现代信号处理论文(1)
现代信号处理

现代信号处理
现代信号处理是对信号进行数字化处理的一种技术,它使用数字信
号处理算法来分析、修复、增强或压缩信号。
现代信号处理技术广
泛应用于通信、音频处理、图像处理、生物医学工程、雷达和声纳
等领域。
现代信号处理的基本步骤包括信号采集(模拟信号转换为数字信号)、滤波、采样、量化和编码。
滤波可以用于去除信号中的噪声
或不需要的成分,采样和量化将连续的信号转换为离散的数据点,
编码则将离散的数据点转换为数字形式,方便存储和传输。
现代信号处理算法包括傅里叶变换、小波变换、自适应滤波、功率
谱估计以及各种滤波器设计方法等。
傅里叶变换可以将信号从时域
转换为频域,从而可以分析信号的频谱特性;小波变换可以将信号
分解成不同的频率分量,实现信号的多分辨率分析;自适应滤波可
以根据信号的特性自动调整滤波器的参数,以适应不同的环境条件。
1
现代信号处理技术在通信领域广泛应用,例如调制解调、信道编码、多址接入等;在音频处理中,可以实现音频降噪、语音识别和语音
合成;在图像处理中,可以实现图像去噪、边缘检测和数字图像压缩;在生物医学工程中,可以实现生物信号的特征提取、滤波和分析;在雷达和声纳中,可以实现目标检测、目标跟踪和图像重建。
总之,现代信号处理技术为信号分析和处理提供了一种高效、准确
和灵活的方法,为我们获取有用的信息、改善信号质量和实现更复
杂的信号处理任务提供了重要的工具。
2。
现代信号处理技术及应用

现代信号处理技术及应用现代信号处理技术是一种将信号转换成数字或者数学表达式进行分析或处理的技术。
随着科技的快速发展,现代信号处理技术逐渐成为了实现各种数码设备的基础技术之一,被广泛应用于通信、图像处理、音频处理、控制系统等众多领域。
本文将以通信领域为例,探讨现代信号处理技术的应用。
通信领域是现代信号处理技术的重要应用领域之一。
在无线通信系统中,数字信号处理技术广泛应用于解决各种信道干扰、损耗、多径传输和时延等问题。
数字信号处理技术可以通过数字滤波、自适应滤波、同步识别和信号解调等技术手段对数字信号进行预处理和后处理,从而提高通信系统的效率和质量。
其中,数字滤波是现代通信领域应用较广泛的技术之一。
数字滤波技术通过对信号进行数字处理,可以实现无源电路滤波器所实现的频率选择性。
数字滤波器是通过离散时间输入信号的加权和输出的加权和所组成的有限脉冲响应系统。
数字滤波器可以采用各种算法,在不同领域实现不同的设计要求,比如低通、高通、带通、带阻滤波等。
数字滤波技术在通信系统中的应用,主要是利用数字滤波的频率选择性和基带信号的特征,实现提高系统通信带宽和信噪比的效果。
在数字信号处理技术的应用中,自适应滤波是一种应用较广泛的技术。
自适应滤波的基本原理是根据输入信号的特征,在每个时刻自动调整滤波器的权系数。
自适应滤波器可以实现对信号干扰的自适应消除,使得系统的抗干扰能力更强,信号质量更高。
自适应滤波技术在无线通信应用中,主要用于消除多径干扰。
在数字信号处理技术的应用中,同步识别技术是提高通信系统可靠性和效率的重要手段之一。
同步识别技术主要用于将接收到的信号和参考信号进行对齐和同步,避免因为时钟偏差和信息传输延迟而引起的信号误差。
同步识别技术在通信系统中的应用,主要涉及到载波恢复、时序恢复和帧同步等识别问题。
同步识别技术的应用,对于提高通信系统的速率、效率和稳定性,具有十分重要的作用。
在数字信号处理技术的应用中,信号解调是数字通信中的一项重要任务。
数字信号处理技术论文

数字信号处理技术论文数字信号处理技术是将模拟信息(如声音、视频和图片)转换为数字信息的技术。
