实验四--多级放大器与负反馈放大器

实验四--多级放大器与负反馈放大器
实验四--多级放大器与负反馈放大器

实验四--多级放大器与负反馈放大器

实验四 多级放大器与负反馈放大器

(6学时)

一、 实验目的

1.掌握多级放大器放大倍数与各级放大倍数的关系

2.学习在放大电路中引入负反馈的方法 3. 通过实验测试掌握负反馈对放大器动态特性的影响

二、 实验仪器及器件

1.实验仪器

直流稳压电源、函数发生器、数字示波器、

万用表

2.实验器件

表4.1实验器件

器件名称

型号参数数量

安装位置晶体管

90132T1,T2

100Ω3RE1,RE21,R11kΩ1RW2*

2kΩ6RC1,RE1,RC2,RE22,RL,RW2*3.0kΩ1

RB2210kΩ1RB2120kΩ1RW2*33kΩ1RS 1MΩ1

RB1电位器1MΩ1

RW1

10μF 4

C1,C2,C3,C4100μF 2

CE1,CE2

合计24

电阻

电解电容

备注: 1.电位器RW2分别用20kΩ、2kΩ、1kΩ替换实验

三、 预习要求

1.复习教材中有关多级放大器及负反馈放大

器的内容。

2.假设实验中调整RW1使I CQ1=1.0mA ,估算电路图1放大器的静态工作点数据(β≈

200,r bb ’≈300Ω,U BE ≈0.7V )填入表3.2。 3.计算开环时两级放大电路的放大倍数、输

入电阻、输出电阻填入表4.4

4.按深度负反馈估算负反馈放大电路的闭环电压放大倍数A uuf ,填入表4.5,RW2分别取1 k Ω,2 k Ω。

四、实验原理

1.多级放大器

多级放大器的放大倍数 un

u u un

A A A A ?????=2

1

但要注意多级放大器级联时,后级放大器是前级放大器的负载,计算时要将后级的输入电阻当成前级的负载电阻。

多级放大器的输入电阻就是第一级放大器的输入电阻,而输出电阻就是最后一级的输出电阻。即:

1

i i

R R =

on

o R R =

2. 负反馈放大器 1) 负反馈类型及判定

根据输出端反馈信号的取样方式的不同和输入端信号的叠加方式的不同:负反馈可分为四种基本的组态:电压串联负反馈、电压并联负反馈、电流串联负反馈、电流并联负反馈。 判断反馈放大器的类型主要抓住三个基本要素:

(1)反馈的极性,即正反馈还是负反馈,可用瞬时极性法判断,反馈使净输入减小为负反馈,使净输入增强为正反馈;

(2)电压反馈还是电流反馈,决定于反馈信号在输出端的取出方式;

(3)串联反馈还是并联反馈,决定于反馈信号与输入信号的叠加方式,以电压方式叠加为串联反馈,以电流方式叠加为并联反馈。 2) 负反馈对放大电路性能的影响

负反馈虽然使放大器的放大倍数降低,但能在多方面改善放大器的动态参数,如稳定放大倍数,改变输入、输出电阻,减小非线性失真和展宽频带等。

负反馈使放大器的放大倍数下降 闭环放大倍数: 1AF

A

A

f

+=

式中A 是开环放大倍数,F 是反馈系

数,1+AF 称为反馈深度。注意式中A 、F 、A f 根据反馈类型的不同,其物理意义不同,量纲亦不同。

负反馈提高放大电路的稳定性

11

A

dA AF A dA f f

?+=

式中(d A f /A f )是闭环放大倍数的相对变化量,(d A /A )是开环放大倍数的相对变化量。

串联负反馈使输入电阻增加:()i

if

R AF R

+==1

并联负反馈使输入电阻减小:AF R R

i

if +=

1 电压负反馈使输出电阻减小:AF

R R

o of

+=

1

电流负反馈使输出电阻增大:()o

of

R AF R ?+=1

负反馈使上限截止频率提高:()H

Hf

f AF f ?+=1

使下限截止频率下降:

()

AF f f f +=1/L L ,从而展宽频带

负反馈还可以减小放大器的非线性失真 3) 深度负反馈电路放大倍数的计算:

深度负反馈时,11>>+AF ,所以闭环放大

倍数F

A

f

1≈

注意式中A 、F 、A f 根据反馈类型的不

同,其物理意义不同,量纲亦不同。

对于电压串联负反馈,A 、F 、A f 都是

电压之比,所以其闭环电压放大倍数为:

uu

uuf

F

A 1≈ 3 实验电路

本次实验以两级阻容的带电压串联负反馈放大电路为例,分析多级放大电路以及引入负反馈后对电路性能的影响,电路参看图1

RS

33k

C1

10uF

RB11M

49%

RW1

1M

RE1

100

RE12

2k

RC1

2K

C2

10uF

RB21

10k

RB22

3k

RC2

2k

RE21

100

RE22

2k

C3

10uF

CE1

100uF

CE2

100uF

T1

9013

T2

9013

R1

100

RW2

20K

C4

10uF

RL

2k

Vcc Us

Us Ui

Uf Uo1

Uo

+_

+

+

_

_

+

+

__

P2P1

P0

P3

P4

+12V

图1 多级放大与电压串联负反馈电路 RW2的P2端接P0,与P1断开,电路处于开

环状态(切断反馈信号,但保留反馈回路的负载作用),各级的动态参数如下: 第二级放大器:

()()()21

21222

122212222121)2()2(1E be E L C u C E C O E be B B i β)R (r R RW ////R R βA R R RW //R R R βr ////R R R +++-

=≈+≈++=

第一级放大器:

()()()()()1

1211u 11111111)1(111E be i C C O E be E be B i R r //R R A R R R βr R βr //RW R R ββ++-

=≈++≈+++=

电路构成的两级放大器,其参数为: 2

12C 2O O 1

u u u i i A A A R R R R R ?=≈==

RW2的 P2端接P1,与P0断开,RW2引入电压串联负反馈,电路分析如下: 反馈系数:2

11

RW R R U U F

E E o

f u

u +≈

=

闭环电压放大倍数A uuf 的估算:

