理和显示等组成的完整系统。

常见的气体传感器大体上可以分为三类,分别是电化学传感器、光学传感器和热传感器。

其中,电化学传感器主要利用化学物质与电极的反应来检测气态物质的存在;光学传感器则利用气态物质对光波的吸收或反射进行测量;热传感器则利用物态变化时的温度变化来测量被检测气体的浓度。

第三章:气体传感器的设计和优化研究3.1 气体传感器的设计气体传感器的设计可以根据测量精度、响应时间、环境适应性等方面进行设计。

设计气体传感器时,需要根据实际测量要求选择合适的传感器原理进行实现。

例如,对于需要有高精度测量的应用场景,需要选择较为敏感的电化学传感器;对于实时性要求高、响应时间较短的应用场景,需要选择相对比较简单的热传感器。

在具体设计气体传感器时,还需要考虑其传感器本身的材料和生产工艺、传感器与界面电路之间的匹配、以及数学模型等因素。

其中,传感器的材料和生产工艺对于传感器的稳定性和灵敏度是至关重要的因素。

3.2 气体传感器的优化研究气体传感器的优化研究主要是从测量精度、响应时间、环境适应性等方面进行的。

目前,研究者们主要通过改进气体传感器的材料和结构,优化传感器的信号处理算法,以及提高传感器与相应电路的匹配度等方面来提高气体传感器的性能。

在改进传感器材料和结构方面,研究者们主要通过提高材料的纯度、制备方法和改变生产工艺等途径来提高传感器的灵敏度和稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气体传感器的发展概况和发展方向

玛日耶姆·图尔贡 107551600545 精选

气体传感器的发展概况和发展方向 【摘要】本文对气体传感器进行分类,介绍了半导体型气体传感器、电阻型气体传感器、非电阻型气体传感器等几种常见气体传感器的特性、总结了这些气体传感器的工作原理,并阐述这几种气体传感器在日常生活及特殊场合中的应用及其选用时的原则。探讨了气体检测仪器在检测对象、检测范围和检测方式上向小型化、智能化、多功能化和通用化等方面不断向前发展的方向。 【关键词】气体传感器;特性;应用;发展方向

一、 前言

目前,随着人们环保意识的提高,环境问题日益受到政府和社会关注。环境问题变成了重要的民生问题,影响到人民生活幸福感,甚至环境问题严重威胁群众健康。 近年来生态环境污染状况日趋严重,各种工业废水,废气直接排入水体及空气,造成极为严重的环境污染。影响着人们的正常生活和生存发展,并导致环境污染的气体进行处理是十分急迫的问题。随着科学技术的发展,人们生活水平的提高,对气体传感器的需求已有所不同;同时,随着近年酸雨、温室效应、臭氧层破坏、环境污染等,严重影响了人类的健康和生存,这就给气体传感器提出了新的研究课题和增加了新的研究内容和难度。检测气体的种类由原来的还原性气体(H2、 C4、 H10、 CH4等)扩展到毒性气体(CO、NO2、 H2S、NO、NH3、 PH3

等)以及食品有关的气体(鱼、肉鲜度(CH3)3、醋酸乙脂等)[1]。气体传感器作为气体检测最基

础的部分,为了满足这些需求,气体传感器必须具有较高的灵敏度和选择性,重复性和稳定性要好,而且能批量生产,性能价格要高等。 随着人们环保意识的增强以及各国对有毒气体排放和污染物排放方面的严格立法,各种气体传感器正在得到越来越广泛的应用。目前,随着生命科学、人工智能、材料科学等学科的发展,气体传感器的应用领域越来越广泛,在大气监测、食品工业、汽车尾气快速实时测定、有毒气体检测安全检查和航空航天等方面,越来越多地显示出气体传感器的重要作用[2]。

二、气体传感器的发展概况

2.1气体检测仪 气体检测仪是一种气体泄露浓度检测的仪器仪表工具,主要是指便携式/手持式气体检测仪。主要利用气体传感器来检测环境中存在的气体种类。气体检测的目的是分析各种气体混合物中各组分的含量或其中某一组分的含量。气体检测仪表一般由传感器、信号放大、处理单元、显示单元以及控制单元组成,其中传感器是最关键的部分。 2.2传感器 传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。传感器按其基本效应可分为:物理传感器,化学传感器,生物传感器。按检测对象,化学传感器分为气体传感器、湿度传感器、离子传感器。 物理传感器 传感器生物传感器气体传感器 化学传感器离子传感器 湿度传感器 精选