下面是店铺整理的数字信号处理技术论文,希望你能从中得到感悟!数字信号处理技术论文篇一语音数字信号处理技术【摘要】数字信号处理技术是将模拟信息(如声音、视频和图片)转换为数字信息的技术。
DSP通常指的是执行这些功能的芯片或处理器。
它们可能也用于处理此信息然后将它作为模拟信息输出。
本文利用这些方法结合起来,同时利用MATLAB工具对语音信号进行了分析,解决实际工程技术问题的能力。
【关键词】数字信号处理;音频信号;信号分析;滤波处理中图分类号:TN911.72 文献标志码:A 文章编号:1673-8500(2013)12-0034-01处在一个高速发展,日新月异的社会中,科学技术无疑扮演着重要的角色。
众所周知,语音信号的处理分析已变得非常流行,基于语音处理分析技术的产品也开始流入市场,充满人们的生活。
一、语音信号分析对语音信号分析可以从时域分析和频谱分析两个方面来进行。
语音的时域分析包括:短时能量、短时过零率、语音端点检测以及时域方法求基音等。
语音的时域分析还包括语谱图、共振峰等。
短时能量分析作为语音信号时域中最基本的方法,应用相当广泛,特别是在语音信号端点检测方面。
由于在语音信号端点检测方面这两种方法通常是独立使用的,在端点检测的时候很容易漏掉的重要信息,短时能量是对语音信号强度的度量参数。
对语音信号进行fourier变换后,我们可以得到对应信号的频谱进而画出其频谱图,于是我们就可以很方便地在频域上对语音信号进行分析,对语音信号进行反fourier变换后,我们又可以得到相应的语音信号,于是通过对频谱的改变,在进行反fourier变换,我们就能知道频域对时域的影响。
二、语音信号的频谱分析当我们知道人的声音频谱范围大致在[300,3500]左右后,我们就能马上说明为何电话可以对语音信号采用8KHz的采样速率了。
由乃奎斯特采样定理我们知道采样频率,即只需使采样频率大于7KHz 即可,所以电话对语音信号的采样频率采用8KHz是完全合理的。
现代信号处理

时频分析摘要:随着信息传递速度的提高,信号处理技术要求也在不断提高。
从信号频域可以观测信号特点,但是对于自然中的非平稳信号,仅仅频域观测不能反映信号频率在时间轴上的变化,由此提出了时频分析技术,可以产生时间与频率的联合函数,方便观测信号频率在时间轴上的变化。
在现有的时频分析技术中较为常见的算法有短时傅里叶变换、WVD、线性调频小波等。
本文介绍了以上几种常见的算法和时频分析的相关应用。
关键词:信号处理非平稳信号时频分析一.整体概况在传统的信号处理领域,基于 Fourier 变换的信号频域表示及其能量的频域分布揭示了信号在频域的特征,它们在传统的信号分析与处理的发展史上发挥了极其重要的作用。
但是,Fourier 变换是一种整体变换,即对信号的表征要么完全在时域,要么完全在频域,作为频域表示的功率谱并不能告诉我们其中某种频率分量出现在什么时候及其变化情况。
然而,在许多实际应用场合,信号是非平稳的,其统计量(如相关函数、功率谱等)是时变函数。
这时,只了解信号在时域或频域的全局特性是远远不够的,最希望得到的乃是信号频谱随时间变化的情况。
为此,需要使用时间和频率的联合函数来表示信号,这种表示简称为信号的时频表示。
时频分析的主要研究对象是非平稳信号或时变信号,主要的任务是描述信号的频谱含量是怎样随时间变化的。
时频分析是当今信号处理领域的一个主要研究热点,它的研究始于20世纪40年代,为了得到信号的时变频谱特性,许多学者提出了各种形式的时频分布函数,从短时傅立叶变换到 Cohen 类,各类分布多达几十种。
