粉末活性炭在净水处理中的应用的简介
活性炭使用方法

活性炭使用方法活性炭,又称活性炭或活性炭,是一种具有很强吸附能力的碳质材料。
它广泛应用于水处理、空气净化、食品加工、药物制备等领域。
下面我们来介绍一下活性炭的使用方法。
首先,活性炭在水处理中的应用。
活性炭可以有效去除水中的异味、色素、有机物、重金属离子等有害物质。
在家庭中,我们可以将活性炭放入水壶或水杯中,用来过滤自来水中的余氯和异味。
此外,活性炭也可以用于水族箱的水质净化,去除水中的有机废物和异味,保持鱼儿的健康生长。
其次,活性炭在空气净化中的应用。
活性炭可以吸附空气中的有害气体和异味,保持室内空气清新。
我们可以将活性炭放置在衣柜、鞋柜、冰箱等密闭空间中,去除异味和潮湿,保持空气清新。
此外,活性炭也可以用于车内空气净化,吸附汽车内部的异味和有害气体,提高驾驶舒适度。
再次,活性炭在食品加工中的应用。
活性炭可以用于食品脱色和脱臭,提高食品的质量和口感。
在食品加工中,我们可以将活性炭加入食品原料中,去除色素和异味,使食品更加纯净和美观。
此外,活性炭还可以用于酿酒、饮料等食品的脱色和脱臭过程,提高产品的市场竞争力。
最后,活性炭在药物制备中的应用。
活性炭可以用于药物的脱色、脱臭和纯化过程,提高药物的质量和纯度。
在药物制备中,我们可以将活性炭加入药物原料中,去除色素和异味,使药物更加纯净和有效。
此外,活性炭还可以用于中药制备中的脱色和脱臭过程,提高中药的疗效和市场认可度。
总之,活性炭具有广泛的应用领域和重要的作用。
在使用活性炭时,我们需要根据具体的需求和场景,选择合适的活性炭类型和使用方法,以达到最佳的效果。
希望本文对您了解活性炭的使用方法有所帮助。
活性炭的分类、原理以及在净水器中的作用

活性炭是由椰壳、果壳等为原料,经过炭化(焖烧炉)、活化(在斯列普活化炉中800℃高温水蒸汽活化)、破碎、筛选、风选、水洗、烘干等工序制得,活性炭是净水器中最主要、使用最多的吸附材料(其他吸附材料还有:中性大孔树脂、大孔阴树脂、分子筛、硅藻土等)。
早在二十世纪三十年代,人们就用活性炭从焦化厂的废水中吸附苯酚,因此,活性炭在水处理中的应用已有近八十年的历史。
有记载1862年英国采用活性炭净化饮用水。
我国现代最早的净水器(上海仙童净水科技有限公司,1986年)也是以活性炭为净水材料的。
可以说,从净水器诞生以来,活性炭一直与净水器“形影不离”,难分难解。
一、活性炭的分类1、根据制活性炭原料的不同,活性炭可分为:(1)木质炭:又可分为木炭(由木屑为原料制成)、竹炭(由竹为原料制成)、果壳炭(由核桃壳或杏核为原料制成)、椰壳炭(由椰子壳为原料制成),净水器中常用的是椰壳炭或果壳炭。
(2)煤质炭(由无烟煤制成,以宁夏产的质量较好)(3)骨炭(由动物骨头制成)。
(4)载银活性炭:一般以果壳活性炭为原料,以特殊工艺使之载银,含银量常为0.1~0.3%,它在水中会缓慢释放出银离子(Ag+),而银离子有杀菌作用,因此载银活性炭除了普通活性炭的吸附功能外,还具有抑制细菌繁殖的功能。
净水器一定要用优质的载银活性炭,否则开始时出水中银离子会超标,而使用不长时间就不再有银溶出了。
笔者曾经就如何生产载银活性炭问过某活性炭生产厂厂长,他说把活性炭洗净,浸泡在硝酸银溶液中,捞出后滤干,再泡入盐酸或盐水中,捞出后滤干、洗净、烘干。
