现代信号处理方法自适应信号处理方法
自适应滤波器理论

摘要自适应滤波器理论是现代信号处理技术的重要组成部分,他对复杂信号的处理具有独特的功能。
自适应滤波器在信号处理中属于随机信号处理的范畴。
自适应滤波算法作为自适应滤波器的重要组成部分,直接决定着滤波性能的优劣。
目前针对它的研究是自适应信号处理领域中最为活跃的研究课题之一。
本文在论述自适应滤波基本原理的基础上,首先介绍了目前主要的自适应滤波算法及其应用,其中对LMS 算法和RLS 算法进行了较深入的理论分析和研究。
接着对一些典型的变步长LMS 算法和RLS 算法的性能特点进行分析比较,给出了算法性能的综合评价。
最后本文提出了几种改进的变步长LMS 算法和RLS 算法。
关键词:自适应滤波,LMS算法,RLS算法ABSTRACTThe theory of self-adapting filter is an important part of modern signal processing technology, which has unique function to complex signal processing. Self-adapting filter belongs to the category of random signal processing. Adaptive filtering algorithm, which decides directly the performance of filtering; is seemed as the important part of the adaptive fiter. Presently the research on it is one of the most active tasks.Based on the basic adaptive filtering principle, firstly, this paper introduces the present main adaptive filtering algorithms and their applications. Especially the LMS algorithm and RMS algorithm are deeply analyzed. Secondly, this paper introduces several typical variable step size LMS and RMS algorithms, and compares and evaluates their performance. Finally, the paper presents several kinds of modified variable step size LMS and RMS algorithms.KEY WORDS: self-adapting filter, LMS algorithm, RMS algorithm1 绪论1.1 研究背景自适应滤波是近30 年以来发展起来的一种最佳滤波方法。
(完整word版)自适应滤波LMS算法及RLS算法及其仿真

自适应滤波第1章绪论 (1)1.1自适应滤波理论发展过程 (1)1. 2自适应滤波发展前景 (2)1. 2. 1小波变换与自适应滤波 (2)1. 2. 2模糊神经网络与自适应滤波 (3)第2章线性自适应滤波理论 (4)2. 1最小均方自适应滤波器 (4)2. 1. 1最速下降算法 (4)2.1.2最小均方算法 (6)2. 2递归最小二乘自适应滤波器 (7)第3章仿真 (12)3.1基于LMS算法的MATLAB仿真 (12)3.2基于RLS算法的MATLAB仿真 (15)组别: 第二小组组员: 黄亚明李存龙杨振第1章绪论从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过程称为滤波。
相应的装置称为滤波器。
实际上, 一个滤波器可以看成是一个系统, 这个系统的目的是为了从含有噪声的数据中提取人们感兴趣的、或者希望得到的有用信号, 即期望信号。
滤波器可分为线性滤波器和非线性滤波器两种。
当滤波器的输出为输入的线性函数时, 该滤波器称为线性滤波器, 当滤波器的输出为输入的非线性函数时, 该滤波器就称为非线性滤波器。
自适应滤波器是在不知道输入过程的统计特性时, 或是输入过程的统计特性发生变化时, 能够自动调整自己的参数, 以满足某种最佳准则要求的滤波器。
1. 1自适应滤波理论发展过程自适应技术与最优化理论有着密切的系。