Fuu

Au Au

U U A i

o uuf

?+=

=1 深度负反馈时,闭环电压放大倍数A uuf 估算:

1

2

11E uu

uuf

R

RW F A +≈≈

闭环输入电阻R i f : ()uu

u

i

if

F A R R +=1

闭环输出电阻R o f :

uu

u o

of F A R R +=

1

式中:R i —开环输入电阻; R o —开环输出电阻 A u —带负载R L 时的开环电压放大倍数

五、基础实验内容

1. 静态工作点调整与测量:

接通12V 电源,调节RW1,使I CQ1为 1 mA (即使T1管发射极电压为2.1V ),将各级静态工作点记入表4.2。

表4.2静态工作点

计算值 测量值

I CQ (m A ) U CE Q (V)

I CQ (mA) U BQ (V) U EQ (V) U CQ (V)

U CE

Q (V)

第一级 1.0

第二级

2. 开环参数的测量

将电路开环(RW2选20k Ω电阻,P2接

P0,与P1断开),接通负载(接通P3、P4),使电路工作在开环、带负载工作状态。

参照实验一中晶体管单管放大器实验中介绍的方法,测量开环情况下,电路的中频电压放大倍数A uu,输入电阻R i,输出电阻R O。

1)以f = 1KHz,U s =20 mV的正弦信号(实际信

号幅度可根据实际情况选取,方便测量即可)输入放大器,负载R L接通,用示波器监视输出波形U o,在U o不失真的情况下,用数字示波器测量开环情况下U s、U i、U o1、U o,记入表4.3。

2)断开负载R L,在输出不失真的情况下,测量空载时的U o' ,记入表4.3

表4.3参数测量数据(RW2=20kΩ)

U s(mV

U i(mV) U o1(V) U o(V) U o'(V)

)

分析计算:

根据实测值,计算电压放大倍数及输入电阻、输出电阻,填入表4.4

表中:

L

o o

o s i s i i i o uu o o u i o u R U U o U R R U U U R U U A U U A U U A -'=-====

121

1

表 4.4 放大器动

态参数计算(RW2=20k Ω) 理论值

实测值 动态参数 A u 1

A u 2

A u

u

R i (K) R o (K)

A u 1

A u

2

A u u

R i (K) R o (

K)

开 环

闭 环

结果分

1+Auu Fuu A/A f R if /R i R o /R of 1+Auu Fuu

A/A f R if /R i R o /R of

析 反馈深度

3. 测量负反馈放大器的各项性能指标:

将RW2(=20 k Ω)的 P2端与P1接通(与P0断开) ,使RW2引入负反馈,适当加大输入信号Us (约50mV ,实际信号幅度可根据实际情况选取,方便测量即可),在输出波形不失真的情况下,参照开环参数的测量方法,测试闭环参数记入表3.3中。

按照同样的办法计算A uuf 、R if 、R of ,根据实验结果,计算电路参数填入表3.4

计算反馈深度Fuu Auu ?+1时,反馈系数:

2

11

RW R R U U F E E o

f u u +≈

=

计算反馈深度的理论值时,Fuu Auu ?+1中的Auu 为按公式计算的结果

计算反馈深度的实测值时,Fuu Auu ?+1中的Auu 为实测的开环放大倍数

分析实验结果: Auuf 与Auu ,Rif 与Ri ,Rof

与Ro的比值,是否符合︱1+AF︱倍的关系4.观察负反馈对非线性失真的改善:

以下测试应保持R L不变。

1)将RW2断开,在开环的情况下,输入端加入1KHz的正弦信号,输出端接示波器。逐渐增大输入信号的幅度,使输出信号出现失真,记下此时的输出波形和输出电压幅度。

2)RW2接通,在闭环的情况下,增大输入信号

的幅度,使输出电压的幅度与上面记录的幅度相同,记录输出波形,比较有负反馈时输出电压波形的变化。

5. 深度负反馈

将RW2换成1kΩ,2kΩ,分别测量闭环放大倍数,与估算结果比较。

RW2=2 kΩ,将电路中RE21短路,再测量一次闭环放大倍数,与估算结果比较。

表4.5 深度负反馈

Auf估算值U i(mV) U o(V)

Auf实

测结果

1 kΩ

2 kΩ2 kΩ

(RE21短

路)

六、扩展实验内容

1.测量通频带(选做)

RW2断开,在带负载且输出不失真的情况下,保持输出电压Uo的值不变,改变信号发生器的输出频率,找出开环情况下的上、下限频率f L和f H,记入表4.6中。

表4.6通频带测量

f L (KHz )

f H

(KHz

)

f BW

(KHz

)

开环放

大器

负反馈

放大器

反馈深

将RW2(=20 kΩ)的P2端与P1接通(与P0断开),使RW2引入负反馈,适当加大输入信号Us(约50mV,实际信号幅度可根据实际情况选取,方便测量即可),在输出波形不失真的

情况下,参照开环参数的测量方法,测试闭环参数记入表4.6中,如果f Hf的值大于1MHz,超过低频信号发生器的输出频率范围,则记为≥1MHz 。

七、思考题

1. 实验数据分析:表4.4中,多级放大器的放大倍数与理论计算值相符吗?分析可能的误差原因

2. 实验数据分析:表4.4中,反馈深度︱1+AF ︱等于多少?试分析输入电阻、输出电阻、电压放大倍数的开环参数与闭环参数的关系是否与理论相符,分析可能的误差原因

*3. 实验数据分析:表4.6中闭环带宽与开环带宽是否与理论相符,分析可能的误差原因

4. 实验数据分析:表4.5中,深度负反馈的实测结果与估算值是否相符,分析可能的误差原因,表4.5最后一行的实测值与估算值的差别为何比第二行的小。

5. 如果输入信号存在失真,能否用负反馈改善?