我听完后就告诉他说,你这是载的氯化银,氯化银在水中溶解度较大,就会出现前述情况,开始时出水中银离子超标,饮用此水对人体有害;使用不长时间,氯化银全溶解完了,就不再有银离子溶出了,也不再有抑菌作用了。
所以这样的载银活性炭肯定不行,建议慎用。
2、根据活性炭形态的不同,家用净水器中常用的活性炭可分为:(1)粉末活性炭(PAC)。
活性炭吸附在工业废水处理中的应用

活性炭吸附在工业废水处理中的应用1. 引言1.1 概述活性炭是一种常见的吸附剂,广泛应用于工业废水处理中。
活性炭通常具有高比表面积和丰富的微孔结构,这使得它具有良好的吸附能力和去除能力。
在工业废水处理中,活性炭可以有效去除污染物、有机物和重金属等杂质,提高废水的处理效率和水质。
随着工业化进程的加快,工业废水排放量不断增加,其中含有大量的有害物质。
传统的废水处理方法往往无法完全去除这些有害物质,而活性炭吸附技术则被广泛应用于工业废水处理中。
活性炭的吸附机理复杂且高效,能够有效去除废水中的有机物、颜色、气味等污染物,提高废水的处理效率和水质,从而减少对环境的污染。
本文将重点探讨活性炭在工业废水处理中的应用及其吸附机理,分析活性炭在不同工业废水中的应用案例,同时总结活性炭的优缺点,为活性炭在工业废水处理中的进一步应用提供参考。
活性炭在工业废水处理中具有广阔的应用前景,将有助于改善工业废水处理效率,减少对环境的影响。
1.2 研究背景在过去的研究中,许多学者对活性炭在工业废水处理中的应用进行了深入研究,并取得了显著的成果。
活性炭在工业废水处理中的应用仍然存在一些问题和挑战,如活性炭的再生利用、性能稳定性等方面的研究还不够充分。
对活性炭在工业废水处理中的应用进行进一步的研究和探讨,对于提高废水处理效率、减少资源浪费具有重要意义。
【研究背景】2. 正文2.1 活性炭的特性活性炭是一种多孔材料,具有较高的比表面积和孔隙度,这使得活性炭具有很强的吸附能力。
其孔隙结构可分为微孔、介孔和大孔,这种多孔结构有利于吸附废水中的有机物、重金属和色素等污染物。
活性炭具有稳定性高、表面化学活性高、易再生等优点,使其成为工业废水处理中的重要吸附材料。
活性炭还具有良好的物化性质,如耐酸碱性、耐高温性、抗压抗磨等特点,这些特性使活性炭在工业废水处理中具有较强的适用性和处理效果。
活性炭还可以通过改变其表面性质、孔结构和成型方式等方法进行调控,以适应不同工业废水中的污染物种类和浓度,从而提高活性炭的吸附效率和循环利用率。
常用吸附材料在水处理中的应用

常用吸附材料在水处理中的应用一、引言水是人类生活中必不可少的资源,而水的污染问题也日益严重。
为了保护水资源的可持续利用和保障人类的健康,水处理技术变得越来越重要。
吸附是一种常用的水处理方法,常用吸附材料在水处理中发挥着重要的作用。
本文将介绍几种常用吸附材料及其在水处理中的应用。
二、活性炭活性炭是一种广泛应用于水处理领域的吸附材料。
活性炭具有高度的孔隙结构,能够有效吸附水中的有机物、重金属离子和氯等污染物。
活性炭广泛应用于水处理中的饮用水净化、废水处理和污水处理等领域。
例如,活性炭可以用于去除水中的异味和色素,净化水质;同时,活性炭还可以去除水中的有机污染物和重金属离子,提高水的安全性和质量。
三、分子筛分子筛是一种常用的吸附材料,具有特殊的孔隙结构和选择性吸附性能。