自适应算法中的最速下降算法以及最小二乘算法最初都是用来解决有/无约束条件的极值优化问题的。
1942年维纳(Wiener)研究了基于最小均方误差(MMSE)准则的在可加性噪声中信号的最佳滤波问题。
并利用Wiener. Hopf方程给出了对连续信号情况的最佳解。
基于这~准则的最佳滤波器称为维纳滤波器。
20世纪60年代初, 卡尔曼(Kalman)突破和发展了经典滤波理论, 在时间域上提出了状态空间方法, 提出了一套便于在计算机上实现的递推滤波算法, 并且适用于非平稳过程的滤波和多变量系统的滤波, 克服了维纳(Wiener)滤波理论的局限性, 并获得了广泛的应用。
(完整)自适应滤波算法原理及其应用

自适应滤波算法原理与应用经典的滤波算法包括,维纳滤波,卡尔曼滤波,自适应滤波。
维纳滤波与卡尔曼滤波能够满足一些工程问题的需求,得到较好的滤波效果。
但是他们也存在局限性,对于维纳滤波来说,需要得到足够多的数据样本时,才能获得较为准确的自相关函数估计值,一旦系统设计完毕,滤波器的长度就不能再改变,这难以满足信号处理的实时性要求;对于卡尔曼滤波,需要提前对信号的噪声功率进行估计,参数估计的准确性直接影响到滤波的效果。
在实际的信号处理中,如果系统参数能够随着输入信号的变化进行自动调整,不需要提前估计信号与噪声的参数,实现对信号的自适应滤波,这样的系统就是自适应滤波系统.1。
基本自适应滤波算法自适应滤波算法的基本思想是根据输入信号的特性自适应调整滤波器的系数,实现最优滤波。
图1 自适应滤波结构框图若自适应滤波的阶数为M ,滤波器系数为W ,输入信号序列为X ,则输出为: 10()()()M m y n w m x n m -==-∑( 1)()()()e n d n y n =-( 2)其中()d n 为期望信号,()e n 为误差信号。
11()()()M Mj i ij m i y n w m x n m y w x -===-→=∑∑( 3) 令T T 01112[,,,],[,,,]M j j j Nj W w w w X x x x -==( 4)则滤波器的输出可以写成矩阵形式: T Tj jj y X W W X == ( 5)T Tj j j j j jj e d y d X W d W X =-=-=- ( 6)定义代价函数:222()[][()][()]j j j T j j J j E e E d y E d W X ==-=- ( 7)当使上式中的代价函数取到最小值时,认为实现最优滤波,这样的自适应滤波成为最小均方自适应滤波(LMS)。
对于最小均方自适应滤波,需要确定使得均方误差最小的滤波器系数,一般使用梯度下降法求解这类问题。
现代信号处理大作业

现代信号处理大型作业一.试用奇阶互补法设计两带滤波器组(高、低通互补),进而实现四带滤波器组;并画出其频响。
滤波器设计参数为:F p =1.7KHz , F r =2.3KHz , F s =8KHz , A rmin ≥70dB 。
(一)、分析与通常的滤波器相比,互补滤波器具有优良的结构特性和结构特性,具有较低的噪声能量和系数敏感性,其定义如下:一组滤波器H 12(),(),.......()Z H Z H Z n 如果满足下式:He Kjw k n(),==∑110<w<2π 则称这组滤波器为幅度互补滤波器;如果满足下式:He kjw k n()=∑=121, 0<w<2π则称这组滤波器为功率互补滤波器,同时互补滤波器还应该满足:Hz A z kk n()()=∑=1其中A(z)为全通函数,适当的选择全通函数,可以使两带函数具有所需要的低通和高通特性。
(二)、设计步骤(1) 对Fp 、Fr 进行预畸);();(''FsFrtg FsFptg r p ∏=Ω∏=Ω(2) 计算'''*r p c ΩΩ=Ω,判断'c Ω是否等于1,即该互补滤波器是否为互补镜像滤波器(3) 计算相关系数⎪⎩⎪⎨⎧-==+++=+-=-=ΩΩ=--=偶数)N 为(;21奇数)N 为 (;;lg /)16/1lg(;150152;1121;1;;])110)(110[(1213090500''02'''211-min1.0min1.0i i u q k N q q q q q k k q k k k k rp Ar Ap;)2cos()1(21))12(sin()1(21)1(21'2∑∑∞=∞=+-++-=Ωm mm m m m m i u Nm q u Nm q q ππ;42⎥⎦⎤⎢⎣⎡=N N;221N N N -⎥⎦⎤⎢⎣⎡=;)/1)(1(2'2'k k v i i i Ω-Ω-=12'1212,1;12N i v i i i =Ω+=--α 22'22,1;12N i v iii =Ω+=β (4) 互补镜像滤波器的数字实现;22i ii A αα+-=;22iii B ββ+-=1221,1;1)(N i ZA Z A Z H i i i =++=∏--22212,1;1)(N i ZB Z B Z Z H i i i =++=∏--- )];()([21)(21Z H Z H Z H L +=(三)、程序与结果 1. 