2.2.1气体传感器 气体传感器是整个气体检测系统的核心,一般安装在探头内。探头首先通过气体传感器对气体样品进行处理,通常包括滤除杂质和干扰气体、干燥和样品抽吸等过程,然后通过传感器将某种气体体积分数转化成对应电信号,实现相应的功能。气体传感器是一种将气体的成份、浓度等信息转换成可以被人员、仪器仪表、计算机等利用的信息的装置,气体传感器通常是用来检测气体的类别、浓度和成分。 气体传感器的种类很多,分类方法也各不相同[2]。

国外从30年代开始研究开发气体传感器,至今已经走过了半个多世纪,品种到达了数百种。过去研究开发的气体传感器主要用于家庭中常用的煤气、液化石油气、天然气以及矿井中的瓦斯气体的检测和报警,并取得了很大的成绩,基本上满足了市场的需要。进入90年代,随着科学技术的发展,人们生活水平的提高,对气体传感器的需求已有所不同。 2.2.2气体传感器分类 按气体传感器的材料分,可分为半导体型和非半导体型。应用广泛的气体传感器有:半导体型气体传感器、固体电解质气体传感器、电化学传感器、接触燃烧式气体传感器,光学气体传感器等。 1.半导体型气体传感器 自从1962年半导体金属氧化物陶瓷气体传感器问世以来,半导体气体传感器由于具有灵敏度高、响应时间快等优点,其产品发展非常迅速,目前已成为世界上产量最大、应用最广的传感器之一。这种类型的传感器在气体传感器中约占 60%,根据其机理分为电阻型半导体气体传感器和非电阻型半导体气体传感器。 1.1 电阻型半导体气体传感器 电阻型半导体气体传感器是将气体浓度的变化转变成电阻值变化的一种传感器。典型的电阻型半导体气体传感器材料是 :SnO2、ZnO、Fe2O3 等,因为这些材料存在气敏效应 ,当表面吸附某种气体时会引起电导率的变化。 电阻型半导体气体传感器中应用最广泛的是 SnO2 气敏元件,其工作原理是: SnO2 和空气中电子亲和性大的气体发生反应,形成吸附氧束缚晶体中的电子,使器件处于高阻状态;当它与被测气体接触时,气体与吸附氧发生反应,元件表面电导增加,电阻减小。 电阻型气体传感器具有成本低、制造简单、灵敏度高、响应快、寿命长、对湿度敏感低、电路简单等优点。 但是由于其自身的结构和材料原因,也决定了它的缺陷,当电阻型气体传感器工作于高温下时,选择性较差、元件参数分散、稳定性不理想、功率要求高;当探测气体中混有硫化物时容易中毒。 1.2 非电阻型半导体气体传感器 1.2.1 结型气体传感器 结型气体传感器又称气敏二极管,是利用气体改变二极管的整流特性。将金属与半导体结合做成整流二级管,其整流作用来源于金属和半导体功函数的差异,随着功函数因吸附气体而变化,其整流作用也随之变化。 1.2.2MOSFET 型气体传感器 气敏二极管的特性曲线左移可以看作二极管导通电压发生改变,这一特性如果发生在场效应管的栅极,将使场效应管的阈值电压UT改变,利用这一原理可以制成 MOSFET 型气敏器件。氢气敏 MOSFET 是一种最典型的气体传感器,它用金属钯(Pd)制成钯栅。在含有氢气的气氛中,由于钯的催化作用,氢气分子分解成氢原子扩散到钯与二氧化硅的界面,最终导 精选

致 MOSFET 的阈值电压UT发生变化。使用时常将栅漏短接,可以保证 MOSFET 工作在饱和区。 利用这一气敏器件可以测出氢气浓度。氢气敏 MOSFET 在氢气浓度高时其灵敏度变低,氢气浓度低时灵敏度则升高[2]。 2 固体电解质气体传感器 这种传感器元件为离子对固体电解质隔膜传导,称为电化学池,分为阳离子传导和阴离子传导,是选择性强的传感器,研究较多达到实用化的是氧化锆固体电解质传感器,其机理是利用隔膜两侧两个电池之间的电位差等于浓差电池的电势。稳定的氧化锆固体电解质传感器已成功地应用于钢水中氧的侧定和发动机空燃比成分测量等。为弥补固体电解质导电的不足,近几年来在固态电解质上蒸镀一层气体敏膜,把周围环境中存在的气体分子数量和介质中可移动的粒子数量联系起来[3]。 3 接触燃烧式气体传感器 接触燃烧式传感器适用于可燃性气体 CO、H2、CH4 的检测。可燃气体接触表面催化剂 Pt、Pd 时燃烧、发热,燃烧热与气体浓度有关。这种类型的传感器应用面广、体积小、结构简单稳定性好,缺点是选择性差[3]。 4 电化学式气体传感器 电化学式气体传感器可分为原电池式,定电位电解式、电量式,离子电极式四种类型。原电池式气体传感器通过检测电流来检测气体的浓度,市售的检测缺氧的仪器几乎都配有这种传感器,近年来,又开发了检测酸性气体和毒性气体的原电池式传感器。定电位式传感器是通过测量电解时流过的电流来检测气体的浓度,和原电池式不同的是,它需要由外界施加特定电压,它除了能检测CO、NO、NO2、O2、SO2等气体外,还能检测血液中的氧浓度。电量式气体传感器是通过被测气体与电解质反应产生的电流来检测气体的浓度。离子电极式气体传感器出现得较早,通过测量离子极化电流来检测气体的浓度。电化学式气体传感器主要的优点是检测气体的灵敏度高,选择性好。