分子筛可以吸附水中的氨氮、硝酸盐和磷酸盐等污染物。
分子筛广泛应用于饮用水处理、工业废水处理和水体修复等领域。
例如,分子筛可以用于去除水中的氨氮,减少水体中的氮污染;同时,分子筛还可以去除水中的磷酸盐,防止水体富营养化。
四、活性氧化铝活性氧化铝是一种具有高度活性表面的吸附材料,可以有效吸附水中的重金属离子和有机污染物。
活性氧化铝广泛应用于工业废水处理和饮用水净化等领域。
例如,活性氧化铝可以用于去除水中的铅、镉等重金属离子,净化水质;同时,活性氧化铝还可以去除水中的有机污染物,提高水的安全性和质量。
五、离子交换树脂离子交换树脂是一种能够吸附和释放离子的吸附材料,可以用于去除水中的离子污染物。
离子交换树脂广泛应用于饮用水处理、工业废水处理和废水回用等领域。
例如,离子交换树脂可以用于去除水中的硝酸盐、铵盐和钠盐等离子,净化水质;同时,离子交换树脂还可以用于水的软化和脱盐等处理过程。
六、纳米材料纳米材料是一种具有特殊结构和性质的吸附材料,具有较大的比表面积和高度的吸附能力。
纳米材料广泛应用于水处理中的污染物去除和水体修复等领域。
例如,纳米材料可以用于去除水中的重金属离子和有机污染物,提高水的净化效果;同时,纳米材料还可以用于水体修复,恢复水体的生态平衡。
活性炭吸附法在工业废水处理中的应用

案例二:农药废水的处理
总结词
活性炭吸附法在农药废水处理中能够高 效去除有毒物质,提高水质。
VS
详细描述
农药废水含有大量有机磷、有机氯等有毒 物质,这些物质对环境和人类健康有害。 使用活性炭吸附法可以有效去除这些有毒 物质,提高水质。同时,活性炭吸附法具 有操作简单、适应性强等优点,对于不同 浓度的农药废水都可以取得较好的处理效 果。
• 总结词:活性炭吸附法在医院废水与放射性废水处理中具有较好的处理 效果和安全性。
• 详细描述:医院废水中含有大量的细菌、病毒和放射性物质,对环境和 人类健康有害。使用活性炭吸附法可以有效去除这些污染物,同时活性 炭本身具有较好的化学稳定性和耐腐蚀性,不会产生二次污染,保证了 处理过程的安全性和可靠性。放射性废水中含有放射性物质,对人类健 康和环境都有较大危害。使用活性炭吸附法可以有效地去除这些放射性 物质,提高水质,同时活性炭本身具有较好的化学稳定性和耐腐蚀性, 不会产生二次污染,保证了处理过程的安全性和可靠性。
06
研究展望与未来发展趋势
提高活性炭的吸附性能与耐久性
活性炭的孔结构和比表面积
通过优化活性炭的孔结构和比表面积,提高其吸附性能和 耐久性,从而延长活性炭的使用寿命,降低处理成本。
活性炭的改性研究
通过物理或化学方法对活性炭进行改性,提高其吸附性能 和耐久性,以满足不同种类工业废水的处理需求。
活性炭再生技术研究
活性炭吸附法的定义
• 活性炭吸附法是一种常用的水处理技术,主要是利用活性炭的 吸附性能,将污染物从废水中分离出来。活性炭是一种具有高 比表面积、高孔容、高吸附性能的炭质吸附剂,能够有效地吸 附多种有机和无机污染物,包括重金属离子、有机染料、色度 、消毒副产物等。
活性炭的作用

活性炭的作用活性炭是一种具有高效吸附能力和广泛应用领域的材料。
它由高碳含量的原料,如木材、煤炭、果壳等通过特殊加工制成,具有多孔性结构和巨大的比表面积。
活性炭的主要作用包括吸附、过滤和净化等方面。