二带滤波器组 (1) 源程序: clear; clf;Fp=1700;Fr=2300;Fs=8000; Wp=tan(pi*Fp/Fs); Wr=tan(pi*Fr/Fs); Wc=sqrt(Wp*Wr); k=Wp/Wr;k1=sqrt(sqrt(1-k^2)); q0=0.5*(1-k1)/(1+k1);q=q0+2*q0^5+15*q0^9+150*q0^13; N=11;N2=fix(N/4); M=fix(N/2); N1=M-N2; for jj=1:M a=0;for m=0:5a=a+(-1)^m*q^(m*(m+1))*sin((2*m+1)*pi*jj/N);%N is odd, u=j end ab=0;for m=1:5b=b+(-1)^m*q^(m^2)*cos(2*m*pi*jj/N); end bW(jj)=2*q^0.25*a/(1+2*b);V(jj)=sqrt((1-k*W(jj)^2)*(1-W(jj)^2/k)); endfor i=1:N1alpha(i)=2*V(2*i-1)/(1+W(2*i-1)^2); endfor i=1:N2beta(i)=2*V(2*i)/(1+W(2*i)^2); endfor i=1:N1a(i)=(1-alpha(i)*Wc+Wc^2)/(1+alpha(i)*Wc+Wc^2); endfor i=1:N2b(i)=(1-beta(i)*Wc+Wc^2)/(1+beta(i)*Wc+Wc^2); endw=0:0.0001:0.5;LP=zeros(size(w));HP=zeros(size(w));for n=1:length(w)z=exp(j*w(n)*2*pi);H1=1;for i=1:N1H1=H1*(a(i)+z^(-2))/(1+a(i)*z^(-2)) ;endH2=1/z;for i=1:N2H2=H2*(b(i)+z^(-2))/(1+b(i)*z^(-2));endLP(n)=abs((H1+H2)/2);HP(n)=abs((H1-H2)/2);endplot(w,LP,'b',w,HP,'r');hold on;xlabel('digital frequency');ylabel('amptitude');(2)运行结果:见图1图1 二带数字滤波器组2.四带滤波器组(1)源程序:clf;Fp=1700;Fr=2300;Fs=8000;Wp=tan(pi*Fp/Fs);Wr=tan(pi*Fr/Fs);Wc=sqrt(Wp*Wr);k=Wp/Wr;k1=sqrt(sqrt(1-k^2));q0=0.5*(1-k1)/(1+k1);q=q0+2*q0^5+15*q0^9+150*q0^13;N=11;N2=fix(N/4);M=fix(N/2);N1=M-N2;for jj=1:Ma=0;for m=0:5a=a+(-1)^m*q^(m*(m+1))*sin((2*m+1)*pi*jj/N); % N is odd, u=jendb=0;for m=1:5b=b+(-1)^m*q^(m^2)*cos(2*m*pi*jj/N);endW(jj)=2*q^0.25*a/(1+2*b);V(jj)=sqrt((1-k*W(jj)^2)*(1-W(jj)^2/k));Endfor i=1:N1alpha(i)=2*V(2*i-1)/(1+W(2*i-1)^2);endfor i=1:N2beta(i)=2*V(2*i)/(1+W(2*i)^2);endfor i=1:N1a(i)=(1-alpha(i)*Wc+Wc^2)/(1+alpha(i)*Wc+Wc^2);endfor i=1:N2b(i)=(1-beta(i)*Wc+Wc^2)/(1+beta(i)*Wc+Wc^2);endw=0:0.0001:0.5;LLP=zeros(size(w));LHP=zeros(size(w));HLP=zeros(size(w));HHP=zeros(size(w));for n=1:length(w)z=exp(j*w(n)*2*pi);H1=1;for