5.光学气体传感器 5.1 直接吸收式光气体传感器 红外线气体传感器是典型的吸收式光学气体传感器,是根据气体分别具有各自固有的光谱吸收谱检测气体成分,非分散红外吸收光谱对 SO2、CO、CO2、NO 等气体具有较高的灵敏度。另外紫外吸收、非分散紫外吸收、相关分光、二次导数、自调制光吸收法对 NO、NO2、SO2、CH (CH4)等气体具有较高的灵敏度。 5.2 光反应气体传感器 是利用气体反应产生色变引起光强度等光学特性改变,传感元件是理想的,但是气体光感变化受到限制,传感器的自由度小。 5.3 气体光学特性的新传感器 光导纤维温度感器为这种类型, 在光纤顶端涂敷触媒与气体反应、发热。 顶端温度改变,导致光纤温度改变。利用光纤测温已达到实用化程度,检测气体也是成功的[3]。

6.气体传感器的应用 气体传感器在日常生活和工业生产中应用广泛,可用于有害气体鉴别、报警与控制,烟雾报警器,酒精检测报警器等场合[3]。 6.1特殊场所可燃气体火灾探测 在煤矿、石油、化工等企业,一但发生可燃气体泄露,极易造成大面积火灾并引起爆炸事故,所以在这些场所对煤气、天然气、液化气等可燃性气体进行气体泄露检测,可以做到 精选

极早期的预防灾害的发生。可燃性气体监测的原理是:针对某中具有一定选择性、灵敏度高、响应时间短的气体传感器,将气体传感器安装在生产,储备、使用等车间场所中,及时监测气体含量,如果可燃性气体含量达到预先设定值或气体浓度达到气体最低爆炸浓度界限,通过控制器启动报警装置或开动保护系统,从而达到预防火灾灾害、减小爆炸危险的目的。 6.2气体传感器在国外航天器上的应用 气体传感器作为航天器上不可缺少的眼睛和鼻子,主要用于载人舱内有害气体成分变化监测、航天器发动机工作期间燃料燃烧情况、航天器关键部位气体或液体的泄漏判断以及深空探测过程中行星大气环境检测等方面[4-14],为航天器产品质量、安全、宇宙环境探知和宇航员身体健康等提供非常重要的参考数据。因此国外多个宇航研究机构都在大力支持研究和研发适合航天器上工作的各类气体传感器,并多次在航天器上进行应用。地面上气体的监测有多种方法,如气相色谱仪、液相色谱仪、各类质谱仪以及各类气体传感设备,相比较于地面设备和仪器,气体传感器因体积小、功耗低、质量轻、灵敏度高,重复性好、成本低等优点[15-17],所以在航天器上得到广泛应用。 因航天器工作环境的特殊性,对应用在航天器上的各类传感器相比较与地面或传统传感器的技术要求更加严格,如体积更小、功耗更低、质量更轻、灵敏度更高以及可靠性更稳定等。为了能够满足以上要求,国外对航天器上的各类气体传感器进行了深入研究,研发出一系列的具有创新性的各类气体传感器。这些气体传感器主要是安装在航天器舱内、发动机喷口处以及宇航员随身携带,用于检测航天器内材料气体释放、管道泄漏和发动机喷口气体成分变化等[8,14],为航天器和宇航员的安全提供了必不可少的保障手段。国外航天器上的气体传感器采用当前最新的微机械加工技术、纳米技术、光学技术、集成电路技术以及新材料等技术,使得国外的气体传感器具有较高的微型化、集成化和智能化等性能,能够满足航天器在轨期间多种气体成分的监测,保证了航天器的安全。

相关文档
最新文档