福建省龙岩七年级上学期数学期末考试试卷
福建省龙岩市长汀县2022-2023学年七年级上学期期末质量抽查数学试卷

福建省龙岩市长汀县2022-2023学年七年级上学期期末质量
抽查数学试卷
学校:___________姓名:___________班级:___________考号:___________
A .8
B .9
C .10
D .11
9.如图,点B 、O 、D 在同一条直线上,若=90AOC ∠︒,2115∠=︒,则1∠的度数为( )
A .15︒
B .20︒
C .25︒
D .30︒ 10.在课题学习中,老师要求用长为12厘米,宽为8厘米的长方形纸片制作一个无盖的长方体纸盒.三位同学分别以下列方式在长方形纸片上截去两角(图中阴影部分),然后沿虚线折成一个无盖的长方体纸盒.
甲:如图1,盒子底面的四边形ABCD 是正方形;
乙:如图2,盒子底面的四边形ABCD 是正方形;
丙:如图3,盒子底面的四边形ABCD 是长方形,AB=2AD .
将这三位同学所折成的无盖长方体的容积按从大到小的顺序排列,正确的是
A .甲>乙>丙
B .甲>丙>乙
C .丙>甲>乙
D .丙>乙>甲
二、填空题
a
(2)从如图所示的位置开始,从前三局看,第几局后甲离原点最近,离原点距离多少?
(3)从如图所示的位置开始,若进行了k局后,甲与乙的位置相距3个单位长度,请直接写出k的值.。
福建省龙岩七年级上学期期末数学试卷

福建省龙岩七年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2020七上·余杭期末) 点A,B,C,D在数轴上的位置如图用示,点A,D表示的数是互为相反数,若点B所表示的数为a,,则点D所表示的数为()A .B .C .D .2. (2分)下列说法不正确的是()A . 0不是正数也不是负数B . 负数是带“—”的数,正数是带有“+”的数C . 非负数是正数或0D . 0是一个特殊的整数,它并不只是表示“没有”3. (2分)如图,直线c、b被直线a所截,则∠1与∠2是()A . 同位角B . 内错角C . 同旁内角D . 对顶角4. (2分)如果2x2y3与x2yn+1是同类项,那么n的值是()A . 1B . 2C . 3D . 45. (2分)若代数式x2y3与﹣3x2myn+1的和是﹣2x2y3 ,则m+2n的值是()A . 5B . 4C . 3D . 26. (2分) (2018七上·涟源期中) 的相反数是()A .B .C . 3D . -37. (2分)下列各式计算正确的是A . (a+b)2=a2+b2B . a2+a3=a5C . a8÷a2=a4D . a•a2=a38. (2分)(2017·商丘模拟) 如图是一个由7个同样的立方体叠成的几何体.请问下列选项中,既是中心对称图形,又是这个几何体的三视图之一的是()A .B .C .D .9. (2分)若∠1和∠2互余,∠1与∠3互补,∠3=120°,则∠1与∠2的度数分别为()A . 50°、40°B . 60°、30°C . 50°、130°D . 60°、120°10. (2分)用一个正方形在四月份的日历上,圈出4个数,这四个数的和不可能是()A . 104B . 108C . 24D . 28二、填空题 (共6题;共6分)11. (1分)巴西奥运会开幕式于2016年8月6日上午7时在里约热内卢马拉卡纳体育场举行,据悉,里约奥运会开幕式预算为2100万美元,将数据2100万用科学记数法表示为________万.12. (1分) (2017七上·厦门期中) 方程 x﹣3=13的解是________.13. (1分)(2017·新吴模拟) 已知直角平面坐标系内有两点,点P(4,2)与点Q(a,a+2),则PQ的最小值为________.14. (1分)某公园的成人单价是10元,儿童单价是4元.某旅行团有a名成人和b名儿童;旅行团的门票费用总和为________ 元.15. (1分) (2017七上·乐清月考) 当m为整数,代数式的值也是整数时,m的值为________16. (1分)根据图中数字的规律,在最后一个空格中填上适当的数字________ .三、解答题 (共9题;共54分)17. (5分)计算(1)8+(﹣15)﹣(﹣9)+(﹣10)(2)﹣24﹣6÷(﹣2)×|﹣|18. (5分) (2016七上·南昌期末) 解方程:.19. (5分) (2019八上·禅城期末) 计算:20. (5分) (2018七上·汉滨期中) 若有理数a、b互为倒数,求2ab-5的值.21. (5分) (2016七上·岳池期末) 如图,已知O为直线AB上一点,过点O向直线上方引三条射线QC、OD、OE,且OC平分∠AOD.∠2=3∠1,∠BOD=80°,求∠COE的度数.22. (5分)某蔬菜经营户,用160元从某蔬菜市场批发了茄子和豆角共50千克,茄子】豆角当天的批发价和零售价如下表所示:品名茄子豆角批发价(元/千克) 3.0 3.5零售价(元/千克) 4.5 5.2(1)这天该经营户批发了茄子和豆角各多少千克?(2)当天卖完这些茄子和豆角共可盈利多少元?23. (10分) (2019七上·遵义月考) 小明在一次测验中计算一个多项式M加上5ab﹣3bc+2ac时,不小心看成减去:5ab﹣3bc+2ac,结果计算出错误答案为2ab+6bc﹣4ac.(1)求多项式M;(2)试求出原题目的正确答案.24. (3分) (2017七上·鄞州月考) 有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其结果等于24.例如对1,2,3,4,可作如下运算:(1+2+3)×4=24(上述运算与4×(1+2+3)视为相同方法的运算)现有四个有理数3,4,,10,运用上述规则写出三种不同方法的运算式,可以使用括号,使其结果等于24.运算式分别为:(1) ________;(2) ________;(3) ________﹒25. (11分) (2019七上·潮阳期末) 如图,已知∠AOB=60°,∠AOB的边OA上有一动点P ,从距离O点18cm的点M处出发,沿线段MO、射线OB运动,速度为2cm/s;动点Q从点O出发,沿射线OB运动,速度为lcm/s;P、Q同时出发,同时射线OC绕着点O从OA上以每秒5°的速度顺时针旋转,设运动时间是t(s).(1)当点P在MO上运动时,PO=________cm(用含t的代数式表示);(2)当点P在线段MO上运动时,t为何值时,OP=OQ?此时射线OC是∠AOB的角平分线吗?如果是请说明理由.(3)在射线OB上是否存在P、Q相距2cm?若存在,请求出t的值并求出此时∠BOC的度数;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共54分)17-1、18-1、19-1、20-1、21-1、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、。
福建省龙岩市长汀四中七年级数学上学期期末考试试题(含解析) 新人教版

福建省龙岩市长汀四中2015-2016学年七年级数学上学期期末考试试题一、精心选一选,慧眼识金!(每小题3分,共24分)1.长汀冬季的某天的最高气温是8℃,最低气温是﹣1℃,则这一天的温差是()A.9℃B.﹣7℃C.7℃D.﹣9℃2.下列各组数中,互为相反数的是()A.+(﹣2)与﹣(+2)B.(﹣2)2与|﹣2|2C.﹣|﹣2|与﹣(﹣2)D.﹣(﹣22)与(﹣2)23.己知a,b两数在数轴上对应的点如图所示,下列结论正确的是()A.a>b B.ab<0 C.b﹣a>0 D.a+b>04.下列各组单项式中,为同类项的是()A.a3与a2B. a2与2a2C.2xy与2x D.﹣3与a5.下列整式的运算中,结果正确的是()A.3+x=3x B.y+y+y=y3C.6ab﹣ab=6 D.3a3b﹣3ba3=06.如图,下列平面图形经过折叠后可以围成一个长方体的是()A. B.C.D.7.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69° B.111°C.141°D.159°8.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场B.4场C.5场D.6场二、耐心填一填,一锤定音!(每小题2分,共20分)9.﹣5的倒数是.10.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,将2500000用科学记数法表示为.11.一个锐角的度数是60°,则这个角的补角的度数是°.12.若|x﹣1|+(y+3)2=0,则x+y= .13.若x=2是方程8﹣2x=ax的解,则a= .14.已知m=,则代数式(m+2n)﹣(m﹣2n)的值为.15.如图,若CB=4cm,DB=7cm,且D是AC的中点,则AB= .16.有一件商品售价为72元,其获得利润是成本的20%,现在如果要把利润提高到成本的30%,那么售价需提高到元.17.某城市按以下规定收取用户每月的煤气费:某用户用气如果不超过60m3,按每立方米0.8元收费;如果超过60m3,超过部分按每立方米1.2元收费;已知某用户4月份煤气费平均每立方米0.96元,那么,4月份这位用户应交煤气费元.18.古希腊著名的毕达哥拉斯学派把1、3、6、10 …这样的数称为“三角形数”,而把1、4、9、16 …这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是(填序号)①13=3+10;②25=9+16;③36=15+21;④49=18+31.三、用心做一做,马到成功!(本大题共56分)19.计算:|﹣5|﹣(﹣4)2+(﹣2)3÷4.20.计算:5(3a2b﹣ab)﹣2(ab﹣3a2b)21.解方程:.22.先化简,再求值.4xy2﹣2(xy﹣x2y)+3(2xy2﹣x2y);其中x=﹣3,y=2.23.如图,已知点A、B、C,根据下列语句画图:(尺规作图,要保留作图痕迹.)(1)画出直线AB;(2)画出射线AC;(3)在线段AB的延长线上截取线段BD,使得AD=AB+BC;(4)画出线段CD.24.某学校要买精美笔记本(大于10本)用作奖品,可以到甲、乙两家商店购买,已知两商店的标价都是每本10元,甲商店的优惠条件是:购买10本以上,前面10本按标价出售,从第11本开始按标价的七折出售;乙商店的优惠条件是:从第一本起都按标价的八折出售.(1)若要购买20本,到商店买更省钱.(2)学校现准备用296元钱买此种奖品,最多可买本.(3)买多少本时,到两家商店购买付款相等?25.如图所示,OE,OD分别平分∠AOC和∠BOC,(1)如果∠AOB=90°,∠BOC=40°,求∠DOE的度数;(2)如果∠AOB=α,∠BOC=β(α、β均为锐角,α>β),其他条件不变,求∠DOE;(3)从(1)、(2)的结果中,你发现了什么规律,请写出来.26.如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?2015-2016学年福建省龙岩市长汀四中七年级(上)期末数学试卷参考答案与试题解析一、精心选一选,慧眼识金!(每小题3分,共24分)1.长汀冬季的某天的最高气温是8℃,最低气温是﹣1℃,则这一天的温差是()A.9℃B.﹣7℃C.7℃D.﹣9℃【考点】有理数的减法.【专题】应用题;推理填空题.【分析】根据有理数的减法的运算方法,用长汀冬季的某天的最高气温减去这天的最低气温,求出这一天的温差是多少即可.【解答】解:8﹣(﹣1)=9(℃)答:这一天的温差是9℃.