i=1:N1H1=H1*(a(i)+z^(-2))/(1+a(i)*z^(-2)) ;endH21=1;for i=1:N1H21=H21*(a(i)+z^(-4))/(1+a(i)*z^(-4)) ;H2=1/z;for i=1:N2H2=H2*(b(i)+z^(-2))/(1+b(i)*z^(-2));endH22=1/(z^2);for i=1:N2H22=H22*(b(i)+z^(-4))/(1+b(i)*z^(-4));endLP=((H1+H2)/2);HP=((H1-H2)/2);LLP(n)=abs((H21+H22)/2*LP);LHP(n)=abs((H21-H22)/2*LP);HHP(n)=abs((H21+H22)/2*HP);HLP(n)=abs((H21-H22)/2*HP);endplot(w,LLP,'b',w,LHP,'r',w,HLP,'k',w,HHP,'m')hold onxlabel('digital frequency');ylabel('amptitude');(2)运行结果:见图2图2 四带数字滤波器组二、根据《现代数字信号处理》第四章提供的数据,试用如下方法估计其功率谱,并画出不同参数情况下的功率谱曲线:1)Levison算法2)Burg算法3) ARMA 模型法 4) MUSIC 算法 1 Levinson 算法Levinson 算法用于求解Yule-Walker 方程,是一种按阶次进行递推的算法,即首先以AR (0)和AR (1)模型参数作为初始条件,计算AR (2)模型参数;然后根据这些参数计算AR (3)参数,等等,一直到计算出AR (p )模型参数为止,需要的运算量数量级为2p ,其中p 为AR 模型的阶数。
现代信号处理第5章

(5.2.13) (5.2.13)
2019年10月13日
机械工程学院机自所动态室
19
5.2 小波变换
5.2.1 多分辨分析及其工程意义
但不能恰当地反映非平稳信号的特征。
• 许多随机过程从本质上来讲是非平稳的,例如语音信号、冲
击响应信号 、机组启、停机信号等。
• 必须寻找既能够反映时域特征又能够反映频域特征的新方法。 • 本章介绍短时傅里叶变换、小波变换和小波包分析等非平稳
信号分析方法的原理、特点及其在工程中的应用。
2019年10月13日
h(t-τ)
x(t)
0
τ
机械工程学院机自所动态室
t
6
5.1 短时傅里叶变换
窗函数 h(t) 的选取是关键。最优窗函数是高斯函数。
hG (t)
2
1
t2
e 4
0
(5.1.3)
高斯窗函数的形状是:
1 ,1/4 ,1/16
2019年10月13日
机械工程学院机自所动态室
7
5.1 短时傅里叶变换
尺度因子解释了信号在变换过程中尺度的变化,用大尺度 可观察信号的总体,用小尺度可观察信号的细节。
式(5.2.3)解释了为什么在S. G. Mallat的小波信号分解塔形 快速算法中,始终使用同样的低通与高通滤波器的道理。
2019年10月13日
机械工程学院机自所动态室
14
5.2 小波变换
小波函数族还可采用如下定义:
将会丢失部分信息。
2019年10月13日
机械工程学院机自所动态室
18
5.2 小波变换
5.2.1 多分辨分析及其工程意义
3) 伸缩规则性: x(t) V j x(2t) V j1 , j Z;
现代信号处理试题

折叠”滤波器。
在 D / A 变换之后都要让信号通过一个低通滤波器,是为了滤除高频延拓谱,以便把
抽样保持的阶梯形输出波平滑化,故又称为“平滑”滤波器。
5、已知 H (z)
1 a2 (1 az1)(1 az)
,0
a
1,分析其因果性和稳定性。
解: H (z) 的极点为 z a, z a1 ,
(1) 收敛域 a1 z ,对应的系统是因果系统,但由于收敛域不包含单位圆,因此是
★频率取样:在H(z)的单位圆上等分取样(是否带初相)
★优化技术设计:(依据一定的优化准则进行设计)
7、有一连续信号 xa (t) 2 cos(2 f
),式中
f
20Hz ,
π ,
2
1) 求 xa (t) 的周期;
2) 用采样间隔T=0.02S对 xa (t) 进行采样,写出采样信号 xˆa (t) 的表达式;
频域条件为:
i
h(
2 TS
i
)
TS
Ts
f 13、某宽带调频系统,调制信号为 m(t) cos(2 104t) ,载频 100MHz ,最大的频 c
率偏移 f 50kHz ,信道噪声的单边功率谱密度 n0 1012W / Hz 。若要求系统解调器输
出信噪比为30dB。试求:
(1)调频指数 m f ?