多级负反馈放大器实验报告

2.5 多级负反馈放大器的研究 一. 实验目的 (1)掌握用仿软件研究多级负反馈放大电路。 (2)学习集成运算放大器的应用,掌握多级集成运放电路的工作特点。 (3)研究负反馈对放大器性能的影响,掌握负反馈放大器性能指标的测试方法。1)测试开环和闭环的电压放大倍数、输入电阻、输出电阻、反馈网络的电压反馈系数和通频带。 2)比较电压放大倍数、输入电阻、输出电阻、反馈网络的电压反馈系数和通频带。 3)观察负反馈对非线性失真的改善。 二.实验原理 1.实验基本原理及电路 (1)基本概念。在电子电路中,将输出量(输出电压或输出电流)的一部分或全部通过一定的电路形式作用到输出回路,用来影响其输出量(放大电路的输入电压或输入电流)的措施成为反馈。 若反馈的结果使净输入量减小,则称之为负反馈;反之,称之为正反馈。若反馈存在于直流通路,则称为直流反馈;若反馈存在于交流通路,则称为交流反馈。 交流负反馈有四种组态:电压串联负反馈,电压并联负反馈,电流串联负反馈,电流并联负反馈。若反馈量取自输出电压,则称之为电压反馈;以电流形式相叠加,称为并联反馈。 在分析反馈放大电路市,“有无反馈”决定于输出回路和输入回路是否存在反馈支路。“直流反馈或交流反馈”决定于反馈支路存在于直流通路还是交流通路:“正负反馈”的判断可采用瞬时极性法,反馈的结果使净输入量减小的为负反馈,使净输入量增大的为正反馈;“电压反馈或电流反馈”的判断可以看反馈支路与输出支路是否有直接接点,如果反馈支路与输出支路有直接接点则为电压反馈,否则为电流反馈;“串联反馈或并联反馈”的判断可以看反馈支路与输入支路是否有直接直接接点,如果反馈支路与输入支路有直接接点则为并联反馈,

负反馈放大电路实验报告记录

负反馈放大电路实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

实验二由分立元件构成的负反馈放大电路 一、实验目的 1.了解N沟道结型场效应管的特性和工作原理; 2.熟悉两级放大电路的设计和调试方法; 3.理解负反馈对放大电路性能的影响。 二、实验任务 设计和实现一个由N沟道结型场效应管和NPN型晶体管组成的两级负反馈放大电路。结型场效应管的型号是2N5486,晶体管的型号是9011。 三、实验内容 1. 基本要求:利用两级放大电路构成电压并联负反馈放大电路。 (1)静态和动态参数要求 1)放大电路的静态电流I DQ和I CQ均约为2mA;结型场效应管的管压降U GDQ < - 4V,晶体管的管压降U CEQ = 2~3V; 2)开环时,两级放大电路的输入电阻要大于90kΩ,以反馈电阻作为负载时的电压放大倍数的数值≥ 120; 3)闭环电压放大倍数为10 s o sf - ≈=U U A u 。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R模拟信号源的内阻;R f为反馈电阻,取值为100 kΩ。 图1 电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C1~C3容量为10μF,C e容量为47μF。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f,见图2,理由详见“五附录-2”。 图2 两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。 3.3k?

负反馈电路实验报告

负反馈放大器 一.实验目的 加深理解放大电路中引入负反馈的方法和负反馈对放大器各项指标的影响。 二.实验原理 负反馈在电子电路中的作用:改善放大器的动态指标,如稳定放大倍数,改变输入输出电阻,减小非线性失真和展宽通频带,但同时也会使放大器的放大倍数降低。 负反馈的几种状态:电压串联,电压并联,电流串联,电流并联。 本实验以电压串联为例,分析负反馈对放大器指标的影响。 1.下图为带有电压串联负反馈的两极阻容耦合放大器电路,在电路中通过Rr把输出电压Uo引回到输入端,家在晶体管T1的发射极上,在发射极电阻Rf1上形成反馈电压Uf。主要性能指标如下: (1)闭环电压放大倍数Ar=Av/1+AvFv ,Av为开环放大倍数。

图1为带有电压串联负反馈的两极阻容耦合放大器 (2)反馈系数Fv=RF1/Rf+RF1 (3)输入电阻R1f=(1+AvFv)Rf Rf 为基本放大器的输入电阻 (4)输出电阻Rof=Ro/(1+AvoFv) Ro 为基本放大器的输出电阻Avo为基本放大器Rl=∞时的电压放大倍数。2.本实验还需测量放大器的动态参数,即去掉图1的反馈作用,得到基本放大器电路如下图2 图2基本放大器 三.实验设备与器件 模拟实验箱,函数信号发生器,双踪示波器,交流伏安表,数字万用表。 四.实验内容 1.静态工作点的测量 条件:Ucc=12V,Ui=0V用直流电压表测第一级,第二级的静态工作点。

Us(V) UE(V) Uc(V) Ic(mA) 第一 级 2.81 2.14 7.33 2.00 第二 级 2.72 2.05 7.35 2.00 表3—1 2.测量基本放大器的各项性能指标 实验将图2改接,即把Rf断开后风别并在RF1和RL 上。 测量中频电压放大倍数Av,输入输出电阻Ri和Ro。(1)条件;f=1KH,Us=5mV的正弦信号,用示波器监视输出波形,在输出波形不失真的情况下用交流毫伏表测量Us,Ui,UL计入3—2表 基本放大器Us(mV) Ui(m V) UL(V ) Uo(V) Av Rf(K Ω) Ro(K Ω) 5.0 0.5 0.25 0.48 500 1.11 2.208 负反馈放大器Us(mV) Ui(m V) UL(V ) Uo(V) Avf Rif(K Ω) Rof(K Ω) 5.0 2.3 0.14 0.20 87 8.52 1.028 表3—2 (2)保持Us不变,,断开负载电阻RL,测量空载时的输出电压Uo计入3—2表