如今时频分析已经得到了许多有价值的成果,这些成果已在工程、物理、天文学、化学、地球物理学、生物学、医学和数学等领域得到了广泛应用。
时频分析在信号处理领域显示出了巨大的潜力,吸引着越来越多的人去研究并利用它。
1.1基本思想时频分布让我们能够同时观察一个讯号在时域和频域上的相关资讯,而时频分析就是在分析时频分布。
传统上,我们常用傅里叶变换来观察一个讯号的频谱。
现代信号处理的方法及应用

现代信号处理的方法及应用信号处理是一种广泛应用于各种领域的技术,包括通信、图像处理、音频处理,控制系统等等。
信号处理主要目的是从原始数据流中提取有用的信息并对其进行分析与处理。
随着现代计算机技术和数学统计学等科学技术的不断发展,信号处理的方法也在不断更新和升级,这篇文章将对现代信号处理的方法和应用做一个简单的介绍。
1. 数字信号处理数字信号处理是信号处理的一种重要形式,主要是基于数字信号处理器(DSP)和嵌入式系统等硬件设施来实现。
数字信号处理算法主要应用于图像和音频处理以及通信系统等领域。
数字信号处理的优点在于其对数据的准确性,稳定性和可靠性上,数字信号处理器也因此成为了许多领域的首选,如音频处理中的音频去噪。
2. 频域分析频域分析是信号处理中一种常用的分析方法,适用于需要研究信号频率特性的场合。
频域分析最常用的工具是傅里叶变换(FT),用于将信号从时域转化为频域。
傅里叶变换将信号分解为不同频率的正弦波分量,这样就能对不同频率范围内的信号进行分析和处理。
频域分析在音频,图像,视频,雷达等领域广泛应用。
3. 视频处理视频处理是信号处理的重要领域之一,几乎应用于所有与视频相关的技术,包括视频编解码,视频播放,图像增强以及移动目标检测等。
视频处理的任务是对视频内容进行解析和分析,提取其重要特征,比如目标检测,物体跟踪以及运动检测。
其中,深度学习技术的应用非常广泛。
4. 无线通信无线通信是使用无线电波传输信号的无线电技术,目前已被广泛应用于通信系统、卫星通信、电视广播、GPS定位等领域。
在无线通信中,信号处理扮演着重要的角色,主要用于调制解调,信号检测以及通信信号处理等。
5. 模拟信号处理模拟信号处理是信号处理中的另一种重要形式,通常应用于音频处理、传感器测量等领域。
模拟信号处理的操作与数字信号处理类似,不同的是其输入信号是连续模拟信号,输出也是模拟信号。
模拟信号处理可以执行滤波,信号调整、信号检测等,是信号处理中必不可少的一部分。
现代信号处理 总结1

第1章 离散时间信号与系统1、 傅里叶分析和Z 变换的区别、缺陷、特点关系:点数为N 的有限长序列x(n)的Z 变换为X(z),而其离散傅里叶变换为X(k),两者均表示了同一有限长序列x(n)的变换,它们之间的关系是:对z 变换在单位圆上取样可得DFT 。
而DFT 的内插就是变换。
傅里叶变换优缺点(1) 傅里叶变换缺乏时间和频率的定位功能 (2) 傅里叶变换对于非平稳信号的局限性(3) 傅里叶变换在时间和频率分辨率上的局限性傅立叶变换是最基本得变换,由傅里叶级数推导出。
傅立叶级数只适用于周期信号,把非周期信号看成周期T 趋于无穷的周期信号,就推导出傅里叶变换,能很好的处理非周期信号的频谱。
但是傅立叶变换的弱点是必须原信号必须绝对可积,因此适用范围不广。
Z 变换的本质是离散时间傅里叶变换(DTFT ),如果说拉普拉斯变换专门分析模拟信号,那Z 变换就是专门分析数字信号,Z 变换可以把离散卷积变成多项式乘法,对离散数字系统能发挥很好的作用。
Z 变换看系统频率响应,就是令Z 在复频域的单位圆上跑一圈,即Z=e^(j2πf),即可得到频率响应。