首先,活性炭的主要作用之一是吸附。
由于活性炭具有高度发达的孔隙结构和大量的微孔、介孔和超孔,能够吸附和储存大量的气体、液体和溶质分子。
活性炭可以吸附有机物质、颗粒物、异味、有害物质和细菌等。
在水处理方面,活性炭可以吸附水中的重金属离子、有机污染物和残留的药物。
在空气净化方面,活性炭可以吸附空气中的有害气体,如甲醛、苯、二氧化硫等。
因此,活性炭在环境保护、食品工业、药品制造、煤气净化、水处理等领域具有广泛的应用。
其次,活性炭能够过滤杂质。
由于活性炭具有多孔性结构和高度发达的孔隙,可以作为过滤材料来去除水或空气中的杂质和悬浮物。
在水处理领域,活性炭通常与滤料一起使用,可以有效地去除水中的杂质、悬浮物和沉淀物,提高水的清洁度和透明度。
在空气净化方面,活性炭也可以作为过滤材料来去除空气中的颗粒物、尘埃和粉尘,提供洁净的空气环境。
最后,活性炭还可以用于净化和改善环境。
活性炭具有强大的吸附能力和解毒作用,可以有效地去除水和空气中的有害物质和污染物。
在环境保护方面,活性炭被广泛应用于废水处理、大气污染防治、垃圾处理等领域,可以有效地减少污染物的排放和环境污染。
此外,活性炭还可以用于改善土壤质量和促进植物生长。
通过将活性炭添加到土壤中,可以提高土壤的肥力、透气性和保水性,有利于植物根系的生长和养分吸收。
总之,活性炭具有吸附、过滤和净化等多种作用,广泛应用于环境保护、食品工业、药品制造和水处理等领域。
它通过吸附有机物质、颗粒物、异味、有害物质和细菌等来提供洁净的水和空气,改善环境质量,保护人类健康和生态环境。
因此,活性炭在现代社会中扮演着重要的角色,对于人类的生活和发展具有不可替代的作用。
粉末活性炭投加量对有机物去除的影响

粉状活性炭用量对有机物去除效率的影响
发布日期:2011-10-2 新闻来源:绿邦净水浏览次数:5601
粉状活性炭去除有机物作为一种提高出水水质和应对源水突发性污染的有效措施,粉末活性炭吸附技术在国内水厂中得到越来越多的应用。
粉末活性炭的投加方式及投加量一般根据水质污染状态特征,再根据原水水质和水厂处理工艺特点、水力条件综合考虑决定。
为满足卫生部生活饮用水卫生标准(GB5749-2006)要求,以有机物去除率大于50%为目标,选择适合姚江原水特性的木质活性炭炭SM和果壳活性炭炭sG品种,采用静态模拟搅拌试验方法选择活性炭投加量。
试验条件为投加25mg/L聚合氯化铝混凝剂,混凝剂投加后约10-20s投加粉末状活性炭。
随着粉末活性炭投加量的增加,有机物去除效果均呈增加的趋势。
木质粉末活性炭(SM)投加量为100mg/L时,通过UV4测定的有机物去除率也只能达到50%左右,对应的DOC去除率为40%左右;果壳粉末活性炭(SG)在投加量为100nag/L时,DOC的去除率基本达到50%左右,UV254下降了50%,略优于木质粉末活性炭。
粉末活性炭投加作为自来水水厂的一种改善水质的措施,其具有运行操作灵活,处理效果明显,投资及运行成本低廉等特点,特别适合于间歇性、突发性有机污染的源水处理的自来水水厂水质改善。
粉末活性炭投加装置是一套基于粉末活性炭悬浮吸附技术理论,独立的、完整的粉末活性炭应用装置。
我们根据中国粉碳品质不稳定的国情,使用干式投加技术,系统采用高速射流强制分散技术:依靠高速水流动能和剪切力,将具有自凝聚特征的粉末活性碳强制分散,增大其比表面积,提高活性炭的使用效率。