实验四 负反馈放大电路的研究

实验四负反馈放大电路的研究 一.实验目的 1.掌握负反馈放大电路动态性能的测量方法;2.理解不同组态负反馈对放大电路性能的影响; 二.实验设备与器件 1.函数信号发生器;2.交流毫伏表;3.直流稳压电源;4.万用表5.双踪示波器;6.元器件:9013×2,电阻、电容若干 三.基本知识 为改善放大电路的性能,常在放大电路中加入负反馈。根据负反馈放大电路输出端取样方式和输入端比较方式的不同,可分为四种组态:电压串联负反馈、电压并联负反馈、电流串联负反馈、电流并联负反馈。本实验以电压串联负反馈为例,研究负反馈对放大电路性能的影响。 (1)电压串联负反馈降低了放大电路的电压增益 若原放大电路的增益为A &,反馈放大电路的电压增益为vf A &,反馈系数为F &,则有:F A A A vf &&&&+=1F A &&+1为衡量反馈程度的重要指标,称为反馈深度。对于负反馈,11>+F A &&,故引入负反馈会使放大电路的增益下降。 (2)负反馈提高了放大电路增益的稳定性 环境温度的变化,电源电压的波动,负载以及晶体管参数的变化等因素,都会使放大电路的增益发生变化。引入负反馈可以使这种变化相对减小,提高了增益的稳定性。 为表示增益的稳定程度,常用有、无反馈两种情况下增益相对变化之比来衡量。由于增益的稳 定性是用它的绝对值的变化来表示的,在不考虑相位关系时,可以用正实数A 和F 分别表示增益A &和反馈系数F &的绝对值,因此反馈放大电路的增益可表示为:AF A A vf += 1对上式进行微分,得: ) 1(AF A A dA dA f f +=, AF A A A A f f +?=∴11??对于负反馈,1+AF >1,所以负反馈可以使增益的相对变化减小为无反馈时的AF +11 ,提高了增益的稳定性,且反馈深度越大,增益稳定性就越好。 (3)负反馈扩展了放大电路的通频带 引入负反馈,放大电路的上限截至频率增大,而下限截至频率下降,所以通频带f BW 比开环时增大,且增大的程度与反馈深度有关。 H H Hf f f AF f >+=)1(;L L Lf f AF f f >+= 1;L H f f BW ?=;Lf Hf f f f BW ?=所以,BW BW f >

电子技术实验报告—实验单级放大电路

电子技术实验报告 实验名称:单级放大电路系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期:

目录 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) (一)单级低频放大器的模型和性能 (3) (二)放大器参数及其测量方法 (5) 四、实验内容 (7) 1、搭接实验电路 (7) 2、静态工作点的测量和调试 (8) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (9) 4、放大器上限、下限频率的测量 (10) 5、电流串联负反馈放大器参数测量 (11) 五、思考题 (11) 六、实验总结 (11)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一)单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放

大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

负反馈放大电路实验报告

负反馈放大电路实验报告

3)闭环电压放大倍数为10s o sf -≈=U U A u 。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ。 图1 电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C 1~C 3容量为10μF ,C e 容量为47μF 。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f ,见图2,理由详见“五 附录-2”。 图2 两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。 3.3k ?

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) ? b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, 4.2 s R k ≈Ω,使得静态工作点满足:I DQ约为2mA,U GDQ < - 4V。记录并计算电路参数及静态工作点的相关数据(I DQ,U GSQ,U A,U S、U GDQ)。 实验中,静态工作点调整,实际4 s R k =Ω

第二级电路:通过调节R b2,2 40b R k ≈Ω,使得静态工作点满足:I CQ 约为2mA ,U CEQ = 2~3V 。记录电路参数及静态工作点的相关数据(I CQ ,U CEQ )。 实验中,静态工作点调整,实际2 41b R k =Ω c. 动态参数的调试 输入正弦信号U s ,幅度为10mV ,频率为10kHz ,测量并记录电路的电压放大倍数 s o11U U A u = 、s o U U A u =、输入电阻R i 和输出电阻R o 。 电压放大倍数:(直接用示波器测量输入输出电压幅值) o1 U s U o U 1 u A 输入电阻: 测试电路:

负反馈放大器

电工电子实验报告 学生姓名: 学生学号: 系别班级: 报告性质: 课程名称:电工电子实验实验项目:负反馈放大器实验地点: 实验日期: 成绩评定: 教师签名:

实验四 负反馈放大器 一、实验目的 加深理解放大电路中引入负反馈的方法和负反馈对放大器各项性能指标的影响。 二、实验原理 负反馈在电子电路中有着非常广泛的应用,虽然它使放大器的放大倍数降低,但能在多方面改善放大器的动态指标,如稳定放大倍数,改变输入、输出电阻,减小非线性失真和展宽通频带等。因此,几乎所有的实用放大器都带有负反馈。 负反馈放大器有四种组态,即电压串联,电压并联,电流串联,电流并联。本实验以电压串联负反馈为例,分析负反馈对放大器各项性能指标的影响。 1、图4-1为带有负反馈的两级阻容耦合放大电路,在电路中通过R f 把输出电压u o 引回到输入端,加在晶体管T 1的发射极上,在发射极电阻R F1上形成反馈电压u f 。根据反馈的判断法可知,它属于电压串联负反馈。 主要性能指标如下 1) 闭环电压放大倍数 V V V Vf F A 1A A += 其中 A V =U O /U i — 基本放大器(无反馈)的电压放大倍数,即开环电压放大 倍数。

图4-1 带有电压串联负反馈的两级阻容耦合放大器 2) 反馈系数 F1 f F1 V R R R F += 3) 输入电阻 R if =(1+A V F V )R i R i — 基本放大器的输入电阻 4) 输出电阻 V VO O Of F A 1R R += R O — 基本放大器的输出电阻 A VO — 基本放大器R L =∞时的电压放大倍数 1) 在画基本放大器的输入回路时,因为是电压负反馈,所以可将负反馈放大器的输出端交流短路,即令u O =0,此时 R f 相当于并联在R F1上。 2) 在画基本放大器的输出回路时,由于输入端是串联负反馈,因此需将反馈放大器的输入端(T 1 管的射极)开路,此时(R f +R F1)相当于并接在输出端。可近似认为R f 并接在输出端.