故选:A.【点评】此题主要考查了有理数的减法的运算方法,要熟练掌握,解答此类问题的关键是要明确:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).2.下列各组数中,互为相反数的是()A.+(﹣2)与﹣(+2)B.(﹣2)2与|﹣2|2C.﹣|﹣2|与﹣(﹣2)D.﹣(﹣22)与(﹣2)2【考点】相反数;有理数的乘方.【专题】计算题;推理填空题.【分析】首先求出每个选项中的两个数各是多少;然后根据相反数的特征,判断出各组数中,互为相反数的是哪组即可.【解答】解:∵+(﹣2)=﹣2,﹣(+2)=﹣2,∴+(﹣2)与﹣(+2)相等,∴选项A不正确;∵(﹣2)2=4,|﹣2|2=4,∴(﹣2)2与|﹣2|2相等,∴选项B不正确;∵﹣|﹣2|=﹣2,﹣(﹣2)=2,﹣2和2互为相反数,∴﹣|﹣2|与﹣(﹣2)互为相反数,∴选项C正确;∵﹣(﹣22)=4,(﹣2)2=4,∴﹣(﹣22)与(﹣2)2相等,∴选项D不正确.故选:C.【点评】(1)此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.(2)此题还考查了有理数的乘方的运算方法,要熟练掌握.3.己知a,b两数在数轴上对应的点如图所示,下列结论正确的是()A.a>b B.ab<0 C.b﹣a>0 D.a+b>0【考点】有理数大小比较;数轴;有理数的加法;有理数的减法;有理数的乘法.【分析】首先得到b<a<0,再结合有理数的运算法则进行判断.【解答】解:根据数轴,得b<a<0.A、正确;B、两个数相乘,同号得正,错误;C、较小的数减去较大的数,差是负数,错误;D、同号的两个数相加,取原来的符号,错误.故选A.【点评】根据数轴观察两个数的大小:右边的点表示的数,总比左边的大.本题用字母表示了数,表面上增加了难度,只要学生掌握了规律,很容易解答.4.下列各组单项式中,为同类项的是()A.a3与a2B. a2与2a2C.2xy与2x D.﹣3与a【考点】合并同类项.【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母相同且相同字母的指数也相同,故B正确;C、字母不同的项不是同类项,故C错误;D、字母不同的项不是同类项,故D错误;故选:B.【点评】本题考查了同类项,利用了同类项的定义.5.下列整式的运算中,结果正确的是()A.3+x=3x B.y+y+y=y3C.6ab﹣ab=6 D.3a3b﹣3ba3=0【考点】合并同类项.【分析】根据合并同类项的法则,逐项运算即可.【解答】解:A.3+x不能合并,所以此选项错误;B.y+y+y=3y,所以此选项错误;C.6ab﹣ab=(6﹣1)ab=5ab,所以此选项错误;D.3a3b﹣3ba3=(3﹣3)a3b=0,所以此选项正确,故选D.【点评】本题考查了合并同类项,记住同类项的定义和运算法则是解答此题的关键.6.如图,下列平面图形经过折叠后可以围成一个长方体的是()A. B.C.D.【考点】展开图折叠成几何体.【分析】根据长方形展开图的特点或者固定一个面其他的面合围判断是否构成封闭的长方体.【解答】解:A、缺少一个面,不能围成长方体;B、缺少一个面,不能围成长方体;C、固定最下方中间的矩形做底面,上方3个矩形依次围过来分别构成长方体的后、上、前三面,左右两个正方形围起来构成长方体的左右侧面,可以围成一个长方体;D、右边两个小正方形围到一起后重叠,不能围成一个长方体;故选:C.【点评】本题考查长方体展开图的特征,长方体展开图的四个侧面是完全相同的矩形,上下底面展开后是两个相同的矩形也有可能是正方形.7.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69° B.111°C.141°D.159°【考点】方向角.【分析】首先计算出∠3的度数,再计算∠AOB的度数即可.【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.【点评】此题主要考查了方向角,关键是根据题意找出图中角的度数.8.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场B.4场C.5场D.6场【考点】一元一次方程的应用.【专题】应用题.【分析】设共胜了x场,本题的等量关系为:胜的场数×3+平的场数×1+负的场数×0=总得分,解方程即可得出答案.【解答】解:设共胜了x场,则平了(14﹣5﹣x)场,由题意得:3x+(14﹣5﹣x)=19,解得:x=5,即这个队胜了5场.故选C.【点评】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.二、耐心填一填,一锤定音!(每小题2分,共20分)9.﹣5的倒数是.【考点】倒数.【分析】根据倒数的定义可直接解答.【解答】解:因为﹣5×()=1,所以﹣5的倒数是.【点评】本题比较简单,考查了倒数的定义,即若两个数的乘积是1,我们就称这两个数互为倒数.10.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,将2500000用科学记数法表示为 2.5×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2 500 000=2.5×106,故答案为:2.5×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.一个锐角的度数是60°,则这个角的补角的度数是120 °.【考点】余角和补角.【分析】根据若两个角的和等于180°,则这两个角互补计算即可.【解答】解:180°﹣60°=120°,则60°的补角的度数是120°,故答案为:120°.【点评】本题考查的是余角和补角的概念,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.12.若|x﹣1|+(y+3)2=0,则x+y= ﹣2 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:由题意得,x﹣1=0,y+3=0,解得,x=1,y=﹣3,则x+y=﹣2,故答案为:﹣2.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.若x=2是方程8﹣2x=ax的解,则a= 2 .【考点】一元一次方程的解.【分析】把x=2,代入方程得到一个关于a的方程,即可求解.【解答】解:把x=2代入方程,得:8﹣4=2a,解得:a=2.故答案是:2.【点评】本题考查了方程的解的定义,理解定义是关键.14.已知m=,则代数式(m+2n)﹣(m﹣2n)的值为 5 .【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把n的值代入计算即可求出值.【解答】解:原式=m+2n﹣m+2n=4n,当n=时,原式=5,故答案为:5【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.15.如图,若CB=4cm,DB=7cm,且D是AC的中点,则AB= 10cm .【考点】两点间的距离.【分析】先求出CD的长度,也就是AD的长度,然后代入数据计算即可求出AB的长度.【解答】解:∵CB=4cm,DB=7cm,∴CD=BD﹣BC=7﹣4=3cm,∵点D为AC的中点,∴AD=CD=3cm,∴AB=AD+BD=3+7=10cm.故答案为:10cm.【点评】本题考查了两点间的距离的计算,以及中点的定义,读懂图形,利用数形结合思想有助于解题的准确性,是基础题.16.有一件商品售价为72元,其获得利润是成本的20%,现在如果要把利润提高到成本的30%,那么售价需提高到78 元.【考点】一元一次方程的应用.【分析】设成本为x元,利用售价﹣成本=利润列出方程求得商品成本;提高后的价格是成本价的1+30%,由此求出提高后的价格.【解答】解:设商品成本为x元,由题意得72﹣x=20%x解得:x=6060×(1+30%)=78(元)答:售价需提高到78元.故答案为:78.【点评】此题考查一元一次方程的实际运用,掌握销售问题中的基本数量关系是解决问题的关键.17.某城市按以下规定收取用户每月的煤气费:某用户用气如果不超过60m3,按每立方米0.8元收费;如果超过60m3,超过部分按每立方米1.2元收费;已知某用户4月份煤气费平均每立方米0.96元,那么,4月份这位用户应交煤气费96 元.【考点】一元一次方程的应用.【分析】先判断出4月份所用煤气一定超过60m3,等量关系为:60×0.8+超过60米的立方数×1.2=0.96×所用的立方数,设4月份用了煤气x立方米,从而得出方程求解即可.【解答】解:由4月份煤气费平均每立方米0.96元,可得4月份用煤气一定超过60m3,设4月份用了煤气x立方米,由题意得:60×0.8+(x﹣60)×1.2=0.96×x,解得:x=100则所交煤气费=100×0.96=96元.答:4月份这位用户应交煤气费96元.故答案为:96.【点评】本题考查用一元一次方程的实际运用,判断出煤气量在60m3以上是解决本题的突破点,得到煤气费的等量关系是解决本题的关键.18.古希腊著名的毕达哥拉斯学派把1、3、6、10 …这样的数称为“三角形数”,而把1、4、9、16 …这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是③(填序号)①13=3+10;②25=9+16;③36=15+21;④49=18+31.【考点】规律型:图形的变化类.【分析】本题先根据已知条件,得出三角数前面是1,3,6,10,15,21,28,依次差增加1,再从中找出规律,即可找出结果.【解答】解:其实三角形数是这样的,三角数是前面是1,3,6,10,15,21,28,依次差增加1,正方形数 1 4 9 16 25 36 49,则25=10+15,36=15+21,49=21+28.故答案为:③.【点评】本题主要考查了图形的变化类问题,在解题时要找出规律是解题的关键.三、用心做一做,马到成功!(本大题共56分)19.计算:|﹣5|﹣(﹣4)2+(﹣2)3÷4.【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式第一项利用绝对值的代数意义化简,第二项利用乘方的意义计算,最后一项利用除法法则计算即可得到结果.【解答】解:原式=5﹣16+(﹣2)=﹣13.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.计算:5(3a2b﹣ab)﹣2(ab﹣3a2b)【考点】整式的加减.【专题】计算题;整式.【分析】根据整式的加减运算的方法,首先去括号,分别求出5(3a2b﹣ab)、2(ab﹣3a2b)的值各是多少;然后合并同类项,求出算式5(3a2b﹣ab)﹣2(ab﹣3a2b)的值是多少即可.【解答】解:5(3a2b﹣ab)﹣2(ab﹣3a2b)=15a2b﹣5ab﹣2ab+6a2b=21a2b﹣7ab【点评】此题主要考查了整式的加减运算,要熟练掌握,解答此类问题的关键是要明确:整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.21.解方程:.【考点】解一元一次方程.【专题】计算题.【分析】首先熟悉解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.