活性炭吸附在工业废水处理中的应用

活性炭吸附在工业废水处理中的应用
活性炭是一种具有高度微孔结构和大比表面积的碳材料,被广泛应用于工业废水处理中的吸附过程。
活性炭具有一定的亲水性和亲油性,能够吸附废水中的有机物质、重金属离子和有害物质,起到净化和去除污染物的作用。
1. 去除有机污染物:活性炭能够吸附废水中的有机物质,如苯、酚、酚醛树脂等。
有机物质通常具有较高的溶解性和稳定性,难以通过传统的治理方法去除。
而活性炭具有较强的吸附能力,能够快速将有机物质吸附到其表面,从而净化废水。
活性炭对有机物质的去除效果较好,被广泛应用于染料、制药、化工等行业的废水处理过程中。
2. 去除重金属离子:活性炭对重金属离子的吸附能力较强,能够有效去除废水中的铅、镉、汞等重金属离子。
重金属离子在废水中容易与有机物质结合形成难以降解的复合物,传统的物理、化学处理方法对重金属离子的去除效果有限。
而活性炭具有大比表面积和高度微孔结构,能够提供足够的吸附位点,将重金属离子吸附到其表面,达到去除的效果。
4. 去除微污染物:活性炭对微污染物的吸附能力较强,如有机磷农药、抗生素、兽药等有机物质。
这些微污染物通常存在于农业、畜禽养殖、制药等行业的废水中,对生态环境和人体健康具有潜在风险。
活性炭具有较好的吸附去除效果,能够将微污染物吸附到其表面,从而减少对环境的污染。
活性炭在工业废水处理中具有广泛的应用前景。
活性炭能够快速、有效地去除废水中的有机污染物、重金属离子、色度和味道等污染物,净化废水。
随着工业的发展和环保意识的提高,活性炭的应用将越来越广泛,为工业废水处理提供可靠的技术支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粉末活性炭在净水处理中的应用的简介随着净水深度处理工艺的推广和活性炭生物滤池的应用,虽然颗粒活性炭表现出良好的工艺性,但粉末活性炭吸附循环时间较短,投加方式较为简捷,费用较低,可根据水体污染情况随时更换碳种,仍是其突出的优点。对于固有工艺的水厂改善出水水质,对于突发污染事故的迅速处理,是颗粒活性炭无法取代的功能。所以,随着国内水体环境的不断恶化,水质要求的不断提升,在水处理设备行业应用粉末活性炭的范围将会不断扩大。逐渐从迫不得已的应急事故处理应用,转向为提高和改善水质的应用。粉末活性炭在水处理的应用会越来越广,将为防治污染,改善饮用水水质,做出重要的贡献。国外利用粉末活性炭去除水中有机物、除色、除嗅味物质己取得成功的经验与较好的去除效果。如上世纪20年代美国芝加哥,已成功利用粉末活性炭与慢砂过滤工艺相结合,防预了饮用水的氯酚污染;在东普鲁士早已利用粉末活性炭消除季节性的原水藻类异味等。认为虽然颗粒活性炭能保证良好的工艺性,但吸附循环的较短时间仍是粉末活性炭的优点。国内利用粉末活性炭去除污染物正处于研究之中,目前实际的应用仍然不多。粉末活性炭的投加量与水的浊度、臭味物质的浓度有关,投加量应根据水质的特点试验确定。研究的关键是如何根据自身企业的实际情况,致突变污染物的组成,不同水源水厂不同工艺配置的特点,进行大量的室内外试验,寻找相适应的投加工艺和投加碳的品种,以期建立相对经济、简单易行的投加粉末活性炭工艺。