反馈放大电路设计实验报告模版

深圳大学实验报告课程名称:模拟电路 实验名称:负反馈放大电路设计 学院:信息工程学院 专业:信息工程班级: 组号:指导教师:田明 报告人:学号: 实验地点 N102 实验时间: 实验报告提交时间: 教务处制

一.实验名称: 负反馈放大电路设计 二.实验目的: 加深对负反馈放大电路原理的理解. 学习集成运算反馈放大电路、晶体管反馈放大电路的设计方法. 掌握集成运算反馈放大电路、多级晶体管反馈放大电路的安装调试及测试方法. 三.实验仪器: 双踪示波器一台/组 信号发生器一台/组 直流稳压电源一台/组 万用表一台/组 四.实验容: 设计一个多级晶体管负反馈放大电路或集成运算负反馈放大电路,性能要求如下: 闭环电压放大倍:30---120 输入信号频率围:1KHZ-------10KHZ. 电压输出幅度≥1.5V 输出电阻≤3KΩ 五.实验步骤: 1.选择负反馈放大电路的类型,一般有晶体管负反馈放大电路、集 成运算负反馈放大电路.

为满足上述放大倍数的要求,晶体管负反馈放大电路最少需要二级放大,其连接形式有直接耦合和阻容耦合,阻容耦合可以消除放大器各级静态工作点之间的影响,本设计采用两者相结合的方式;对于各级放大器,其组态有多种多样,有共发射极,共基极和共集电极。本设计可以采用共发射极-共基极-共集电极放大电路。对于负反馈形式,有电压串联、电压并联、电流串联、电流并联。本设计采用电压并联负反馈形式。 2.设计电路,画出电路图. 下面是电源输入电路,通过并联两个电容的滤波电路形式,以效消除干扰,保证电路稳定工作,否则容易产生自激振荡。 整体原理图如下: 从上图可以看出来,整个电路由三级放大和一路负反馈回路构成,第一级电路是NPN管构成的共发射极电路,通过直接耦合的方式输出给

电子专业技术实验报告—实验4单级放大电路

电子技术实验报告—实验4单级放大电路

————————————————————————————————作者:————————————————————————————————日期:

电子技术实验报告 实验名称:单级放大电路系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期:

目录 一、实验目的 (5) 二、实验仪器 (5) 三、实验原理 (5) (一)单级低频放大器的模型和性能 (5) (二)放大器参数及其测量方法 (7) 四、实验内容 (9) 1、搭接实验电路 (9) 2、静态工作点的测量和调试 (10) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (11) 4、放大器上限、下限频率的测量 (12) 5、电流串联负反馈放大器参数测量 (13) 五、思考题 (13) 六、实验总结 (13)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一)单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放

大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

实验4 负反馈放大器

实验四 负反馈放大器 班级: 姓名: 图4-1为带有负反馈的两级阻容耦合放大电路,在电路中通过R f 把输出电压u o 引回到输入端,加在晶体管T 1的发射极上,在发射极电阻R F1上形成反馈电压u f 。根据反馈的判断法可知,它属于电压串联负反馈。 图4-1 带有电压串联负反馈的两级阻容耦合放大器 主要性能指标如下: 1) 闭环电压放大倍数 V V V Vf F A 1A A += 2) 反馈系数 F1 f F1 V R R R F += 3) 输入电阻 R if =(1+A V F V )R i R i — 基本放大器的输入电阻 4) 输出电阻 V VO O Of F A 1R R += 图4-2 基本放大器

1、测量静态工作点 按图4-1连接实验电路,取U CC=+12V,U i=0,用直流电压表分别测量第一级、第二级的静态工作点,记入表4-1。 表4-1 U B(V)U E(V)U C(V)I C(mA) 第一级 第二级 2、测试基本放大器的各项性能指标 将实验电路按图4-2改接,即把R f断开后分别并在R F1和R L上,其它连线不动。 1) 测量中频电压放大倍数A V,输入电阻R i和输出电阻R O。 ①以f=1KHZ,U S约5mV正弦信号输入放大器,用示波器监视输出波形u O,在u O不失真的情况下,用交流毫伏表测量U S、U i、U L,记入表4-2。 表4-2 基本放大器 U S (mv) U i (mv) U L (V) U O (V) A V R i (KΩ) R O (KΩ) 负反馈放大器 U S (mv) U i (mv) U L (V) U O (V) A Vf R if (KΩ) R Of (KΩ) ②保持U S不变,断开负载电阻R L(注意,R f不要断开),测量空载时的输出电压U O,记入表4-2。 2) 测量通频带 接上R L,保持1)中的U S不变,然后增加和减小输入信号的频率,找出上、下限频率f h和 f l,记入表4-3。 3、测试负反馈放大器的各项性能指标 将实验电路恢复为图4-1的负反馈放大电路。适当加大U S(约10mV),在输出波形不失真的条件下,测量负反馈放大器的A Vf、R if和R Of,记入表4-2;测量f hf和f Lf,记入表4-3。 表4-3 基本放大器 f L(KHz) f H(KHz) △f(KHz) 负反馈放大器 f Lf(KHz) f Hf(KHz) △f f(KHz) *4、观察负反馈对非线性失真的改善 1)实验电路改接成基本放大器形式,在输入端加入f=1KHz 的正弦信号,输出端接示波器,逐渐增大输入信号的幅度,使输出波形开始出现失真,记下此时的波形和输出电压的幅度。 2)再将实验电路改接成负反馈放大器形式,增大输入信号幅度,使输出电压幅度的大小与1)相同,比较有负反馈时,输出波形的变化。