2、系统的记忆性、因果性、可逆性(1)记忆性如果系统在任意时刻n0的响应仅与该时刻的输入f(n0)有关,而与其它时刻的输入无关,则称该系统为非记忆系统(或系统无记忆性),否则称为记忆系统。
系统的记忆性有时也被称为动态特性。
该特性强调系统的响应是否仅与当前时刻的输入有关。
对于无记忆LTI 系统,其系统冲激响应为,其中()()h n K n δ=,K 为一常数。
由于系统频率响应是冲激响应的傅氏变换、系统函数为系统冲激响应的z 变换,因此,无记忆LTI 系统的系统频率响应和系统函数分别为H(ω)=K ,H(z)=K 。
(2) 因果性如果系统任意时刻的响应与以后的输入无关,则该系统称为因果系统(或系统具有因果性),否则为非因果系统。
该特性强调的是,系统的响应是否与未来的输入有关。
数字信号处理结课论文
基于MATLAB的数字滤波器设计摘要数字滤波器的实现是数字信号处理中的重要组成部分,设计过程较为复杂,牵涉到模型逼近、指标选择、计算机仿真、性能分析及可行性分析等一系列的工作,本文从设计原理以及数学软件matlab出发阐述数字滤波器的设计原理与方法。
关键词:MATLAB,数字信号处理,数字滤波器1绪论数字滤波器是数字信号处理的重要应用,21世纪数字滤波器及其相关技术广泛的应用于通信、电子、自动控制等领域,是一种有效的抑制噪音、提取有用信号的方法。
它本身可以用硬件实现,也可以通过软件来实现,还可以通过专用的DSP处理器配合相应的软件,即软硬结合的方式来实现。
数字滤波器可以分为有限冲击响应(FIR)和无限冲激响应(IIR)两种。
通过MATLAB程序,实现输入相应技术指标及滤波器模型,输出相应数字滤波器的参数的功能。
2 无限长单位脉冲响应滤波器(IIR)的设计根据模拟滤波器设计数字滤波器,就是通过已知的模拟滤波器系统的系统函数H(s)来设计数字滤波器的系统函数H(z),主要是通过脉冲响应不变法,或双线性变换法完成S平面到Z平面的转换。
通过典型的模拟滤波器(诸如:巴特沃斯滤波器、切比雪夫滤波器等)可以实现一定参数要求的数字滤波器。
根据已有的数字滤波器设计不同参数或者不同频带通断类型的数字滤波器。
例如已知数字低通滤波器的模型,通过变量代换得到不同截止频率的数字低通滤波器,或通过已知低通滤波器的模型设计高通、高阻、带通、带阻滤波器,这里主要是通过来完成相应的变量代换来实现滤波器类型的变换和参数的变换。
3 有限长单位脉冲响应滤波器(FIR)的设计IIR滤波器可用于较少的阶数达到所要求的幅度特性,且实现时所需的运算次数及存储单元都很少,十分适合于对于相位特性没有严格要求的场合,如果对相位特性有要求,这时选用FIR滤波器较好。
3.1 窗函数法从时域出发,把理想的窗口函数h d(n)截取成有限长的,以此h(n)来逼近理想的窗口函数h d(n),从而频率响应H(jw)也近似于理想的频率响应H d(jw)。
[现代信号处理(第二版)].张贤达.扫描版(2)
信号的频谱分析式研究信号特性的重要手段之一,对于确定信号,可以用Fourier变换来考察信号的频谱特性,而对于广义平稳随机信号而言,相应的方法是求其功率谱。
功率谱反映了随机信号功率能量的分布特征,可以揭示信号中隐含的周期性以及靠的很近的谱峰等有用信息,有很广泛的应用。
在雷达信号处理中,回波信号的功率提供了运动目标的位置、强度和速度等信息(即功率谱的峰值与宽度、高度、和位置的关系);在无源声纳信号处理中,功率谱密度的位置给出了鱼雷的方向(方位角)信息;在生物医学工程中,功率谱的峰和波形,表示了一些特殊疾病的发作周期;在语音处理中,谱分析用来探测语音语调共振;在电子战中,还利用功率谱来对目标进行分类。