一、粉末活性炭的净水效能研究粉末活性炭吸附水中溶质分子是一个复杂的过程,纯净水生产线价格是几种力综合作用的结果,包括离子吸引力、范德华力、化学杂和力。根据吸附的双速率扩散理论认为,吸附是一个由迅速扩散和缓慢扩散两阶段构成的双速过程,迅速扩散在数小时内即完成,发挥了60%-80%活性炭的吸附容量。迅速扩散是溶质分子在碳粒内沿径向均匀分布的阻力小的大孔隙中扩散的过程。这些大孔隙产生径向的扩散阻力。当分子从大孔进一步进入与大孔相通的微孔中扩散时,由于受到狭窄孔径所产生的很大阻力,从而极为缓慢。微孔也是在碳粒内均匀分布,但不构成径向的扩散阻力。影响粉末活性炭吸附的因素涉及溶质分子极性、分子量大小、空间结构,这一点取决于水源水质的特征。活性炭对不同的物质分子具有选择吸附性。(一)投加工艺的选择国外专家曾对粉末活性炭的应用情况进行分析研究,认为粉末活性炭对人工合成化学物的吸附去除主要取决于该化合物的类型。在选择投加点时,必须考虑混合程度和处理接触时间,尽量减少水处理药剂对吸附的干扰。根据国内某水厂近年应用粉末活性炭的经验认为,对于有生活污水、工业污水的排放,造成水体富营养化,导致水体藻类等微生物急剧繁殖等,属于污染较严重、较为复杂的水源;枯水期时常散发成分复杂的异臭、异味,再加上取水河段为潮感河流,污水回荡时间长,污染造成的危害较大。选取投加粉末活性炭工艺时,主要考虑:(1)投加点要有充足的搅拌条件,使粉末活性炭能快速与处理水有良好的混合接触。(2)尽量延长粉末活性炭与水体接触吸附时间,充分利用粉末活性炭的吸附能力,提高吸附率。(3)尽量选取粒径小的粉末活性炭,使同等重量的活性炭吸附面积相对大;选取中孔较发达的木质活性炭,力求提高活性炭对有机物的吸附效能。(4)尽量减小水处理过程中的化学药品干扰,如氯、高锰酸钾、混凝剂等。(5)要根据投加量的多少、场地条件选取干式或湿式投加。(6)根据水质污染状态确定投加量。投加量从5-30mg/L不等。某水厂投加粉末活性炭工艺如下:(二)投加粉末活性炭明显改善出水水质(1)投加粉末活性炭对去除色度有明显效果。色度的去除有报道可达70%,色度低表明去除有机物的效率高,除铁、锰的效果好。但去除色度的效果并没有和投加活性炭量成正比,其复杂的机理,还有待下一步研究。(2)投加粉末活性炭对去除嗅味有明显效果。南方某水体的富营养化水体不仅是藻类繁殖和杀灭过程产生的异臭,还面对复杂的工业排污污染,水体长期酚类物质的异常浓度所引起的异臭。由于致臭物质的动态性和不确定性,故臭味的定量分析成为十分艰难的课题,设想要经过多年对特定水体的调查研究,设立相关的数学模型,设立相应的分析方法,才能逐步解决。目前臭味的检测一般是用人的感官去鉴定,人为的误差较大。除臭是粉末活性炭去除污染物的一个重要的综合评价指标,也是供水行业目前面临的确保饮用水安全的极其重要、难度相当大的感官指标。(3)投加活性炭有助于去除阴离子洗涤剂。国内外化工行业早已有利用粉末活性炭,来净化去除工业废水中的洗涤剂的工艺。也是粉末活性炭去除较大分子合成有机物的一个评价指标。(4)投加活性炭有助于对藻类的去除。投加了粉末活性炭阻隔了藻类的光吸收,同时在浊度较低的水源中有明显的助凝作用,有助于在混凝沉淀中去除藻类。如应用投加粉末活性炭、聚丙烯酰胺助凝、高锰酸钾氧化的联合协同作用,严格控制沉淀池出水浊度为1NTU以下,则藻类的去除率可高达95%-98%。