负反馈放大电路实验报告

实验二 由分立元件构成的负反馈放大电路 一、实验目的 1.了解N 沟道结型场效应管的特性和工作原理; 2.熟悉两级放大电路的设计和调试方法; 3.理解负反馈对放大电路性能的影响。 二、实验任务 设计和实现一个由N 沟道结型场效应管和NPN 型晶体管组成的两级负反馈放大电路。结型场效应管的型号是2N5486,晶体管的型号是9011。 三、实验内容 1. 基本要求:利用两级放大电路构成电压并联负反馈放大电路。 (1)静态和动态参数要求 1)放大电路的静态电流I DQ 和I CQ 均约为2mA ;结型场效应管的管压降U GDQ < - 4V ,晶体管的管压降U CEQ = 2~3V ; 2)开环时,两级放大电路的输入电阻要大于90kΩ,以反馈电阻作为负载时的电压放大倍数的数值 ≥ 120; 3)闭环电压放大倍数为10s o sf -≈=U U A u 。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ。 图1 电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C 1~C 3容量为10μF ,C e 容量为47μF 。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f ,见图2,理由详见“五 附录-2”。 图2 两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。 3.3k ?

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) ? b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, 4.2s R k ≈Ω,使得静态工作点满足:I DQ 约为2mA ,U GDQ < - 4V 。记录并计算电路参数及静态工作点的相关数据(I DQ ,U GSQ ,U A ,U S 、U GDQ )。 实验中,静态工作点调整,实际4s R k =Ω 第二级电路:通过调节R b2,240b R k ≈Ω,使得静态工作点满足:I CQ 约为2mA ,U CEQ = 2~3V 。记录电路参数及静态工作点的相关数据(I CQ ,U CEQ )。 实验中,静态工作点调整,实际241b R k =Ω c. 动态参数的调试 输入正弦信号U s ,幅度为10mV ,频率为10kHz ,测量并记录电路的电压放大倍数 s o11U U A u =、s o U U A u =、输入电阻R i 和输出电阻R o 。 o1U s U o U 1u A

最新实验四负反馈放大器(1)

实验四负反馈放大器 (1)

实验二晶体管共射极单管放大器 一、实验目的 1、学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2、掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i后,在放大器的输出端便可得到一个与u i相位相反,幅值被放大了的输出信号u0,从而实现了电压放大。 图2-1 共射极单管放大器实验电路

在图2-1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算 CC B2 B1B1 B U R R R U +≈ U CE =U CC -I C (R C +R E ) 电压放大倍数 be L C V r R R βA // -= 输入电阻 R i =R B1 // R B2 // r be 输出电阻 R O ≈R C 由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。 放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。 C E BE B E I R U U I ≈-≈

负反馈放大器实验报告

负反馈放大器 一、实验目的 加深理解放大电路中引入负反馈的方法和负反馈对放大器各项性能指标的影响。 二、实验仪器 直流电源、函数信号发生器、双踪示波器、频率计、交流毫伏表、直流电压表、晶体三极管、电阻器若干、电容器若干。 三、实验原理 负反馈在电子电路中有着非常广泛的应用,虽然它使放大器的放大倍数降低,但能在多方面改善放大器的动态指标,如放大稳定倍数,改变输入、输出电阻,减小非线性失真和展宽通频等。因此,几乎所有的实用放大器都带有负反馈。 1.图为带有负反馈的两级阻容耦合放大电路,在电路中通过R f 把输出电压u o 引回到输入端,加在晶体管T 1的发射极,在发射极电阻R F1上形成反馈电压u f 。根据反馈的判断法可知,它属于电压串联负反馈。 主要性能指标如下: 1、闭环电压增益 V V V VF F A 1A A += i O V V V A = ——基本放大器(无反馈)的电压增益,即开环电压增益。 1+AVFV ——反馈深度,它的大小决定了负反馈对放大电路性能改善的程度。 2、反馈系数 F1 f F1 V R R R F += 3、输入电阻 R if = (1+A V F V )R i R i ——基本放大器的输入电阻 4、输出电阻 V VO O Of F A 1R R += R o ——基本放大器的输出电阻 A vo ——基本放大器∞=L R 时的电压增益

带有电压串联负反馈的两级阻容耦合放大器 2、本实验还需要测量基本放大器的动态参数,怎样实现无反馈而得到基本放大器呢?不能简单地断开反馈支路,而是要去掉反馈作用,但又要反馈网络的影响(负载效应)考虑到基本放大器中去,为此: 1)在画基本放大器的输入回路时,因为是电压负反馈,所以可将反馈放大器的输出端交流短路,即令u o=,此时R f相当于并联在R F1上。 2)在画基本放大器的输出回路时,由于输入端是串联负反馈,因此需将反馈放大器的输入端(T1管的射极)开路,此时(R f+R F1)相当于并接在输出端。可近似认为R f并接在输出端。 根据上述规律,就可得到所要求的如图所示的基本放大器。 等效基本放大器 3、输入输出电阻测量 为了测量放大器的输入电阻,电路在被测放大器的输入端与信号源之间串入

模电实验报告 七 负反馈放大电路

模电实验报告 实验七 负反馈放大电路 姓名: 学号: 班级: 院系: 指导老师: 2016年

目录 实验目的: (2) 实验器件与仪器: (2) 实验原理: (2) 实验内容: (4) 实验总结: (5) 实验:负反馈放大电路 实验目的: 1.进一步了解负反馈放大器性能的影响。 2.进一步掌握放大器性能指标的测量方法。 实验器件与仪器: 1. 实验原理: 放大器中采用负反馈,在降低放大倍数的同时,可以使放大器的某些性能大大改善。所谓负反馈,就是以某种方式从输出端取出信号,再以一定方式加到输入回路中。若所加入的信号极性与原输入信号极