2 故 SFM (t) 7.3104 cos(2 107 t 5sin 2 104 t)
14、已知信道的带宽为3.4kHZ,信道输出信噪比S/N=30dB,该信道输出128个符号,个
符号等概率出现且相互统计独立,试求:
(1) 该信道的信道容量。
(2) 无误码时最高的传输符号速率。
解:(1)
现代信号处理知识点总结

现代信号处理知识点总结引言信号处理是一个广泛的领域,涉及到从基本的模拟信号处理到复杂的数字信号处理等多个方面。
在现代社会中,信号处理技术已经得到广泛应用,涉及到通信、图像处理、音频处理、生物医学工程等众多领域。
信号处理技术的不断发展和应用,为我们的生活带来了很多方便和改变。
本文将从基本的信号处理原理到现代的数字信号处理技术,对信号处理的知识点进行总结和介绍。
基本信号处理原理在信号处理领域,信号是指随着时间的变化而变化的一种物理量。
信号可以分为模拟信号和数字信号两种类型。
模拟信号是连续变化的信号,而数字信号是离散的信号。
在信号处理中,我们要对信号进行采样、量化和编码等处理。
采样是指在一定时间间隔内对模拟信号进行采集,得到离散的样本点。
采样过程中,需要考虑采样频率和最高频率的问题。
采样频率过低会导致信号失真,而采样频率过高会浪费资源。
量化是指将连续的模拟信号转换为离散的数字信号。
量化过程中,需要确定量化级数和量化误差等参数。
量化级数越大,信号的精度越高,但会增加数据量。
而量化误差是指模拟信号与数字信号之间的误差,它会影响信号的质量。
编码是指将量化后的数字信号进行编码传输或存储。
在信号处理中,有很多种编码方式,如脉冲编码调制(PCM)、脉冲位置调制(PPM)、脉冲振幅调制(PAM)等。
不同的编码方式有不同的特点和适用场景。
数字信号处理技术数字信号处理(DSP)是对数字信号进行处理和分析的技术。
它具有精度高、灵活性强、稳定可靠等优点,因此在通信、音视频处理、生物医学工程等领域得到广泛应用。
数字信号处理技术主要包括信号滤波、信号变换、频谱分析、时域分析等多个方面。
信号滤波是指通过对信号进行滤波,去除噪声和干扰等不必要的成分,保留信号中有用的信息。
滤波技术主要包括数字滤波器设计、滤波器特性、滤波器实现等内容。
数字滤波器可以分为有限脉冲响应(FIR)滤波器和无限脉冲响应(IIR)滤波器两种类型。
信号变换是将一个信号转换成另一个信号的过程。
现代信号处理复习要点总结

现代信号处理复习要点总结《信号处理技术及应⽤》复习要点总结题型:10个简答题,⽆分析题。
前5个为必做题,后⾯出7个题,选做5个,每个题10分。
要点:第⼀章:⼏种变换的特点,正交分解,内积,基函数;第⼆章:信号采样中的窗函数与泄露,时频分辨率,相关分析及应⽤(能举个例⼦最好)第三章:傅⾥叶级数、傅⾥叶变换、离散傅⾥叶变换(DFT)的思想及公式,FFT校正算法、功率谱密度函数的定义,频谱细化分析,倒频谱、解调分析、时间序列的基本原理(可能考其中两个)第四章:⼀阶和⼆阶循环统计量的定义和计算过程,怎么应⽤?第五章:多分辨分析,正交⼩波基的构造,⼩波包的基本概念第六章:三种⼩波各⾃的优点,奇异点怎么选取第七章:⼆代⼩波提出的背景及其优点,预测器和更新器系数计算⽅法,⼆代⼩波的分解和重构,定量识别的步骤第⼋章:EMD基本概念(瞬时频率和基本模式分量)、基本原理,HHT的基本原理和算法。
看8.3⼩节。
信号的时域分析信号的预处理传感器获取的信号往往⽐较微弱,并伴随着各种噪声。
不同类型的传感器,其输出信号的形式也不尽相同。
为了抑制信号中的噪声,提⾼检测信号的信噪⽐,便于信息提取,须对传感器检测到的信号进⾏预处理。