【解答】解:去分母得:3(3x﹣1)﹣12=2(5x﹣7)去括号得:9x﹣3﹣12=10x﹣14移项得:9x﹣10x=﹣14+15合并得:﹣x=1系数化为1得:x=﹣1.【点评】特别注意去分母的时候不要发生1漏乘的现象,熟练掌握去括号法则以及合并同类项法则.22.先化简,再求值.4xy2﹣2(xy﹣x2y)+3(2xy2﹣x2y);其中x=﹣3,y=2.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可得到结果.【解答】解:原式=4xy2﹣2xy+3x2y+6xy2﹣2x2y=10xy2+x2y﹣2xy,当x=﹣3,y=2时,原式=10×(﹣3)×(2)2+(﹣3)2×2﹣2×(﹣3)×2=﹣120+18+12=﹣90.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.如图,已知点A、B、C,根据下列语句画图:(尺规作图,要保留作图痕迹.)(1)画出直线AB;(2)画出射线AC;(3)在线段AB的延长线上截取线段BD,使得AD=AB+BC;(4)画出线段CD.【考点】直线、射线、线段.【专题】作图题.【分析】直接利用直线、射线、线段的定义分别得出答案.【解答】解:如图所示:(1)直线AB即为所求;(2)射线AC即为所求;(3)D点即为所求;(4)线段CD即为所求.【点评】此题主要考查了直线、射线、线段的定义,正确把握相关定义是解题关键.24.某学校要买精美笔记本(大于10本)用作奖品,可以到甲、乙两家商店购买,已知两商店的标价都是每本10元,甲商店的优惠条件是:购买10本以上,前面10本按标价出售,从第11本开始按标价的七折出售;乙商店的优惠条件是:从第一本起都按标价的八折出售.(1)若要购买20本,到乙商店买更省钱.(2)学校现准备用296元钱买此种奖品,最多可买38 本.(3)买多少本时,到两家商店购买付款相等?【考点】一元一次方程的应用.【分析】(1)根据甲乙两店给出的优惠条件,算出买20本笔记本花费的购书款,通过比较得到在哪个商店购买较省钱;(2)通过计算得出在甲乙商店所能购买的笔记本数,比较得出最大值;(3)根据等量关系列方程求解:甲商店购书款=10本×标价+超出10本的数目×70%;乙商店购书款=购买的本数×80%.【解答】解:(1)甲商店买的费用10×10+10×70%=170元,乙商店买的费用20×10×80%=160元若要购买20本,到乙商店买更省钱.(2)甲商店购买:(296﹣10×10)÷(10×70%)+10=38本,乙商店购买:296÷(10×80%)=37本,学校现准备用296元钱买此种奖品,最多可买38本.(3)设买x本时,到两家商店购买付款相等,根据题意,得10×10+10×0.7(x﹣10)=10×0.8x解得:x=30答:买30本时,到两家商店购买付款相等.【点评】此题考查一元一次方程的实际运用,理解题意,得出两个商店优惠的计算方法是解决问题的关键.25.如图所示,OE,OD分别平分∠AOC和∠BOC,(1)如果∠AOB=90°,∠BOC=40°,求∠DOE的度数;(2)如果∠AOB=α,∠BOC=β(α、β均为锐角,α>β),其他条件不变,求∠DOE;(3)从(1)、(2)的结果中,你发现了什么规律,请写出来.【考点】角平分线的定义;角的计算.【分析】(1)首先计算出∠AOC的度数,然后再根据角平分线的性质可得∠COE=∠AOC,∠COD=∠BOC,根据∠DOE=∠COE﹣∠COD代入角度计算即可;(2)方法与(1)相同,首先计算出∠AOC的度数,然后再根据角平分线的性质可得∠COE=∠AOC,∠COD=∠BOC,根据∠DOE=∠COE﹣∠COD代入角度计算即可;(3)根据(1)(2)的结果可得∠DOE的大小与∠BOC的大小无关.【解答】解:(1)∵∠AOB=90°,∠BOC=40°,∴∠AOC=∠AOB+∠BOC=90°+40°=130°,又∵OE,OD分别平分∠AOC和∠BOC,∴∠COE=∠AOC=×130°=65°,∠COD=∠BOC=×40°=20°,∴∠DOE=∠COE﹣∠COD=65°﹣20°=45°;(2)∵∠AOB=α,∠BOC=β,∴∠AOC=∠AOB+∠BOC=α+β,又∵OE,OD分别平分∠AOC和∠BOC,∴∠COE=∠AOC=(α+β),∠COD=∠BOC=,∴∠DOE=∠COE﹣∠COD=(α+β)﹣=+﹣=;(3)∠DOE的大小与∠BOC的大小无关.【点评】此题主要考查了角平分线的性质,关键是掌握角平分线把角分成相等的两部分.26.如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?【考点】一元一次方程的应用;数轴.【分析】(1)设点A的速度为每秒t个单位,则点B的速度为每秒4t个单位,由甲的路程+乙的路程=总路程建立方程求出其解即可;(2)设x秒时原点恰好在A、B的中间,根据两点离原点的距离相等建立方程求出其解即可;(3)先根据追击问题求出A、B相遇的时间就可以求出C行驶的路程.【解答】解:(1)设点A的速度为每秒t个单位,则点B的速度为每秒4t个单位,由题意,得3t+3×4t=15,解得:t=1,∴点A的速度为每秒1个单位长度,则点B的速度为每秒4个单位长度.如图:(2)设x秒时原点恰好在A、B的中间,由题意,得3+x=12﹣4x,解得:x=1.8.∴A、B运动1.8秒时,原点就在点A、点B的中间;(3)由题意,得B追上A的时间为:15÷(4﹣1)=5,∴C行驶的路程为:5×20=100单位长度.【点评】本题考查了列一元一次方程解实际问题的运用,数轴的运用,行程问题的相遇问题和追及问题的数量关系的运用,解答时根据行程问题的数量关系建立方程是关键.。
福建省龙岩七年级上学期数学期末考试试卷

福建省龙岩七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016高一下·锦屏期末) 在-(-2),(-1)3 ,-22 , (-2)2 ,-∣-2∣,(-1)2n (n 为正整数)这六个数中,负数的个数是()A . 1个B . 2个C . 3个D . 4个2. (2分)想了解建昌一中七年级学生的视力情况,抽出400名学生进行测试,应该()A . 从戴眼镜的同学中抽取样本进行视力状况随机测试B . 从不戴眼镜的同学中抽取样本进行视力状况随机测试C . 中午的时候,随机测试一些从事体育运动的七年级学生的视力状况D . 到几个班级,在学校放学时,对出教室的七年级学生的视力状况随机测试3. (2分) (2019七上·海安期中) 已知代数式amb6和- ab2n是同类项,则m-n的值是()A . -3B . -1C . 2D . -24. (2分) (2017八上·江津期中) 如图在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且△ABC 的面积是4,则△BEF的面积是()A . 1B . 2C . 3D . 3.55. (2分) (2016七上·罗山期末) 2015年5月17日是第25个全国助残日,今年全国助残日的主题是“关注孤独症儿童,走向美好未来”.第二次全国残疾人抽样调查结果显示,我国0~6岁精神残疾儿童约为11.1万人.11.1万用科学记数法表示为()A . 1.11×104B . 11.1×104C . 1.11×105D . 1.11×1066. (2分)正方体的截面不可能是()A . 四边形B . 五边形C . 六边形D . 七边形7. (2分)(2018·长沙) 下列计算正确的是()A . a2+a3=a5B .C . (x2)3=x5D . m5÷m3=m28. (2分)某校足球比篮球数的2倍多3个,足球数与篮球数的比为3:2,求两种球各有多少.若设足球有x个,篮球有y个,由题意得()A .B .C .D .9. (2分)(2020·沐川模拟) 小明从家里骑自行车到学校,每小时骑,可早到10分钟,每小时骑就会迟到5分钟.他家到学校的路程是多少?设他家到学校的路程是,则据题意列出的方程是()A .B .C .D .10. (2分) (2016七上·六盘水期末) 观察下列顺序排列的等式:9 0+1=1,9 1+2=11,9 2+3=21,9 3+4=31,9 +5=41,……根据以上所反映的规律,猜想,第n个等式(n为正整数)应为()A . 9(n-1)+n=10(n-1)+1B . 9n+n=(n-1)+nC . 9n+(n-1)=n2 -1D . 9n+n=10n+1二、填空题 (共8题;共8分)11. (1分) (2019七上·绍兴期中) 用代数式表示:a的2倍与b的平方的差是________.12. (1分) (2020七上·许昌期末) 请你写出一个单项式,使它的系数为-1,次数为3:________.13. (1分) (2020七上·临颍期末) 已知线段,点是直线上一点,且,若点是线段的中点,点是线段的中点,则线段 ________ .14. (1分) (2017八下·滦县期末) 下面的频数分布折线图分别表示我国A市与B市在2014年4月份的日平均气温的情况,记该月A市和B市日平均气温是8℃的天数分别为a天和b天,则a+b=________.15. (1分) (2019七上·甘孜月考) 如图,将一张纸张折叠,若∠1=65°,则∠2的度数为________.16. (1分) (2019七上·遵义月考) 若2x﹣1的值与3﹣4x的值互为相反数,那么x的值为________.17. (1分) (2019七上·哈尔滨月考) 足球比赛胜一场得3分,平一场得1分,负一场得0分,若一个队打8场比赛,负了一场,且积了17分,则该队平了________场.18. (1分) (2019七上·镇海期末) 如图,线段,点在直线上,,、分别是线段、的中点,则的长为________.三、解答题 (共6题;共62分)19. (5分)计算:(1)[(﹣5)2×(﹣)+8]×(﹣2)2÷7(2)3x2﹣[x2﹣2(3x﹣x2)].20. (10分) (2017七下·江东期中) 计算(1)(x+y)•(x﹣y)+x(2y﹣x(2)(3x3﹣2x2)÷x﹣(x﹣1)2 .21. (20分)解方程:(1) 5x+3(2﹣x)=8(2) =1﹣(3) + =(4) [x﹣(x﹣1)]= (x﹣1)22. (10分) (2019八下·蚌埠期末) 如图所示,平行四边形ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E.(1)求∠BEC的度数.(2)若BE=6,CE=4,则平行四边形ABCD的周长是多少?23. (5分)修一条公路,甲队单独修需10天完成,乙队单独修需要12天完成,丙队单独修需15天完成.现在先由甲队修2.5天,再由乙队接着修,最后还剩下一段路,由三队合修2天才完成任务.求乙队在整个修路工程中工作了几天?24. (12分) (2020八下·东丽期末) 某校八年级有500名学生,从中随机抽取了一部分学生,统计每晚写作业的时间,根据它们的时间(单位:分钟),绘制出如下的统计图①和图②请根据相关信息,解答下列问题:(1)图①中m=________,n=________;(2)求统计的这组数据的平均数、众数和中位数;(3)根据样本数据,估计这500名学生中,时间为120分钟的约有多少学生?参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共6题;共62分)19-1、20-1、20-2、21-1、21-2、21-3、21-4、22-1、22-2、23-1、24-1、24-2、24-3、。
七年级上册龙岩数学期末试卷测试卷(含答案解析)