功率谱密度函数反映了随机信号各频率成份的功率分布情况,是随机信号处理中应用很广泛的技术。
实际应用中的平稳信号通常是有限长的,因此,只能从有限的信号中去估计信号的真实功率谱,这就是功率谱估计问题。
寻找可靠与质量优良的估计谱是这次研究的主要内容。
功率谱估计可分为非参数化方法(低分辨率分析),参数化方法(高分辨率分析),广义的功率谱分析(空间谱分析),也可以把非参数化方法称为经典谱估计,参数化方法称为现代谱估计(包括空间谱估计)这次论文从不同角度介绍了现代谱估计的一些主要算法,包括参数模型法、Pisarenko 谐波分解法、最大熵估计、多重信号分类(MUSIC)、旋转不变技术(ESPRIT)等。
参数模型法将以ARMA模型为主,以及其谱估计所需的AR、MA的参数和阶数;最大熵估计也就是Burg最大熵谱估计,它在不同约束条件下,分别与AR谱估计、ARMA谱估计等价;MUSIC 方法是一种估计信号空间参数的现代谱估计方法;ESPRIT方法是一种估计信号空间参数的旋转不变技术,其基本思想是将谐波频率的估计转变为矩阵束的广义特征值分解。
最后,这次论文还会分析它们各自的优缺点及应用场合。
并利用计算机语言对各种现代谱估计算法的进行仿真实现,并比较它们的性能。
机械故障诊断中的现代信号处理方法
机械故障诊断中的现代信号处理方法
现代信号处理方法在机械故障诊断中有着广泛的应用。
以下是几种常见的现代信号处理方法:
1. 傅里叶变换(Fourier Transform): 傅里叶变换将时域信号转换为频域信号,可以分析信号的频率成分和能量分布。
在机械故障诊断中,傅里叶变换可以用来检测故障产生的谐波或频率成分的变化。
2. 小波变换(Wavelet Transform): 小波变换可以在时间和频率上同时进行分析,可以更好地捕捉瞬态故障或频率变化的特征。
小波变换在机械故障诊断中常用于检测冲击、噪声和频率模态等问题。
3. 自适应滤波(Adaptive Filtering): 自适应滤波是一种可以自动调整滤波器参数的方法,可以根据信号的特点动态调整滤波器的频率响应。
自适应滤波在机械故障诊断中可以用于降噪和提取故障特征。
4. 统计特征提取(Statistical Feature Extraction): 统计特征提取是通过对信号进行统计分析来提取信号特征的方法。
常见的统计特征包括均值、方差、峰值、峭度等。
统计特征提取可以用来检测信号的变化和异常。
5. 机器学习(Machine Learning): 机器学习是一种可以让计算机自动学习和适应数据模式的方法。
在机械故障诊断中,机器学习可以用来训练模型,识别和分类不同的故障模式。
常见的
机器学习算法包括支持向量机(SVM)、随机森林(Random Forest)和深度学习(Deep Learning)等。
这些现代信号处理方法可以结合使用,以提取和分析机械故障信号中的相关特征,提高故障诊断的准确性和效率。
现代数字信号处理学习报告(一)
现代数字信号处理学习报告(一)第一部分 维纳滤波1.1 最优滤波和最有准则1.1.1最优滤波信号处理的目的是从噪声中提取信号,得到不受干扰影响的真正信号。
采用的处理系统称为滤波器。
为了从x(n)中提取或恢复原始信号s(n),需要设计一种滤波器,对x(n)进行滤波,使它的输出y(n)尽可能逼近s(n),成为s(n)的最佳估计,即ˆy(n)s(n)。
这种滤波器称为最佳滤波器。
1.1.2最优准则最大输出信噪比准则->匹配滤波器最小均方误差准则 误差绝对值的期望值最小误差绝对值的三次或高次幂的期望值最小1.2 维纳滤波维纳滤波(wiener filtering) 是一种基于最小均方误差准则、对平稳过程的最优估计器。