所谓信号预处理,是指在对信号进⾏变换、提取、识别或评估之前,对检测信号进⾏的转换、滤波、放⼤等处理。
常⽤的信号预处理⽅法信号类型转换信号放⼤信号滤波去除均值去除趋势项理想低通滤波器具有矩形幅频特性和线性相位特性。
经典滤波器定义:当噪声和有⽤信号处于不同的频带时,噪声通过滤波器将被衰减或消除,⽽有⽤信号得以保留现代滤波器当噪声频带和有⽤信号频带相互重叠时,经典滤波器就⽆法实现滤波功能现代滤波器也称统计滤波器,从统计的概念出发对信号在时域进⾏估计,在统计指标最优的意义下,⽤估计值去逼近有⽤信号,相应的噪声也在统计最优的意义下得以减弱或消除将连续信号转换成离散的数字序列过程就是信号的采样,它包含了离散和量化两个主要步骤采样定理:为避免混叠,采样频率ωs必须不⼩于信号中最⾼频率ωmax的两倍,⼀般选取采样频率ωs为处理信号中最⾼频率的2.5~4倍量化是对信号采样点取值进⾏数字化转换的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
yj XT jWWTXj
式中
(2.1.3)
W [ w 1 ,w 2 , ,w N ] T ,X j [ x 1 j,x 2 j, ,x N ] T j
误差信号表示为 e j d j y j d j X T jW d j W T X j
(2.1.4)
现代信号处理方法自适应信号处理 方法
自适应信号处理
现代信号处理方法自适应信号处理 方法
自适应信号处理
二、LMS 自适应横向滤波器 LMS自适应滤波器是以均方误差最小作为最佳滤波
准则的,原理框图如图2.1所示,图中x(n)称为输入信 号,y(n)是输出信号,d(n)称为期望信号,或者称为参
考信号、训练信号,e(n)是误差信号。
e(n)=d(n)-y(n)
x(n) H(z)
e(n)
y(n)
-
+
d(n)
现代信号处图理方2法.1自适应自信号适处应理 滤波器原理图
方法
自适应信号处理
二、LMS 自适应横向滤波器 其中自适应滤波器H(z)的系数根据误差信号,通过
一定的自适应算法,不断地进行改变,使输出y(n)最接近 期望信号d(n),这里暂时假定d(n)是可以利用的,实际中, d(n)要根据具体情况进行选取,能够选到一个合适的信 号作为期望信号,是设计自适应滤波器的一项重要的 工作。如果真正的d(n)可以获得, 我们将不需要做任 何自适应滤波器。
…
x1j
w1
x2j
w2
xNj wN
yj
-
+
ej
dj
图 2 现自代适信号应处理线方性法自组适应合信号器处理
方法
自适应信号处理
二、LMS 自适应横向滤波器 2.1. 自适应滤波器的矩阵表示式
这里的x1j,x2j,…,xNj可以理解为是从N个不同的信
号源到达的瞬时输入,是一个多输入系统,也可以是 同一个信号源的N个序贯样本,如图3所示,因此它是
现代信号处理方法自适应信号处理 方法
自适应信号处理
一、引 言
自适应滤波器的特点是:滤波器的参数可以按照 某种准则自动地调整到满足最佳滤波的要求;实现时 不需要任何关于信号和噪声的自相关特性,尤其当输 入统计特性变化时,自适应滤波器都能调整自身的参 数来满足最佳滤波的需要,即具有学习和跟踪的性能。 自适应滤波器发展很快,已广泛地用于系统模型识别, 通信信道的自适应均衡, 雷达与声纳的波束形成,减 少或消除心电图中的周期干扰,噪声中信号的检测、 跟踪、 增强和线性预测等。
[
e
2 j
]是权系数的二次函数,即将该
式展开时,公式中的权系数均以它的一次幂或二次幂
(2.1.8)
R dx 称为dj与Xj的互相关矩阵,是一个N维列矩阵;
R xx 是输入信号的自相关矩阵。