七年级上册龙岩数学期末试卷测试卷(含答案解析)一、选择题1.如图,已知AOB ∠是直角,OM 平分AOC ∠,ON 平分BOC ∠,则MON ∠的度数是( )A .30°B .45°C .50°D .60° 2.将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( )A .B .C .D .3.方程去分母后正确的结果是( ) A .B .C .D . 4.已知:如图,AB ⊥CD ,垂足为O ,EF 为过点O 的一条直线,则∠1与∠2的关系一定成立的是( )A .相等B .互余C .互补D .不确定 5.方程1502x --=的解为( ) A .4- B .6- C .8- D .10-6.-8的绝对值是( )A .8B .18C .-18D .-87.如图,点C 是AB 的中点,点D 是BC 的中点,则下列等式中正确的有( )①CD AC DB =-②CD AD BC =-③2BD AD AB =- ④13CD AB = A .4个 B .3个 C .2个 D .1个8.一个几何体的侧面展开图如图所示,则该几何体的底面是( )A .B .C .D .9.如图,点C 、D 为线段AB 上两点,6AC BD +=,且75AD BC AB +=,则CD 等于( )A .6B .4C .10D .30710.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A .140B .120C .160D .100 11.下列运算中,结果正确的是( ) A .3a 2+4a 2=7a 4B .4m 2n+2mn 2=6m 2nC .2x ﹣12x =32x D .2a 2﹣a 2=2 12.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m +n )C .4nD .4m13.如图,已知正方形2134A A A A 的边长为1,若从某一点开始沿逆时针方向走点的下标数字的路程,则把这种走法成为一次“逆移”,如:在点3A 开始经过3412A A A A →→→为第一次“逆移”, 在点2A 开始经过2341A A A A →→→为第二次“逆移”.若从点1A 开始,经过2020次“逆移”,最终到达的位置是( )A .1AB .2AC .3AD .4A 14.在解方程123123x x -+-=时,去分母正确的是( ) A .3(x -1)-2(2x +3)=6B .3(x -1)-2(2x +3)=1C .2(x -1)-3(2x +3)=6D .3(x -1)-2(2x +3)=315.一个长方形操场的长比宽长70米,根据需要将它扩建,把它的宽增加20米后,它的长就是宽的1.5倍.若设扩建前操场的宽为x 米,则下列方程正确的是( )A . 1.5(7020)x x =-+B .70 1.5(20)x x +=+C .70 1.5(20)x x +=-D .70 1.5(20)x x -=+二、填空题16.,,,A B C D 是长方形纸片的四个顶点,点E F H 、、分别是边AB BC AD 、、上的三点,连结EF FH 、.(1)将长方形纸片ABCD 按图①所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、,点'B 在FC '上,则EFH ∠的度数为 ;(2)将长方形纸片ABCD 按图②所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、, 若''18∠=︒B FC , 求EFH ∠的度数;(3)将长方形纸片ABCD 按图③所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、,若EFH m ∠=,求''B FC ∠的度数为 .17.动点,A B 分别从数轴上表示10和2-的两点同时出发,以7个单位长度/秒和4个单位长度/秒的速度沿数轴向负方向匀速运动,__________秒后,点,A B 间的距离为3个单位长度.18.若4550a ∠=︒',则a ∠的余角为______.19.数轴上有A 、B 、C 三点,A 、B 两点所表示的数如图所示,若BC =3,则AC 的中点所表示的数是_______.20.若一个多边形的内角和是900º,则这个多边形是 边形.21.若规定这样一种运算法则a ※b=a 2+2ab ,例如3※(-2) = 32+ 2× 3×(-2) =-3 ,则 (-2) ※3 的值为_______________.22. 当m = __时,方程21x m x +=+的解为4x =-.23.若5x =是关于x 的方程2310x m +-=的解,则m 的值为______.24.如图,O 为模拟钟面圆心,M 、O 、N 在一条直线上,指针OA 、OB 分别从OM 、ON 同时出发,绕点O 按顺时针方向转动,OA 运动速度为每秒12°,OB 运动速度为每秒4°,当一根指针与起始位置重合时,转动停止,设转动的时间为t 秒,当t =______秒时,∠AOB=60°.25.6的绝对值是___.三、解答题26.计算下列各题:(1)1021(2)11-+--⨯(2)2019111(3)69--÷-⨯ 27.如图,所有小正方形的边长都为1,点O 、P 均在格点上,点P 是∠AOB 的边 OB 上一点,直线PC ⊥OA ,垂足为点C .(1)过点 P 画 OB 的垂线,交OA 于点D ;(2)线段 的长度是点O 到直线PD 的距离;(3)根据所画图形,判断∠OPC ∠PDC (填“>”,“<”或“=”),理由是 .28.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.(请利用网格作图,画出的线请用铅笔描粗描黑)(1)过点C 画AB 的垂线,并标出垂线所过格点E ;(2)过点C 画AB 的平行线CF ,并标出平行线所过格点F ;(3)直线CE 与直线CF 的位置关系是 ;(4)连接AC ,BC ,则三角形ABC 的面积为 .29.列方程解应用题:《弟子规》的初中读本的主页共计96页。
福建省龙岩2020版七年级上学期数学期末考试试卷A卷

福建省龙岩2020版七年级上学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)绝对值小于3.5的整数的个数是().A . 8B . 7C . 6D . 52. (1分) (2018七上·阳江月考) 下列叙述正确的是()A . 近似数 3.1 与 3.10 的意义一样B . 近似数 53.20 精确到十分位C . 近似数 2.7 万精确到十分位D . 近似数 1.9 万与1.9×104的精确度相同3. (1分) (2018七上·故城期末) 如果|a+2|+(b﹣1)2=0,那么(a+b)2013的值等于()A . ﹣1B . ﹣2013C . 1D . 20134. (1分)(2017·徐州模拟) 如图,直线a,b被直线c所截,a∥b,∠2=∠3,若∠1=80°,则∠4等于()A . 20°B . 40°C . 60°D . 80°5. (1分)已知a﹣b=3,c+d=2,则(b+c)﹣(a﹣d)的值是()A . -1B . 1C . -5D . 156. (1分) (2018七上·长春月考) 比较,,,的大小,下列正确的是()A .B .C .D .7. (1分) (2018七上·汉滨期中) 若a、b互为相反数,x、y互为倒数,则的值是()A . 3B . 4C . 2D . 3.58. (1分)下列叙述正确的是()A . 画直线AB=10厘米B . 若AB=6,BC=2,那么AC=8或4C . 河道改直可以缩短航程,是因为“经过两点有一条直线,并且只有一条直线”。
D . 在直线AB上任取4点,以这4个点为端点的线段共有6条9. (1分) (2019七上·来宾期末) 如图,点O在直线AB上,与互余,OE平分,,则的度数为)A .B .C .D .10. (1分)如图,第①个图形中有4个“○”,第②个图形中有10个“○”,第③个图形中有22个“○”,…,那么第⑤个图形中“○”的个数是()A . 190B . 94C . 70D . 46二、填空题 (共5题;共5分)11. (1分) (2016七上·岑溪期末) 整式5x与3x的差是________.12. (1分) (2019七上·禅城期末) 一个几何体由若干大小相同的小立方块搭成,如图所示的分别是从它的正面、左面看到的图形,则搭成该几何体最多需要________个小立方块.13. (1分) (2019七上·镇江期末) 如图,已知与相交于,,,则 ________.14. (1分) (2017七上·宁波期中) 写出一个同时符合下列条件的数:________.①它是一个无理数;②在数轴上表示它的点在原点的左侧;③它的绝对值比2小.15. (1分)甲、乙两人到某特价商场购买商品,已知两人购买商品的件数相同,且每件商品的单价只有10元和12元两种.若两人购买商品一共花费了134元,则两人购买的商品单价为12元的商品有________ 件.三、解答题 (共8题;共15分)16. (2分) (2017七上·东城月考)17. (2分) (2019七下·古冶期中) 如图四边形ABCD中,AD∥BC,∠BCD=90°,∠BAD的平分线AG交BC于点G.(1)求证:∠BAG=∠BGA;(2)如图2,∠BCD的平分线CE交AD于点E,与射线GA相交于点F,∠B=50°.①若点E在线段AD上,求∠AFC的度数;②若点E在DA的延长线上,直接写出∠AFC的度数;(3)如图3,点P在线段AG上,∠ABP=2∠PBG,CH∥AG,在直线AG上取一点M,使∠PBM=∠DCH,请直接写出∠ABM:∠PBM的值.18. (1分)如果﹣4xaya+1与mx5yb﹣1的和是3x5yn ,求(m﹣n)(2a﹣b)的值.19. (1分) (2019七上·丹东期中) 一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.20. (2分) (2017八下·无锡期中) 已知:如图,D是△ABC的边上一点,M是AC的中点,CN∥AB交DM的延长线于N,且AB=10,BC=8,AC=7.(1)求证:四边形ADCN是平行四边形;(2)当AD为何值时,四边形ADCN是矩形。
福建省龙岩2020年(春秋版)七年级上学期期末数学试卷D卷