性相反,则是负反馈。 根据取出信号极性与加入到输入回路的方式不同,反馈可分为四类:串联电压反馈、串联电流反馈、并联电压反馈与并联电流反馈。如图3-1所示。 从网络方框图来看,反馈的这四种分类使得基本放大网络与反馈网络的联接在输入、输出端互不相同。 从实际电路来看,反馈信号若直接加到输入端,是并联反馈,否则是串联反馈,反馈信号若直接取自输出电压,是电压反馈,否则是电流反馈。 1.负反馈时输入、输出阻抗的影响 负反馈对输入、输出阻抗的影响比较复杂,不同的反馈形式,对阻抗的影响也不一样,一般而言,凡是并联负反馈,其输入阻抗降低;凡是串联负反馈,其输入阻抗升高;设主网络的输入电阻为R i ,则串联负反馈的输入电阻为 R if =(1+FA V )R i 设主网络的输入电阻为R o ,电压负反馈放大器的输出电阻为 R of = F A R V O +1 可见,电压串联负反馈放大器的输入电阻增大(1+A V F )倍,而输出电阻则下降到1/(1+A V F )倍。 2.负反馈放大倍数和稳定度 负反馈使放大器的净输入信号有所减小,因而使放大器增益下降,但却改善了放大性能,提高了它的稳定性。 反馈放大倍数为 A vf = F A A V V +1(A v 为开环放大倍数) 反馈放大倍数稳定度与无反馈放大器放大倍数稳定度有如下关系: Vf Vf A A ?= V V A A ?? F A V +11 式中?A V f/A V f 称负反馈放大器放大倍数的稳定度。V V A A /?称无反

负反馈放大器实验报告

负反馈放大器 【实验目的】 1、 加深负反馈对放大器工作性能影响的认识。 2、 掌握负反馈放大器性能指标的测试方法。 【实验仪器】 双踪示波器、低频信号发生器、万用表、直流稳压电源 【实验原理】 1、 基本概念及分类 负反馈放大器就是采用了负反馈措施(即将输出信号的部分或全部通过反馈网络送回输入端,以消弱原输入信号)的放大器。负反馈放大器有电压串联、电压并联、电流串联和电流并联四种基本组态。如图1所示的方框图有: 图1负反馈放大器方框图 01f f x A A x AF = =+ 1B AF =+ B 称为反馈深度。当1D 时,1 f A F ≈ 2、 负反馈放大器对性能的影响 (1)放大倍数的稳定性提高

11f f A A A AF A ??= ? + (2)通频带扩展为原有的(1+AF )倍。 (3)减少非线性失真及抑制噪声。 (4)对输入、输出电阻的影响。 串联负反馈输入电阻增加,并联负反馈输入电阻减小;电压负反馈输出电阻减小,电流负反馈输出电阻减少,电流负反馈输出电阻增大。 【实验内容及步骤】 实验电路如图2所示: 图2负反馈放大器实验电路 1、 调整各级静态工作点 2、 测量负反馈对放大倍数稳定性的影响 (1) 测量基本放大器放大倍数的变化量。 (2) 测量负反馈放大器放大倍数的变化量。 (3) 计算相对变化量。 3、 观测负反馈放大器扩展通频带的作用。 4、 测量负反馈对输入电阻的影响。

【数据记录】 实验数据记录在表1中: 表格1 【数据分析与处理】 由记录的数据可以看出,有反馈时: 6.25%21.5 8 7A A ?== 无反馈时: 20304 6.58%A A ?== 可见增益稳定性提高了,但并不理想,考虑到实验条件,示波器显示不准,读数有误差应为主要原因。 【总结】 由这次试验可明显得到以下结论: 1、 引入负反馈会牺牲增益;

实验四 负反馈放大电路(有数据)

实验四 负反馈放大电路 一、实验目的 1.研究负反馈对放大电路性能的影响。 2.掌握负反馈放大电路性能的测试方法。 二、实验仪器 1.双踪示波器。 2.音频信号发生器。 3.数字万用表。 三、实验电路原理 电路原理如图4-1所示。反馈网络由ef f f R C R 、、构成,在放大电路引入了典雅串联 负反馈,反馈信号是 f U 。在该实验中已经测量了基本放大电路的有关性能参数,观察负 反馈对放大电路性能的影响,验证有关的电路理论。 图4-1中,反馈系数为: f ef ef f uu R R R U U F +≈ = (4-1) 反馈放大电路的电压放大倍数uuf A 、输入电阻 if R 、输出电阻 of R 、下限频率 Lf f 、上限频 率 Hf f 与基本放大电路的有关参数的关系分别如下: uu uu uu uuf A F A A += 1 (4-2) 图 4.1

i uu uu if R A F R )1(+= (4-3) uu uu of A F R R += 10 (4-4) uu uu L Lf A F f f += 1 (4-5) H uu uu Hf f A F f )1(+= (4-6) 反馈深度为: uu uu A F +1,对负反馈来说, uu uu A F +1>1 其中, H L uu f f R R A 、、、、0i 分别为基本共射放大电路的电压放大倍数、输入电阻、 输出电阻、下限频率、上限频率。可见,电压串联负反馈使得放大电路的电压放大倍数的绝对值减小,输入电阻增大,输出电阻减小;负反馈还对放大电路的频率特性产生影响,使得电路的下限频率降低、上限频率升高,起到扩大通频带,改善频响特性的作用。 此外,电压串联负反馈还能提高放大电路的电压放大倍数的稳定性,减小非线性失真。这些都是可以通过试验来验证。 基本放大电路的电压放大倍数的性对变化量与负反馈放大电路的电压放大倍数的电压放大倍数的相对量的关系表示如下: uu uu uu uuf uuf A dA A F A dA ?+= uu 11 (4-7) 四、实验内容及结果分析 1.负反馈放大电路开环和闭环放大倍数的测试 (1) 开环电路 ①按图接线,R F 先不接入。 ②输入端接入V i =lmV f=lKHz 的正弦波(注意:输入lmV 信号采用输入端衰减法见实验一)。调整接线和参数使输出不失真且无振荡(参考实验二方法)。 ③按表4.1要求进行测量并填表。 ④根据实测值计算开环放大倍数。 表4.1