(5)投加粉末活性炭使化学耗氧量(CODmn和CODcr)、五日生化需氧(BOD5)量大大降低,这些与水体有机污染程度正相关的表征指标的下降,表明了水体有毒有害物质的去除程度。(6)投加粉末活性炭对酚类的去除有良好的效果。上世纪30年代,国外已有采用粉末活性炭吸附焦化厂废水中苯酚的工艺。根据水厂的应用经验,认为在原水挥发性酚在0.005mg/L以下,投加粉末活性炭20mg/L以下,可以有效地去除;若原水挥发性酚在0.005mg/L以上,0.01mg/L以下,可明显减低出厂水挥发性酚含量;但原水挥发性酚大于0.01mg/L时,单靠投加粉末活性炭,难以得到良好的去除效果。粉末活性炭对酚类的去除效果,是综合评价吸附能力的重要指标,对于酚类污染严重的水体尤为重要。(7)投加活性炭粉时出水浊度的影响。投加活性炭后由于活性炭比重大,并具有良好吸附性能,吸附在絮状物上,增加絮状物的比重,使水中相当部分有机物得到去除,具有良好的助凝性能。对于某浊度低,絮状物由于有机胶体过多而轻浮的水体,助凝效果较显著。投加粉末活性炭后,沉淀池、滤池出水浊度大幅度下降,自来水水质大幅度提高。沉淀池出水浊度下降近60%,出厂水出水浊度下降近70%。但粉末活性炭投量大时,会发生微小碳粒穿透滤池的现象,影响出水浊度,所以当投加量大时,要严格控制好滤速和滤池出水浊度。(8)投加粉末活性炭对水体致突变性的影响水体致突变性用Ames试验检验,试验菌种为TA98、TA100,用XAD树脂吸附水样中致突变有机物,洗脱物用平皿渗入法作三个浓度检验,用突变菌落数和对应的受试物浓度作回归曲线,以突变菌落数为自发回变菌落数两倍时的对应水样体积作为该水样的最低致突变剂量。比较各水样的最低致突变剂量可知其所含致突变有机物的多少。某水厂水源常年致突变试验呈阳性,常规处理加氯消毒后致突变性一般会增加;投加粉末活性炭后,首次出现出厂水致突变为阴性。这不得不归功于粉末活性炭对有机污染物的有效去除,从而证明投加粉末活性炭,是常规工艺改善饮用水水质的简捷途径。投加粉末活性碳后,水体相当部分有机物得到去除,水体中胶状物质含量减少,表面粘度下降。粉末活性碳吸附在絮凝物上,有利于絮体的架桥,能改善絮体的结构。所以对浊度较低、污染严重的水体,投加粉末活性炭除有良好的去除有机污染能力,同时还具有良好的助凝作用,使出水水质得到大幅度提高。是一种投资相对小、收效快,尤其是对于规模较大的旧水厂,是处理污染水源的一种可靠的净化工艺。二、粉末活性炭的吸附性能评价研究另一方面,对于吸附剂粉末活性炭,其内表面化学结构、比表面积可以影响吸附能力。在实际生产应用中还有吸附速率的问题,活性炭颗粒的孔隙大小、粒径分布决定了溶质分子向碳粒内部扩散的速度。所以活性炭的吸附能力和吸附速率两方面决定了活性炭的质量。因此如何评价选择活性炭的种类和质量,如何根据水源水质选择合适的碳种和投加量,成为生产中亟待研究解决的重要课题。国内一般主要采用碘值、亚甲蓝值来评价活性炭的吸附性能。但是生产实践和经验都证明仅采用这两个指标不能全面评价活性炭,与实际的吸附效果有所差距。因此采用这些指标判断活性炭的效能只有部分理论意义,不能全面、准确地反应实际吸附状况。