福建省龙岩2020年(春秋版)七年级上学期期末数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2018·深圳) 6的相反数是()A .B .C .D . 62. (2分) (2015七上·海南期末) 有理数a在数轴上的位置如图所示,则关于a,﹣a,1的大小关系表示正确的是()A . a<1<﹣aB . a<﹣a<1C . 1<﹣a<aD . ﹣a<a<13. (2分)毕节地区水能资源丰富,理论蕴藏量达221.21万千瓦,已开发156万千瓦,把已开发水能资源用四舍五入法保留两个有效数字并且用科学记数法表示应记为()千瓦.A .B .C .D .4. (2分)已知∠α是锐角,∠β是钝角,且∠α和∠β互补,那么下列结论正确的是()A . ∠α的余角和∠β的补角互余B . ∠α的补角和∠β的余角互余C . ∠α的余角和∠β的补角互补D . ∠α的补角和∠β的余角互补5. (2分) (2019七下·厦门期中) 如图,已知AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠1=48°,则∠2的度数是()A . 64°B . 65 °C . 66°D . 67°6. (2分)下列运算正确的是()A . 3a+4b=12aB . (ab3)2=ab6C . (5a2﹣ab)﹣(4a2+2ab)=a2﹣3abD . x12÷x6=x27. (2分)购买一本书,打八折比打九折少花2元钱,那么这本书的原价是()A . 10B . 15C . 20D . 258. (2分)下列式子正确的是()A .B .C .D .9. (2分)如图是一个正方体的表面展开图,在这个正方体中,与点A重合的点为()A . 点C和点NB . 点B和点MC . 点C和点MD . 点B和点N10. (2分)下列说法正确的是()A . 单项式﹣的系数是﹣3B . 单项式2πa3的次数是4C . 多项式x2y2﹣2x2+3是四次三项式D . 多项式x2﹣2x+3的项分别是x2、2x、3二、填空题 (共10题;共11分)11. (2分)整式3x,- ab,t+1,0.12h+b中,单项式有________,多项式有________.12. (1分) (2017七上·温岭期末) 已知x=3是方程ax﹣2=-a+6的解,则a=________.13. (1分)(2011·希望杯竞赛) 若,其中a,b,c代表非零数字,则 ________;14. (1分) (2019八上·咸阳期中) 已知,则 =________.15. (1分) (2015七上·重庆期末) 有理数a、b在数轴上的位置如图,则|a﹣b|﹣2|a﹣c|﹣|b+c|=________.16. (1分) (2018九下·扬州模拟) 某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是________.17. (1分)在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x 名,二等奖的学生有y名,根据题意可列方程组为________.18. (1分)(2012·扬州) 一个锐角是38度,则它的余角是________度.19. (1分) (2019七下·长春月考) 已知x,y满足方程组,则x﹣y的值=________.20. (1分) (2020七上·武昌期末) 点A、B、C在直线l上,AB=2BC,M、N分别为线段AB、BC的三等分点,BM= ,BN= ,则 ________.三、解答题 (共10题;共75分)21. (5分) (2016七上·鄱阳期中) 化简求值:5x2y﹣[3xy2+7(x2y﹣ xy2)],其中x=﹣1,y=2.22. (20分) (2019七上·海安期中) 计算与化简(1)(2)(3)(4) 5 x2y﹣2xy﹣4(x2y﹣ xy)23. (5分) (2016九上·相城期末) 计算:.24. (5分) (2017七上·娄星期末) 已知m2﹣mn=7,mn﹣n2=﹣2,求m2﹣n2及m2﹣2mn+n2的值.25. (5分)已知:方程x+k=2的解比方程 x﹣k+3=2k的解大1,求k的值.26. (5分) (2016八上·济源期中) 某地有两个村庄M、N和两条相交叉的公路OA,OB,现计划修建一个物资仓库,希望仓库到两个村庄的距离相等,到两条公路的距离也相等,请你用尺规作图的方法确定该点P.(注意保留作图痕迹,不用写作法)27. (10分)在边长为1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a,边界上的格点数为b,则格点多边形的面积可表示为S=ma+nb﹣1,其中m,n为常数.(1)在下面的方格中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;(2)利用(1)中的格点多边形确定m,n的值.28. (5分)有一位旅客携带了30kg重的行李从上海乘飞机去北京,按民航总局规定:旅客最多可免费携带20kg重的行李,超重部分每千克按飞机票价格1.5%购买行李票,现该旅客购买了180元的行李票,则飞机票价格应是多少元?29. (5分)如图,AB是半圆O的直径,过点O作弦AD的垂线交切线AC于点C,OC与半圆O交于点E,连接BE,DE.(1)求证:∠BED=∠C;(2)若OA=5,AD=8,求AC的长.30. (10分)(2017·宜兴模拟) 计算:(1) |﹣2|﹣(1+ )0+ ;(2)(a﹣)÷ .参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共11分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共10题;共75分)21-1、22-1、22-2、22-3、22-4、23-1、24-1、25-1、26-1、27-1、27-2、28-1、29-1、30-1、30-2、。
七年级上册龙岩数学期末试卷测试卷(含答案解析)
七年级上册龙岩数学期末试卷测试卷(含答案解析)一、选择题1.如图,是一个正方体的展开图则“数”字的对面的字是( )A .核B .心C .素D .养 2.下列各项中,是同类项的是( )A .xy -与2yxB .2ab 与2abcC .2x y 与2x zD .2a b 与2ab3.如图,若将三个含45°的直角三角板的直角顶点重合放置,则∠1的度数为( )A .15°B .20°C .25°D .30° 4.若要使得算式-3□0.5的值最大,则“□”中填入的运算符号是( ) A .+B .-C .×D .÷5.下列运算正确的是( )A .225a 3a 2-=B .2242x 3x 5x +=C .3a 2b 5ab +=D .7ab 6ba ab -=6.如图,将正方体的平面展开图重新折成正方体后,“会”字对面的字是( )A .秦B .淮C .源D .头7.有理数 a 在数轴上的位置如图所示,下列各数中,可能在 1 到 2 之间的是( )A .-aB .aC .a -1D .1 -a8.下列计算结果正确的是( ) A .22321x x -=B .224325x x x +=C .22330x y yx -=D .44x y xy +=9.如图,点C 、D 为线段AB 上两点,6AC BD +=,且75AD BC AB +=,则CD 等于( )A .6B .4C .10D .30710.据报道,2019年建成的某新机场将满足年旅客吞吐量45 000 000人次的需求.将45 000 000用科学记数法表示应为( ) A .0.45×108B .45×106C .4.5×107D .4.5×10611.﹣3的相反数是( ) A .13-B .13C .3-D .312.甲、乙两人在长为25米泳池内始终以匀速游泳,两人同时从起点出发,触壁后原路返回,如是往返;甲的速度是1米/秒,乙的速度是0.6米/秒,那么第十次迎面相遇时他们离起点( ) A .7.5米 B .10米C .12米D .12.5米13.将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( ) A .B .C .D .14.一件商品,按标价八折销售盈利 20 元,按标价六折销售亏损 10 元,求标价多少元?小明同学在解此题的时候,设标价为 x 元,列出如下方程: 0.8200.610x x -=+.小明同学列此方程的依据是( ) A .商品的利润不变 B .商品的售价不变 C .商品的成本不变D .商品的销售量不变15.一个长方形操场的长比宽长70米,根据需要将它扩建,把它的宽增加20米后,它的长就是宽的1.5倍.若设扩建前操场的宽为x 米,则下列方程正确的是( ) A . 1.5(7020)x x =-+ B .70 1.5(20)x x +=+ C .70 1.5(20)x x +=-D .70 1.5(20)x x -=+二、填空题16.列各数中:(5)+-,|2020|-,4π-,0,2019(2020)-,负数有________个. 17.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.18.若232a b -=,则2622020b a -+=_______.19.实验室里,水平圆桌面上有甲乙丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两根相同的管子在容器的5cm 高度处连接(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位高度为56cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是16cm.20.已知222x y -+的值是 5,则 22x y -的值为________.21.请写出一个系数是-2,次数是3的单项式:________________. 22.如图,点B 是线段AC 上的点,点D 是线段BC 的中点,若4AB cm =,10AC cm =,则CD =___________cm .23.某班同学分组参加活动,原来每组8人,后来重新编组,每组6人,这样比原来增加了2组.设这个班共有x 名学生,则可列方程为___.24.如图,从A 到B 有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是 .25.已知x +y =3,xy =1,则代数式(5x +2)﹣(3xy ﹣5y )的值_____.三、解答题26.化简:(1)273a a a -+;(2)22(73)2(2)mn m mn m ---+.27.如图,已知在三角形ABC 中,BD AC ⊥于点D ,点E 是BC 上一点,EF AC ⊥于点F ,点M ,G 在AB 上,且AMD AGF ∠∠=,当1∠,2∠满足怎样的数量关系时,//DM BC ?并说明理由.28.如图是由6个棱长都为1cm 的小正方体搭成的几何体. (1)请在下面方格纸中分别画出它的左视图和俯视图; (2)该几何体的表面积为___________2cm ;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图 和俯视图不变,那么最多可以添加___________个小正方体.29.计算:(1)2(2)(3)(4)---⨯-.(2)125(60)236⎛⎫--⨯-⎪⎝⎭. 30.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.(请利用网格作图,画出的线请用铅笔描粗描黑)(1)过点C 画AB 的垂线,并标出垂线所过格点E ; (2)过点C 画AB 的平行线CF ,并标出平行线所过格点F ; (3)直线CE 与直线CF 的位置关系是 ; (4)连接AC ,BC ,则三角形ABC 的面积为 .31.如图,已知线段AB 上有一点C ,点M ,N 分别是线段AC ,BC 中点,若AB a ,AC b =,且a ,b 满足()210402ba -+-=.(1)求线段AB ,AC 的长度; (2)求线段MN 的长度. 32.先化简,再求值:()()22225343a b ababa b ---+,其中a=-2,b=12;33.甲、乙两车都从A 地出发,在路程为360千米的同一道路上驶向B 地.甲车先出发匀速驶向B 地.10分钟后乙车出发,乙车匀速行驶3小时后在途中的配货站装货耗时20分钟.由于满载货物,乙车速度较之前减少了40千米/时.乙车在整个途中共耗时133小时,结果与甲车同时到达B 地. (1)甲车的速度为 千米/时; (2)求乙车装货后行驶的速度;(3)乙车出发 小时与甲车相距10千米?四、压轴题34.如图,已知数轴上两点A ,B 表示的数分别为﹣2,6,用符号“AB ”来表示点A 和点B 之间的距离.