这种滤波器的输出与期望输出之间的均方误差为最小,因此,它是一个最佳滤波系统。
它可用于提取被平稳噪声所污染的信号。
2min[|()|]E e n min [|()|]E e n min[|()|]kE e n1.3 维纳滤波的标准方程维纳滤波器是一个线性非移变系统,设其冲激响应为h(m),输入为()()()x n s n n υ=+,则有0ˆ()()()()m y n sn h m x n m ∞===-∑。
式中,冲激响应h(m)按最小均方误差准则确定,其中, e(n)表示真值与估计值之间的误差,则ˆ()()()e n s n sn =-。
为了达到最小均方误差准则的目标,即求得使()2ˆE s s ⎡⎤-⎣⎦最小的i h ,令()2ˆE s s ⎡⎤-⎣⎦对i h 的导数为零,即 {}[]2(n)(n)2(n)2(n)(n )0()()E e e E e E e x i h i h i ∂⎡⎤∂==--=⎢⎥∂∂⎣⎦由此得到,[](n)(n )0,E e x i i -=∀。
此式说明,若使滤波器的均方误差达到,则误差信号与输入信号正交,这就是通常所说的正交性原理。
正交性原理的重要意义:提供了一个数学方法,用以判断线性滤波系统是否工作于最佳状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AR 模型的功率谱估计BURG 算法的分析与仿真钱平(信号与信息处理 S101904010)一.引言现代谱估计法主要以随机过程的参数模型为基础,也可以称其为参数模型方法或简称模型方法。
现代谱估计技术的研究和应用主要起始于20世纪60年代,在分辨率的可靠性和滤波性能方面有较大进步。
目前,现代谱估计研究侧重于一维谱分析,其他如多维谱估计、多通道谱估计、高阶谱估计等的研究正在兴起,特别是双谱和三谱估计的研究受到重视,人们希望这些新方法能在提取信息、估计相位和描述非线性等方面获得更多的应用。
现代谱估计从方法上大致可分为参数模型谱估计和非参数模型谱估计两种。
基于参数建摸的功率谱估计是现代功率谱估计的重要内容,其目的就是为了改善功率谱估计的频率分辨率,它主要包括AR 模型、MA 模型、ARMA 模型,其中基于AR 模型的功率谱估计是现代功率谱估计中最常用的一种方法,这是因为AR 模型参数的精确估计可以通过解一组线性方程求得,而对于MA 和ARMA 模型功率谱估计来说,其参数的精确估计需要解一组高阶的非线性方程。
在利用AR 模型进行功率谱估计时,必须计算出AR 模型的参数和激励白噪声序列的方差。
这些参数的提取算法主要包括自相关法、Burg 算法、协方差法、 改进的协方差法,以及最大似然估计法。
本章主要针对采用AR 模型的两种方法:Levinson-Durbin 递推算法、Burg 递推算法。
实际中,数字信号的功率谱只能用所得的有限次记录的有限长数据来予以估计,这就产生了功率谱估计这一研究领域。
功率谱的估计大致可分为经典功率谱估计和现代功率谱估计,针对经典谱估计的分辨率低和方差性能不好等问题提出了现代谱估计,AR 模型谱估计就是现代谱估计常用的方法之一。
信号的频谱分析是研究信号特性的重要手段之一,通常是求其功率谱来进行频谱分析。
功率谱反映了随机信号各频率成份功率能量的分布情况,可以揭示信号中隐含的周期性及靠得很近的谱峰等有用信息,在许多领域都发挥了重要作用。
然而,实际应用中的平稳随机信号通常是有限长的,只能根据有限长信号估计原信号的真实功率谱,这就是功率谱估计。