负反馈放大电路性能测试实验报告

电压串联负反馈放大电路 一、实验目的 1.加深理解负反馈对放大电路性能的影响 2.掌握放大电路开环与闭环特性的测试方法 二、预习要求 1.复习电压串联负反馈的有关章节,熟悉电压串联负反馈电路的工作原理以及对放大电路性能的影响。 2.估算图3.1所示电路在有反馈和无反馈时的电压放大倍数的大小。设==50,Rp=60K。 3.估算图3.1所示电路在有反馈和无反馈时的输入电阻和输出电阻。 4.自拟实验记录表格。 三、实验元、器件 模拟电子线路实验箱一台双踪示波器一台 万用表一台连线若干 其中,模拟电子线路实验箱用到信号发生器、直流稳压电源模块,元器件模组以及“电压串联负反馈放大电路”模板。 四、实验原理与参考电路 1.参考电路如图3-1所示。

负反馈有四种类型:电压串联负反馈,电压并联负反馈,电流串联负反馈,电流并联负反馈。本实验电路由两级共射放大电路引入电压串联负反馈,构成负反馈放大器。其中反馈电阻RF=10KΩ。 2.电压串联负反馈对放大器性能的影响 (1)引入负反馈降低了电压放大系数 式中,是反馈系数,,是放大器不引入级间反馈时的电压放大倍数(即,但要考虑反馈网络阻抗的影响),其值可由图3-2所示的交流等效电路求出。 设,则有

式中:第一级交流负载电阻 第二级交流负载电阻 从式中可知,引入负反馈后,电压放大倍数比没有负反馈时的电压放大倍数降低了()倍,并且愈大,放大倍数降低愈多。 (2)负反馈可提高放大倍数的稳定性

该式表明:引入负反馈后,放大器闭环放大倍数的相对变化量比开环放大倍数的相对变化量减少了(1 AF)倍,即闭环增益的稳定性提高了(1 AF)倍。 (3)负反馈可扩展放大器的通频带 引入负反馈后,放大器闭环时的上、下截止频率分别为: 可见,引入负反馈后,向高端扩展了倍,从而加宽了通频带。 (4)负反馈对输入阻抗、输出阻抗的影响 负反馈对输入阻抗、输出阻抗的影响比较复杂。不同的反馈形式,对阻抗的影响不一样。一般而言,串联负反馈可以增加输入阻抗,并联负反馈可以减小输入阻抗;电压负反馈将减小输出阻抗,电流负反馈可以增加输出阻抗。图3-1电路引入的是电压串联负反馈,对整个放大器电路而言,输入阻抗增加了,输出阻抗降低了。它们的增加和降低程度与反馈深度(1 AF)有关,在反馈环内满足 (5)负反馈能减小反馈环内的非线性失真 综上所述,在放大器引入电压串联负反馈后,不仅可以提高放大器放大倍数的稳定性,还可以扩展放大器的通频带,提高输入电阻和降低输出电阻,减小非线性失真。 五、实验内容 1.按图3.1组装电压串联负反馈电路,调整Q1,Q2静态工作点(方法同实验一)。输入端加,2mV的正弦电压,输出接示波器CH2,观察输出电压波形是否有自激振荡,若有自激,可在Q2的基极b2和集电极c2之间加消振电容,其容量约为200pF。确认输出电压无自激,不失真,关闭信号

电子技术实验报告—实验4单级放大电路

电子技术实验报告 实验名称:单级放大电路 系别: 班号: 实验者姓名:学号:实验日期: 学号: 实验日期: 实验报告完成日期:

目录 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) (一)单级低频放大器的模型和性能 (3) (二)放大器参数及其测量方法 (5) 四、实验内容 (6) 1、搭接实验电路 (6) 2、静态工作点的测量和调试 (7) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (7) 4、放大器上限、下限频率的测量 (8) 5、电流串联负反馈放大器参数测量 (8) 五、思考题 (9) 六、实验总结 (9)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器 1台 2.函数信号发生器 1台 3.直流稳压电源 1台 4.数字万用表 1台 5.多功能电路实验箱 1台 6.交流毫伏表 1台 三、实验原理 (一)单级低频放大器的模型和性能 1.单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放大器和 负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极 性相反,则为负反馈。

多级负反馈放大器的研究实验报告

多级负反馈放大器的研究 一.实验目的 (1)掌握用仿真软件研究多级负反馈放大电路。 (2)学习集成运算放大器的应用,掌握多级集成运算放大器的工作特点。 (3)研究负反馈对放大器性能的影响,掌握负反馈放大器性能指标的测试方法。 1)测试开环和闭环的电压放大倍数、输入电阻、输出电阻、反馈网络的电压反馈系数和通频带; 2)比较电压放大倍数、输入电阻、输出电阻和通频带在开环和闭环时的差别; 3)观察负反馈对非线性失真的改善。 二.实验原理 1.基本概念 在电子电路中,将输出量的一部分或全部通过一定的电路形式作用到输入回路,用来影响其他输入量的措施称为反馈。 若反馈的结果使净输入量减小,则称之为负反馈;反之,称之为正反馈。 实验电路如下图所示,该放大电路有两级运放构成的反向比例器组成,在末级的输出端引入了反馈网络Cf,Rf2,和Rf1,构成了交流电压串联负反馈电路。 2.放大器的基本参数 1)开环参数 将反馈支路的A点与P点断开,与B点相连,便可得到开环时的放大电路。由此可测出开环时放大电路的电压放大倍数Av、输入电阻Ro、反馈网路的电压反馈系数Fv和通频带BW,即

()1' 1 2.51o v i i i i N o o L o f v o H L BW V A V V R R V V V R R V V F V f f ?=?? ? ? =? - ????? ?=--? ???? ? ?=?? ?=-??? 2)闭环参数:通过开环时放大电路的电压放大倍数Av 、输入电阻Ri 、输入电阻Ro 、反馈网 络的电压反馈系数Fv 和上下限频率,可以计算求得多级负反馈放大电路的闭环电压放大倍数Avf 、输入电阻Rif 、输出电阻Rof 和通频带BWf 的理论值,即 负反馈放大电路的闭环特性的实际测量值为:

相关文档
最新文档