(1)求AB 的值;(2)若在数轴上存在一点C ,使AC =3BC ,求点C 表示的数;(3)在(2)的条件下,点C 位于A 、B 两点之间.点A 以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C 以2个单位/秒的速度也沿着数轴的正方向运动,到达B 点处立刻返回沿着数轴的负方向运动,直到点A 到达点B ,两个点同时停止运动.设点A 运动的时间为t ,在此过程中存在t 使得AC =3BC 仍成立,求t 的值.35.如图:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,a 是多项式2241x x --+的一次项系数,b 是最小的正整数,单项式2412x y -的次数为.c()1a =________,b =________,c =________;()2若将数轴在点B 处折叠,则点A 与点C ________重合(填“能”或“不能”);()3点A ,B ,C 开始在数轴上运动,若点C 以每秒1个单位长度的速度向右运动,同时,点A 和点B 分别以每秒3个单位长度和2个单位长度的速度向左运动,t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,则AB =________,BC =________(用含t 的代数式表示);()4请问:3AB BC -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.36.如图9,点O 是数轴的原点,点A 表示的数是a 、点B 表示的数是b ,且数a 、b 满足()26120a b -++=.(1)求线段AB 的长;(2)点A 以每秒1个单位的速度在数轴上匀速运动,点B 以每秒2个单位的速度在数轴上匀速运动.设点A 、B 同时出发,运动时间为t 秒,若点A 、B 能够重合,求出这时的运动时间;(3)在(2)的条件下,当点A 和点B 都向同一个方向运动时 ,直接写出经过多少秒后,点A 、B 两点间的距离为20个单位.37.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?38.点O 在直线AD 上,在直线AD 的同侧,作射线OB OC OM ,,平分AOC ∠. (1)如图1,若40AOB ∠=,60COD ∠=,直接写出BOC ∠的度数为 ,BOM ∠的度数为 ;(2)如图2,若12BOM COD ∠=∠,求BOC ∠的度数; (3)若AOC ∠和AOB ∠互为余角且304560AOC ∠≠,,,ON 平分BOD ∠,试画出图形探究BOM ∠与CON ∠之间的数量关系,并说明理由.39.已知:点O 为直线AB 上一点,90COD ∠=︒ ,射线OE 平分AOD ∠,设COE α∠=.(1)如图①所示,若25α=︒,则BOD ∠= .(2)若将COD ∠绕点O 旋转至图②的位置,试用含α的代数式表示BOD ∠的大小,并说明理由;(3)若将COD ∠绕点O 旋转至图③的位置,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .(4)若将COD ∠绕点O 旋转至图④的位置,继续探究BOD ∠和COE ∠的数量关系,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .40.如图,已知点A 、B 是数轴上两点,O 为原点,12AB =,点B 表示的数为4,点P 、Q 分别从O 、B 同时出发,沿数轴向不同的方向运动,点P 速度为每秒1个单位.点Q 速度为每秒2个单位,设运动时间为t ,当PQ 的长为5时,求t 的值及AP 的长.41.如图,点A ,B ,C 在数轴上表示的数分别是-3,3和1.动点P ,Q 两同时出发,动点P 从点A 出发,以每秒6个单位的速度沿A →B →A 往返运动,回到点A 停止运动;动点Q 从点C 出发,以每秒1个单位的速度沿C →B 向终点B 匀速运动.设点P 的运动时间为t (s ).(1)当点P 到达点B 时,求点Q 所表示的数是多少; (2)当t =0.5时,求线段PQ 的长;(3)当点P 从点A 向点B 运动时,线段PQ 的长为________(用含t 的式子表示); (4)在整个运动过程中,当P ,Q 两点到点C 的距离相等时,直接写出t 的值.42.已知点O 为直线AB 上的一点,∠EOF 为直角,OC 平分∠BOE , (1)如图1,若∠AOE=45°,写出∠COF 等于多少度;(2)如图1,若∠AOE=()090n n ︒<<,求∠COF 的度效(用含n 的代数式表示);(3)如图2,若∠AOE=()90180n n ︒<<,OD 平分∠AOC,且∠AOD-∠BOF=45°,求n 的值.43.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据正方体的展开图即可得出答案.【详解】根据正方体的展开图可知:“数”的对面的字是“养”“学”的对面的字是“核”“心”的对面的字是“素”故选:D.【点睛】本题主要考查正方体的展开图,掌握正方体展开图的特点是解题的关键.2.A解析:A【解析】【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【详解】A.﹣xy与2yx,所含字母相同,相同字母的指数也相同,是同类项.故选项A符合题意;B.2ab与2abc,所含字母不相同,不是同类项.故选项B不符合题意;C.x2y与x2z,所含字母不相同,不是同类项.故选项C不符合题意;D.a2b与ab2,所含字母相同,相同字母的指数不相同,不是同类项.故选项D不符合题意.故选A.【点睛】本题考查了同类项,关键是理解同类项定义中的两个“相同”:相同字母的指数相同.3.D解析:D 【解析】 【分析】根据∠1=∠BOD+EOC -∠BOE ,利用等腰直角三角形的性质,求得∠BOD 和∠EOC 的度数,从而求解即可. 【详解】 解:如图,根据题意,有90AOD BOE COF ∠=∠=∠=︒, ∴903555BOD ∠=︒-︒=︒,902565COE ∠=︒-︒=︒, ∴155659030BOD COE BOE ∠=∠+∠-∠=︒+︒-︒=︒; 故选:D. 【点睛】本题考查了角度的计算,正确理解∠1=∠BOD+∠COE -∠BOE 这一关系是解决本题的关键.4.C解析:C 【解析】 【分析】将运算符号放入方框,计算即可作出判断. 【详解】解:-3+0.5=-2.5;-3-0.5=-4.5;-3×0.5=-1.5;-3÷0.5=-6, ∵-6<-4.5<-2.5<-1.5∴使得算式-1□0.5的值最大时,则“□”中填入的运算符号是×, 故选:C . 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.5.D解析:D 【解析】 【分析】根据合并同类项系数相加字母及指数不变,可得答案.【详解】解:A、合并同类项系数相加字母及指数不变,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、不是同类项不能合并,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.【点睛】本题考查了合并同类项,合并同类项系数相加字母及指数不变是解题关键,注意不是同类项不能合并.6.C解析:C【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“秦”字对面的字是“灯”,“淮”字对面的字是“头”,“会”字对面的字是“源”.故选:C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.C解析:C【解析】【分析】根据数轴得出-3<a<-2,再逐个判断即可.【详解】A、∵从数轴可知:-3<a<-2,∴2<-a<3,故本选项不符合题意;B、∵从数轴可知:-3<a<-2,∴2<a<3,故本选项不符合题意;C、∵从数轴可知:-3<a<-2,∴2<a<3,∴1<|a|-1<2,故本选项符合题意;D、∵从数轴可知:-3<a<-2,∴3<1 –a<4,故本选项不符合题意;故选:C .【点睛】本题考查了数轴和绝对值、有理数的大小,能根据数轴得出-3<a <-2是解此题的关键.8.C解析:C【解析】【分析】根据合并同类项法则逐一进行计算即可得答案.【详解】A. 22232x x x -=,故该选项错误;B. 222325x x x +=,故该选项错误;C. 22330x y yx -=,故该选项正确D. 4x y +,不能计算,故该选项错误故选:C【点睛】本题考查了合并同类项,掌握合并同类项法则是解题的关键.9.B解析:B【解析】【分析】 由线段和差可得35AC BD AB +=,由6AC BD +=即可得AB 的长度,即可得CD 的长度.【详解】 解:∵75AD BC AB += 又∵AD BC AD CD BD AB CD +=++=+ ∴75AB CD AB +=∴25CD AB = ∴35AC BD AB CD AB +=-=∵6AC BD += ∴3=65AB ∴=10AB∴22=10=455CD AB=⨯故选:B【点睛】本题考查了线段和差及倍数关系,掌握线段的和差及转化是解题的关键.10.C解析:C【解析】【分析】用科学记数法表示较大数时的形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:45 000 000=4.5×107,故选:C.【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键.11.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.12.D解析:D【解析】【分析】根据题意,画出图形,即可发现,甲乙每迎面相遇一次,两人共行驶50米,从而求出第十次迎面相遇时的总路程,然后除以速度和即可求出甲行驶的时间,从而求出甲行驶的路程,然后计算出甲行驶了几个来回即可判断.【详解】解:根据题意,画出图形可知:甲乙每迎面相遇一次,两人共行驶25×2=50米,∴第十次迎面相遇时的总路程为50×10=500米∴甲行驶的时间为500÷(1+0.6)=12504s ∴甲行驶的路程为12504×1=12504米 ∵一个来回共50米 ∴12504÷50≈6个来回 ∴此时距离出发点12504-50×6=12.5米 故选D .【点睛】此题考查的是行程问题,掌握行程问题中的各个量之间的关系是解决此题的关键. 13.C解析:C【解析】【分析】【详解】由四棱柱的四个侧面及底面可知,A 、B 、D 都可以拼成无盖的正方体,但C 拼成的有一个面重合,有两面没有的图形.所以将一个无盖正方体形状盒子的表面沿某些棱展开后不能得到的平面图形是C . 故选C .14.C解析:C【解析】【分析】0.8x-20表示售价与盈利的差值即为成本,0.6x+10表示售价与亏损的和即为成本,所以列此方程的依据为商品的成本不变.【详解】解:设标价为x 元,则按八折销售成本为(0.8x-20)元,按六折销售成本为(0.6x+10)元, 根据题意列方程得, 0.8200.610x x -=+.故选:C.【点睛】本题考查一元一次方程的实际应用,即销售问题,根据售价,成本,利润之间的关系找到等量关系列方程是解答此题的关键.15.B解析:B【解析】【分析】先表示出操场的长,再根据“把它的宽增加20米后,它的长就是宽的1.5倍”列出方程即可.