现代信号处理方法自适应信号处理 方法
自适应信号处理
二、LMS 自适应横向滤波器 2.2. 用LMS准则求最佳权系数和最小均方误差
(2.1.8)式表明,当输入信号和期望信号是平稳随机信
号时,均方误差信号E
x(n-2)
…
z- 1
x(n-N)
w1
w2
w3
wN- 1
wN e(n)
d(n)
+ -
y(n)
图 2.3 自适应横向滤波器结构
现代信号处理方法自适应信号处理 方法
自适应信号处理
二、LMS 自适应横向滤波器
2.1. 自适应滤波器的矩阵表示式
im1
这里w(n)称为滤波器单位脉冲响应,令:wi w(i1)
自适应信号处理
1 引言 2 LMS自适应横向滤波器 3 LMS自适应格型滤波器 4 最小二乘自适应滤波器 5 自适应滤波的应用
现代信号处理方法自适应信号处理 方法
自适应信号处理
一、引 言
自适应滤波器和维纳滤波器一样,都是符合某种 准则的最佳滤波器。维纳滤波器的参数是固定的,适 用于平稳随机信号的最佳滤波,但要设计这种滤波器, 必须要求输入信号是平稳的,且必须信号和噪声自相 关特性。在实际中,常常无法知道这些特性,且信号 和噪声自相关函数还会随时间变化,因此实现最佳滤 波是困难的。
现代信号处理方法自适应信号处理 方法
自适应信号处理
二、LMS 自适应横向滤波器 2.1. 自适应滤波器的矩阵表示式
图2.2 表示的是一个有N个权系数的自适应线性组合器,
图中N个权系数w1,w2,…,wN受误差信号ej的自适应控制。 对于固定的权系数,输出yj是输入信号x1j,x2j,…,xNj
的线性组合,因此称它为线性组合器。
二、LMS 自适应横向滤波器 2.2. 用LMS准则求最佳权系数和最小均方误差
误差信号被用来作为权系数的控制信号。下面采 用均方误差最小的准则,求最佳权系数。由(2.1.4)式, 均方误差为:
E[e2 j]E[d (jyj)2] E[d2 j]2E[djXT j]WW TE[XjXT j]W (2.1.5)
xNjx2j
xNjxNj
(2.1.7)
现代信号处理方法自适应信号处理 方法
自适应信号处理
二、LMS 自适应横向滤波器 2.2. 用LMS准则求最佳权系数和最小均方误差
将(2.1.6)、 (2.1.7)式代入(2.1.5)式, 得到 E [e2 j]E [d2 j] 2 R d T W x W T R xW x
现代信号处理方法自适应信号处理 方法
自适应信号处理
二、LMS 自适应横向滤波器 2.2. 用LMS准则求最佳权系数和最小均方误差
令: RdxE[djXTj ]
(2.1.6)
x1j x1j
x1j x2j
x1j
xNj
Rxx
E[Xj
XTj
]
Ex1j
x1j
x1j x2j
x1j
xNj
xNjx1j
xi x(ni1)时间n用下标j表示,(2.1.1)上式可
以写成
N1
y(n)w(m)x(nm)
m0
N
y j wi xij i1
这里w i 也称为滤波器加权系数。
(2.1.2)
现代信号处理方法自适应信号处理 方法
自适应信号处理
二、LMS 自适应横向滤波器 2.1. 自适应滤波器的矩阵表示式
用上面公式表示其输出,适合于自适应线性组合器, 也适合于FIR滤波器。将上式表示成矩阵形式:
一个单输入系统, 实际上也是一个自适应横向滤波器。
其输出y(n)用滤波器的单位脉冲响应表示成下式:
N1
y(n)w(m)x(nm) m0
(2.1.1)
现代信号处理方法自适应信号处理 方法
自适应信号处理
二、LMS 自适应横向滤波器 2.1. 自适应滤波器的矩阵表示式
x(n)
z- 1
x(n-1)
z- 1