二.AR 模型的构建假定u(n)、x(n)都是实平稳的随机信号,u(n)为白噪声,方差为,现在,我们希望建立AR 模型的参数和x(n)的自相关函数的关系,也即AR 模型的正则方程(normal equation)。
由)}()]()({[)}()({)(1n x m n u k m n x E m n x n x E m pk k xa r++-+-=+=∑=)()()(1m k m m r r a rxu x pk k x+--=∑= (1)由于u(n)是方差为的白噪声,有⎩⎨⎧=≠=-000)}()({2m m m n x n u E σ(2)由Z 变换的定义,,当时,有h(0)=1。
综合(1)及(2)两式,⎪⎪⎩⎪⎪⎨⎧=-≥--=∑∑==0)(1)()(121m k m k m m pk x k pk x k x r a r a r σ (3) 在上面的推导中,应用了自相关函数的偶对称性。
上式可写成矩阵式:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----0001)0()2()1()()2()0()1()2()1()1()0()1()()2()1()0(221x x x x x x x x x x x x x x x x M M M ΛO M M M ΛΛΛσa a a r r r r r r r r r r r r r r r r p p p p p p p (4) (4)上述两式即是AR 模型的正则方程,又称Yule-Walker 方程。
系数矩阵不但是对称的,而且沿着和主对角线平行的任一条对角线上的元素都相等,这样的矩阵称为Toeplitz 矩阵。
若x(n )是复过程,那么,系数矩阵是Hermitian 对称的Toeplitz 矩阵。
(4)式可简单地表示为式中,为全零列向量,R 是的自相关矩阵。
可以看出,一个p 阶的AR 模型共有p+1个参数,即,只要知道x(n)的前p+1个自相关函数,由(1),(2)及(3)式的线性方程组即可求出这p+1个参数,即可求出x(n)的功率谱。
三.AR 模型阶数的选择AR 模型的阶次p 一般事先是不知道的,需要事先选定一个稍大的值,在递推的过程中确定。
在使用Levinson 递推时,可以给出由低阶到高阶的每一组参数,且模型的最小预测误差功率是递减的。
直观上讲,当达到所指定的希望值,或是不再发生变化时,其时的阶次即是应选的正确阶次。
因为是单调下降的,因此,的值降到多少才合适,往往不好选择。
为此,有几个不同的准则被提出,其中较常用的两个是:最终预测误差准则: (1) 信息论准则:式中N 为数据的长度,当阶次k 由1增加时,FPE(k)和AIC(k)都将在某一个k 处取得极小值。
将此时的k 定为最合适的阶次p 。
在实际运用时发现,当数据较短时,它们给出的阶次偏低,且二者给出的结果基本上是一致的。
应该指出,上面两式仅为阶次的选择提供了一个依据,对所研究的某一个具体信号x(n),究竟阶次取多少为最好,还要在实践中所得到的结果作多次比较后,予以确定。
四.Burg 算法的理论分析Burg 算法是较早提出的建立在数据基础上的AR 系数求解的有效算法[7]。
其特点是: (1) 令前后向预测误差功率 (2) (5)为最小。
(2)和的求和范围从p 至N-1,即,前后都不加窗,这时(6)在上式中,阶次m 由1至p 时,(7)下式的递推关系,即(8)(9)(10)式中。
这样,(5)式的仅是反射系数的函数。
在阶次m时,令相对为最小,即可估计出反射系数。