【详解】解:若设扩建前操场的宽为x 米,则它的长为70x +米,根据题意70 1.5(20)x x +=+,故选:B .【点睛】本题考查了一元一次方程的应用.解决本题的关键是找到等量关系.长=扩建后宽×1.5.二、填空题16.3【解析】【分析】先将原数化简,然后根据负数的定义进行判断.【详解】解:,,负数有:,,,共3个故答案为:3【点睛】本题考查负数的定义,求一个数的绝对值,双重符号的化简,负数的奇次 解析:3【解析】【分析】先将原数化简,然后根据负数的定义进行判断.【详解】解:(5)5+-=-,20202020-=,负数有:(5)+-,4π-,2019(2020)-,共3个 故答案为:3【点睛】本题考查负数的定义,求一个数的绝对值,双重符号的化简,负数的奇次幂是负数,掌握相关法则是本题的解题关键. 17.一【解析】【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答解析:一【解析】【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.18.2016【解析】【分析】将变形为后再代入求解即可.【详解】∵,∴.【点睛】本题考查代数式的化简求值,解题的关键是能将变形为.解析:2016【解析】【分析】将2622020b a -+变形为22(3)2020a b --+后再代入求解即可.【详解】∵232a b -=,∴226220202(3)20202220202016b a a b -+=--+=-⨯+=.【点睛】本题考查代数式的化简求值,解题的关键是能将2622020b a -+变形为22(3)2020a b --+. 19.1,,.【解析】【分析】先根据题意算出乙和丙每分钟注水量,随着时间变化可以分三种情况讨论,①当甲比乙高,②乙比加高,③乙溢出到甲后,乙比甲高. 【详解】试题分析:∵甲、乙、丙三个圆柱形容器(解析:1,75, 17340.【解析】【分析】先根据题意算出乙和丙每分钟注水量,随着时间变化可以分三种情况讨论,①当甲比乙高,②乙比加高,③乙溢出到甲后,乙比甲高.【详解】试题分析:∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,∴甲、乙、丙三个圆柱形容器的底面积之比为1:4:1,∵每分钟同时向乙和丙注入相同量的水,注水1分钟,乙的水位上升56 cm,∴注水1分钟,丙的水位上升510463⨯=cm,①当甲比乙高16cm时,此时乙中水位高56cm,用时1分;②当乙比甲水位高16cm 时,乙应为76cm,757=665÷分,当丙的高度到5cm时,此时用时为5÷103=32分,因为73<52,所以75分乙比甲高16cm.③当丙高5cm时,此时乙中水高535624⨯=cm,在这之后丙中的水流入乙中,乙每分钟水位上升55263⨯=cm,当乙的水位达到5cm时开始流向甲,此时用时为355+5243⎛⎫-÷⎪⎝⎭=154分,甲水位每分上升1020233⨯=cm,当甲的水位高为546cm时,乙比甲高16cm,此时用时155201734146340⎛⎫+-÷=⎪⎝⎭分;综上,开始注入1,75,17340分钟的水量后,甲与乙的水位高度之差是16cm.【点睛】本题考查圆柱体与水流变化的结合,关键在于找到三个分类节点. 20.3【解析】【分析】根据已知条件列出等式,将等式变形得出整体代数式,即可求值.【详解】解:根据题意得,,∴.故答案为:3.【点睛】本题考查代数式求值,整体代入思想是解答此题的关键.解析:3【解析】【分析】根据已知条件列出等式,将等式变形得出整体代数式,即可求值.【详解】解:根据题意得,2225x y -+=,∴223x y -=.故答案为:3.【点睛】本题考查代数式求值,整体代入思想是解答此题的关键. 21.-2a3(答案不唯一)【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.依此写出一个系数是-2,次数是3的单项式.【详解析:-2a 3(答案不唯一)【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.依此写出一个系数是-2,次数是3的单项式.【详解】解:系数是-2,次数是3的单项式有:-2a 3.(答案不唯一)故答案是:-2a 3(答案不唯一).【点睛】考查了单项式的定义,注意确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.22.3【解析】【分析】求出BC 长,根据中点定义得出CDBC ,代入求出即可.【详解】∵AB=4cm,AC=10cm ,∴BC=AC﹣AB=6cm .∵D 为BC 中点,∴CDBC=3cm.故答案解析:3【解析】【分析】求出BC 长,根据中点定义得出CD 12=BC ,代入求出即可. 【详解】∵AB =4cm ,AC =10cm ,∴BC =AC ﹣AB =6cm .∵D 为BC 中点,∴CD 12=BC =3cm . 故答案为:3.【点睛】本题考查了有关两点间的距离的应用,关键是求出BC 的长和得出CD 12=BC . 23.=﹣2.【解析】【分析】设这个班学生共有人,先表示出原来和后来各多少组,其等量关系为后来的比原来的增加了组,根据此列方程求解.【详解】设这个班学生共有人,根据题意得:.故答案是:.【 解析:8x =6x ﹣2. 【解析】【分析】设这个班学生共有x 人,先表示出原来和后来各多少组,其等量关系为后来的比原来的增加了2组,根据此列方程求解.【详解】设这个班学生共有x 人, 根据题意得:286x x =-. 故答案是:286x x =-. 【点睛】此题考查了由实际问题抽象出一元一次方程,其关键是找出等量关系及表示原来和后来各多少组. 24.两点之间线段最短【解析】试题分析:根据两点之间线段最短解答.解:道理是:两点之间线段最短.故答案为两点之间线段最短.考点:线段的性质:两点之间线段最短.解析:两点之间线段最短【解析】试题分析:根据两点之间线段最短解答.解:道理是:两点之间线段最短.故答案为两点之间线段最短.考点:线段的性质:两点之间线段最短.25.14【解析】【分析】先将代数式(5x+2)﹣(3xy ﹣5y )化简为:5(x+y )﹣3xy+2,然后把x+y =3,xy =1代入求解即可.【详解】解:∵x+y =3,xy =1,∴(5x+2)﹣解析:14【解析】【分析】先将代数式(5x+2)﹣(3xy ﹣5y )化简为:5(x+y )﹣3xy+2,然后把x+y =3,xy =1代入求解即可.【详解】解:∵x+y =3,xy =1,∴(5x+2)﹣(3xy ﹣5y )=5x+2﹣3xy+5y=5(x+y )﹣3xy+2=5×3﹣3×1+2=14【点睛】本题考查了整式的加减,解答本题的关键在于将代数式(5x+2)-(3xy-5y )化简为:5(x+y )-3xy+2,然后把x+y=3,xy=1代入求解.三、解答题26.(1)-2a ;(2)297mn m -.【解析】【分析】按照整式的的计算规律进行计算即可.【详解】(1)解:原式=5a -7a=-2a .(2)解:原式=227324mn m mn m -+-=297mn m -.【点睛】本题考查整式的计算,关键在于掌握计算法则.27.当12∠∠=时,//DM BC【解析】【分析】根据平行线的性质得到2CBD ∠∠=,等量代换得到1CBD ∠∠=,根据平行线的判定定理得到//GF BC ,证得//MD GF ,根据平行线的性质即可得到结论.【详解】当12∠∠=时,//DM BC ,理由://BD EF ,2CBD ∠∠∴=,12∠∠=,1CBD ∠∠∴=,//GF BC ∴,AMD AGF ∠∠=,//MD GF ∴,//DM BC ∴.【点睛】本题考查了平行线的判定和性质,解题关键是熟练掌握平行线的判定和性质.28.(1)详见解析;(2)26;(3)2【解析】【分析】(1)左视图有三列,小正方形的个数分别是1,,2,1;俯视图有3列,小正方形的个数分别是3,1,1;(2)分别数出前后左右上下6个方向的正方形的个数,再乘以1个面的面积即可求解;(3)保持俯视图和左视图不变,可以在第2排的左边和中间这两个上面空余位置各放一个,即共添加2个小正方体.【详解】解:(1)如图所示:(2)(5×2+ 4×2+ 4×2)×(1×1)=26;(3)若保持这个几何体的左视图和俯视图不变,那么最多可以添加2个小正方体.【点睛】本题考查画三视图,解题关键是掌握在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.29.(1)-8;(2)60.【解析】【分析】(1)先计算乘方和乘法,再计算减法,即可得到答案;(2)利用乘法分配律进行计算,即可得到答案.【详解】(1)解:原式=4-12=-8;(2)解:原式=-30+40+50=60.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则.30.(1)如图,直线CE即为所求;见解析;(2)如图,直线CF即为所求;见解析;(3)CE⊥CF(4)192.【解析】【分析】(1)构造全等三角形解决问题即可;(2)构造平行四边形解决问题即可;(3)根据平行线的性质即可判断;(4)利用分割法计算三角形的面积即可;【详解】解:(1)如图,直线CE 即为所求;(2)如图,直线CF 即为所求;(3)∵CF ∥AB ,CE ⊥AB ,∴CE ⊥CF ;(4)S △ABC =20﹣12×3×4﹣12×1×4﹣12×1×5=192.【点睛】本题考查作图—应用与设计、平行线的判定和性质、全等三角形和平行四边形的应用、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 31.(1)10AB =,8AC =;(2)5【解析】【分析】(1)根据非负性即可求解;(2)根据中点的性质即可求解.【详解】(1)解:由题意得:10a =,8b =;10AB =,8AC =.(2)∵M 为AC 中点,8AC =,∴142MC AC ==. 又∵10AB =,∴1082BC AB AC =-=-=,又∵N 为BC 中点,∴112CN BC ==, ∴415MN MC CN =+=+=.【点睛】此题主要考查线段间的数量关系,解题的关键是熟知非负性及中点的性质.32.3a 2b-ab 2,132【解析】【分析】先根据去括号法则和合并同类项法则将整式化简,然后代入求值即可.【详解】解:()()22225343a b ab ab a b ---+=2222155412a b ab ab a b -+-=223a b ab -将a=-2,b=12代入,得 原式=()()221113322222⎛⎫⨯-⨯--⨯= ⎪⎝⎭【点睛】此题考查的是整式的化简求值题,掌握去括号法则和合并同类项法则是解决此题的关键.33.(1)80;(2)60千米/时;(3)16或76或236. 【解析】【分析】(1)设甲车的速度为x 千米/时,根据甲车时间比乙车时间多用10分钟,路程为360千米,列方程求解即可;(2)设乙车装货后的速度为x 千米/时,根据“满载货物后,乙车速度较之前减少了40千米/时.乙车在整个途中共耗时133小时”列方程,求解即可; (3)分两种情况讨论:①装货前,设乙车出发x 小时两车相距10千米,列方程求解即可;②乙车装货后,设乙车又行驶了x 小时与甲车相距10千米.列方程求出x 的值,再加上3小时20分钟即可.【详解】(1)设甲车的速度为x 千米/时,根据题意得: (1310360+)x =360 解得:x =80. 答:甲车的速度为80千米/时.