(一)目前评价水处理粉末活性炭的指标存在的问题经过研究发现:碘值、亚甲蓝值只能够表明活性炭颗粒中细小孔径的比表面积大小,但是在实际生产中有吸附速率的问题,即净水工艺中吸附时间是有限的,水处理中应用的粉末活性炭远未达到完全吸附平衡。活性炭颗粒内部中等孔隙是有机物分子的进入通道,一般认为活性炭的中等孔隙越发达越有利于吸附动力学平衡,所以中孔是否发达决定了吸附速率。为了结合实际应用,我们不仅考虑粉末活性炭的总吸附比表面积(也就是碘值、亚甲蓝值等指标),还要判断粉末活性炭颗粒内部的孔径分布是否容易达到快速吸附,即明确转化为如何评价活性炭的孔径分布是否合理。进一步研究发现,采用一些具有特定立体空间结构的有色大分子可以表征活性炭的孔径分布。同时这些物质可以采用一定的分析方法精确定量。采用这一系列的分子量阶梯排列的吸附质来评价粉末活性炭的综合性能,与水厂生产情况和实际水样吸附效果相一致。(二)通过研究分析寻找水体特定的污染表征物,制定相应的评价方法。随着试验深入,采用某水源广泛存在的一种典型有机污染化学工业产品标样来作为吸附质进行试验。这种酚类物质分子量适中,中等极性,分子空间结构较大,所以可以很好地代表水中的较复杂有机分子。采用综合评价方法来衡量活性炭的性能:采用碘值、亚甲蓝吸附值评价粉末活性炭的微孔比表面积;采用一些具有特定结构的大分子表征活性炭的中孔发达情况;采用一种酚类标样作为复杂有机物质的代表来确定活性炭的吸附能力,通过三方面综合评判可以更加准确和客观。吸附特定大分子有机物,对于木质碳而言,250目的吸附效果比200目提高10.1%,325目的比200目提高25.3%;对于煤质而言,250目的吸附效果比200目提高66.2%,325目的比200目提高101.5%。对于木质和煤质活性炭吸附特定大分子有机物效果比较,木质远远优于煤质。吸附特定天然有机物,对于木质碳而言,250目的吸附效果比200目提高49.2%,325目的比200目提高61.9%;对于煤质而言,250目的吸附效果比200目提高48.0%,325目的比200目提高56.0%。以这两种木质和煤质活性炭吸附特定天然有机物比较,木质远远优于煤质,吸附数量超过1-2倍。试验结果表明:l)木材、果核为原料生产的活性炭与无烟煤为原料生产的活性炭相比,中孔数量较多,从吸附性能角度看,一般木质、果核类活性炭较适合于某重污染水源,去除以酚类为主的致臭污染物水处理应用。煤质碳由于比重较大,相对用于助凝去除有机物和价格上有优势,尤其是对于不是以酚类为主的污染源的吸附流程较短的水厂。通过研究认为粉末活性炭的吸附能力与粒径相关,粒径越小,比表面积越大,吸附越强;但粒径过小,易于穿透滤层,引起用户不满。根据生产应用经验认为,如在吸水口投加的水厂,为了充分利用粉末活性炭的吸附能力,宜采用目数大于250目的粉末活性炭;但同时必须严格控制沉淀池出水浊度为1NTU左右,严格控制好滤池滤速。投加量较大的和在混凝沉淀后投加的水厂,宜采用小于200目的粉末活性炭,以确保自来水水质。三、小结如何根据不同的处理水体的污染特征物,选用相适应的活性炭类型,选用恰当的投加工艺,是水处理行业的研究重点和难点。国外对净水处理活性炭要求较高,而国内相对显得跟不上。对于活性炭去除水体异臭的重要指标ABS值和酚值研究不多,再加上国内水体污染物比国外的复杂得多,给处理对象的确定带来巨大的困难。由于处理对象的复杂,使应用水平提高受到制约。以上的研究经验和体会供同行商讨。。