将(6)、(7)及(8)式代入(5)式,令=∂∂mfb kρ,可得使为最小的为式中。
按此式估计出的满足。
按上式估计出后,在阶次m时的AR模型系数仍然由Levinson算法递推求出(11)(12)式中。
上面三式是假定在第(m-1)阶时的AR参数已求出。
Burg算法的递推步骤是:(1)由初始条件,再由(11)式求出;(2)由得m=1时的参数:;(3)由求出,再估计;(4)依照(11)、(12)式的Levinson递推关系,求出m=2时的及。
(5)重复上述过程,直到m=p,求出了所有阶次时的AR参数。
上述递推过程是建立在数据基础上的,避开了先估计自相关函数的这一步。
若定义:可以证明可以由和递推计算:这样,可以有效地提高计算速度。
五.Burg算法的MATLAB仿真%Burg算法%生成信号xnf1=30;f2=60;f=[f1;f2];A=[1 2];Fs=200; % 取样频率n=0:1/Fs:1;x=A*sin(2*pi*f*n);%生成噪声n和被污染的信号xnrandn('state',0);n=0.1*randn(size(n));xn=x+n;% 设置参数order=10;nfft=512;% Burg算法[Pxx1,f]=pburg(xn,order,nfft,Fs);Pxx1=10*log10(Pxx1);subplot(1,1,1),plot(f,Pxx1);xlabel(‘频率(Hz)’);ylabel(‘功率谱密度(dB/Hz)’);title(‘Burg算法(阶数=15)’);grid on;图1 阶数为10,噪声为0.1时的Burg算法得到的仿真结果图2 阶数为10,噪声为1时的Burg算法得到的仿真结果图3 阶数为15,噪声为0.1时的Burg算法得到的仿真结果仿真结果:Burg算法得到的谱线分辨率很高,谱的波动性不大,能清晰的分辨出两个频率值,且没有出现假峰。
从图中可以看出在两个阶数不同的情况下都能很好的分辨出两个频率的峰值,说明增加阶数并没有增大频率分辨率,而增加的阶数反而使计算量加大。
相比较Levinson-Durbin算法而言,Burg 算法因为没有使用自相关估计法,结果与真实值更加接近,而且可以进行外推,所以Burg算法要比Levinson-Durbin算法要好。
当噪声方差加大为原来的10倍时,还能比较清楚的分辨出两个频率值如图2所示,说明Burg算法的抗干扰能力比较好。
六.总结参数建模谱估计方法是现代谱估计的重要内容,AR 模型谱估计隐含着数据和自相关函数的外推,其长度可能超过给定的长度,分辨率不受信源信号长度的限制,所以现代谱估计研究主要是用基于AR 模型的方法估计功率谱,这是经典谱估计无法做到的。
通过实践,AR模型的Burg法也存在问题:(1)计算量大;(2)信号起始相位变动可导致谱线偏移和分裂;(3)低信噪比可导致谱分辨率下降、谱线偏移、甚至丢失;(4)阶数的确定还没有找到确切有效准则。
这些是AR模型估计的不足之处。
功率谱估计是信息学科中的研究热点。
现代谱估计主要是针对经典谱估计(周期图和自相关法)的分辨率低和方差性能不好的问题而提出的。
其内容极其丰富,涉及的学科和领域也相当广泛,按是否有参数大致可分为参数模型估计和非参数模型估计,前者有AR模型、MA模型、ARMA模型、PRONY指数模型等;后者有最小方差方法、多分量的MUSIC方法等。
从信号的特征来分,在这之前所说的方法都是对平稳随机信号而言,其谱分量不随时间变化。
对非平稳随机信号,其谱是时变的,近十五年,以Wigner 分布为代表的时频分析引起了人们广泛的兴趣,形成了现代谱估计的一个新的研究领域。