(2)设乙车装货后的速度为x 千米/时,根据题意得:13203(40)(3)360360x x ++--= 解得:x =60.答:乙车装货后行驶的速度为60千米/时.(3)分两种情况讨论:①装货前,设乙车出发x 小时两车相距10千米,根据题意得:1010080()1060x x -+= 解得:x =16或x =76. ②乙车装货后,设乙车又行驶了x 小时与甲车相距10千米.此时乙车在前,甲车在后. 乙车装货结束时,甲车行驶的路程=80×(3+3060)=280(千米),乙车行驶的路程=100×3=300(千米).根据题意得:280+80x +10=300+60x解得:x =0.5 乙车一共用了202330.5606++=(小时). 答:乙车出发16小时或76小时或236小时与甲车相距10千米. 【点睛】本题考查了一元一次方程的应用.分类讨论是解答本题的关键.四、压轴题34.(1)8;(2)4或10;(3)t 的值为167和329【解析】【分析】(1)由数轴上点B 在点A 的右侧,故用点B 的坐标减去点A 的坐标即可得到AB 的值; (2)设点C 表示的数为x ,再根据AC=3BC ,列绝对值方程并求解即可;(3)点C 位于A ,B 两点之间,分两种情况来讨论:点C 到达B 之前,即2<t<3时;点C 到达B 之后,即t>3时,然后列方程并解方程再结合进行取舍即可.【详解】解:(1)∵数轴上两点A ,B 表示的数分别为﹣2,6∴AB =6﹣(﹣2)=8答:AB 的值为8.(2)设点C 表示的数为x ,由题意得|x ﹣(﹣2)|=3|x ﹣6|∴|x +2|=3|x ﹣6|∴x +2=3x ﹣18或x +2=18﹣3x∴x =10或x =4答:点C 表示的数为4或10.(3)∵点C 位于A ,B 两点之间,∴点C 表示的数为4,点A 运动t 秒后所表示的数为﹣2+t ,。
福建省龙岩七年级上学期数学期末考试试卷
福建省龙岩七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分) (2018八上·无锡期中) 下列图形中,不是轴对称图形的是()A .B .C .D .2. (1分)用9根相同的火柴棒拼成一个三角形,火柴棒不允许剩余、重叠和折断,则能摆出不同的三角形的个数是()A . 4种B . 3种C . 2种D . 1种3. (1分)小马虎在下面的计算中只做对了一道题,他做对的题目是()A . 2a3+a3=3a6B . (﹣a)2•a3=﹣a6C . (﹣)﹣2=4D . (﹣2)0=﹣14. (1分)(2019·河南) 如图,,,,则的度数为()A .B .C .D .5. (1分) (2016七上·重庆期中) 已知a,b互为相反数,c,d互为倒数,|e|= ,则代数式5(a+b)2+ cd﹣2e的值为()A . ﹣B .C . 或﹣D . ﹣或6. (1分)下列各式能用完全平方公式进行分解因式的是()A . x2+1B . x2+2x-1C . x2+x+1D . x2+4x+47. (1分)右图是一数值转换机,若输入的x为-2,则输出的结果为()A . 19B . -19C . -20D . 208. (1分) (2018八上·蔡甸期中) 已知凸n边形有n条对角线,则此多边形的内角和是()A . 360°B . 540°C . 720°D . 900°9. (1分) (2017八上·鄞州月考) 如图所示,有以下三个条件:①AC=AB;②AB∥CD;③∠1=∠2.从这三个条件中任选两个作为条件,另一个作为结论,则组成真命题的个数为()A . 0B . 1C . 2D . 310. (1分)(2019·平谷模拟) 如果m2+m﹣3=0,那么的值是()A . 2B . 3C . 4D . 5二、填空题 (共6题;共6分)11. (1分)(2012·沈阳) 分解因式:m2﹣6m+9=________.12. (1分) (2019九上·泰州月考) 内角和等于外角和2倍的多边形是________边形.13. (1分)用一张包装纸包一本长、宽、厚如图所示的书(单位:cm),如果将封面和封底每一边都包进去3cm .则需长方形的包装纸________ .14. (1分) (2019八下·兴化月考) 已知关于x的方程=3的解是非负数,则m的取值范围是________.15. (1分)(2019·福州模拟) 如图,在平面直角坐标系中,O为原点,点A在第一象限,点B是x轴正半轴上一点,∠OAB=45°,双曲线y=过点A ,交AB于点C ,连接OC ,若OC⊥A B ,则tan∠ABO的值是________.16. (1分) (2019七上·辽阳月考) 已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是________度三、解答题 (共10题;共16分)17. (2分)计算:(1)(﹣6x3y2+2xy)÷2xy(2) 2(a﹣3)(a+2)﹣(4+a)(4﹣a)(3)(﹣1)2016﹣()﹣1+(2﹣)0+(﹣2)(4)(ab﹣b2)÷ .18. (2分) (2017七下·江阴期中) 因式分解:(1)(2)19. (1分)先化简,再求值÷,其中x满足x2-x-1=0.20. (1分)如图,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.21. (1分)(2017·房山模拟) 某校组织同学到离校15千米的社会实践基地开展活动,一部分同学骑自行车前往,另一部分同学在骑自行车的同学出发小时后,乘汽车沿相同路线行进,结果骑自行车的与乘汽车的同学同时到达目的地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省龙岩七年级上学期数学期末考试试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共8题;共16分)
1. (2分)下列说法中错误的有()
①若两数的差是正数,则这两个数都是正数②任何数的绝对值都不是负数
③零减去任何一个有理数,其差是该数的相反数④倒数等于本身的数是1
⑤若两数和为正,则这两个数都是正数.
A . 1个
B . 2个
C . 3个
D . 4个
2. (2分)钟面角是指时钟的时针与分针所成的角,如果时间从下午2点整到下午4点整,钟面角为90°的情况有()
A . 有一种
B . 有二种
C . 有三种
D . 有四种
3. (2分)(2016·义乌模拟) 下列说法正确的是()
A . 两名同学5次成绩的平均分相同,则方差较大的同学成绩更稳定
B . 某班选出两名同学参加校演讲比赛,结果一定是一名男生和一名女生
C . 学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大
D . 为了解我是学校“阳光体育”活动开展情况,必须采用普查的方式
4. (2分)将分式中的x,y的值同时扩大10倍,则分式的值()
A . 扩大100倍
B . 扩大10倍
C . 不变
D . 缩小为原来的
5. (2分)如果延长线段AB到C ,使得BC=AB,那么AC∶AB等于()
A . 2∶1
B . 2∶3
C . 3∶1
D . 3∶2
6. (2分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:
根据图表提供的信息,样本中,身高在160≤x<170之间的女学生人数为()
A . 8
B . 6
C . 14
D . 16
7. (2分)整理一批图书,由一个人做要48小时完成,现在计划由一部分人先做4小时,再增加3人和他们一起做6小时,完成这项工作,假设这些人的工作效率相同,则应先安排几个人工作?()
A . 3
B . 4
C . 5
D . 6
8. (2分)下面的几何体中,属于棱柱的有()
A . 1个
B . 2个
C . 3个
D . 4个
二、填空题 (共8题;共8分)
9. (1分) (2016八上·怀柔期末) 若a<1,化简等于________.
10. (1分) (2017七上·深圳期末) 若单项式与是同类项,则的值是________.
11. (1分)若关于的方程的解为正数,则的取值范围是________.
12. (1分)如图,点A、O、B在一条直线上,且∠AOC=50°,OD平分∠AOC,则图中∠BOD=________.
13. (1分)(2014·北海) 某校男子足球队的年龄分布如图的条形统计图,则这些足球队的年龄的中位数是________岁.
14. (1分) (2018八上·蔡甸期中) 如图,在△ABC中,AD是高,AE平分∠BAC,∠B=50°,∠C=80°,则∠DAE=________.
15. (1分)用长12cm的铁丝围成一个长是宽2倍的长方形,则长方形的面积是________
16. (1分)(2020·遂宁) 如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为a1 ,第2幅图中“▱”的个数为a2 ,第3幅图中“▱”的个数为a3 ,…,以此类推,若 + + +…+ =.(n为正整数),则n的值为________.
三、解答题 (共8题;共72分)
17. (8分) (2017九下·盐城期中) 如图,在△ABC中,
(1)在图中作出△ABC的内角平分线AD.(要求:尺规作图,保留作图痕迹,不写证明过程)
(2)若∠BAC = 2∠C,在已作出的图形中,△________∽△________
(3)画出△ABC的高AE(使用三角板画出即可),若∠B=α,∠C=β,那么∠DAE=________(请用含α、β的代数式表示)
18. (5分)先化简,再求值
[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷(2x);其中x=2,y= .
19. (10分) (2016七上·单县期末) 解方程:
(1) 0.8x+(10﹣x)=9
(2) x+ .
20. (15分) (2019八上·涵江月考) 已知:在△AB C中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且BD⊥AE 于D,CE⊥AE于E.
(1)当直线AE处于如图①的位置时,有BD=DE+CE,请说明理由;
(2)当直线AE处于如图②的位置时,则BD、DE、CE的关系如何?请说明理由;
(3)归纳(1)、(2),请用简洁的语言表达BD、DE、CE之间的关系.
21. (5分) (2018七上·双柏期末) 甲乙两车分别相距360km的A,B两地出发,甲车的速度为65km/h,乙车的速度为55km/h.两车同时出发,相向而行,求经过多少小时后两车相距60 km.
22. (12分)(2020·韩城模拟) 年中国“两会时间”5月21日正式开启,特殊时期召开的中国两会备受世界瞩目.某校为让学生进一步了解2020年“两会”热点,计划开展关于两会的宣讲活动,开展活动之前,教务处随机抽取若干名学生,对“你最想听的宣讲内容”进行了调查,有A.民生改善、B.国家治理、C.生态文明建设、D.法治保障四项宣讲内容,经统计,被调查学生按学校要求,并结合自身的兴趣,每人从这四项宣讲内容中选择一项现将调查结果绘制成如下两幅不完整的统计图.
结合图中信息解答下列问题:
(1)请将两幅统计图补充完整,________所抽取学生最想听的宣讲内容的众数是________;
(2)在这次调查中,哪项宣讲内容的选择人数少于各项宣讲内容选择人数的平均数?
(3)若本校一共有名学生,请估计“最想听国家治理”的人数.
23. (10分) (2019七上·荣昌期中) 某校计划购买 20 张书柜和一批书架(书架不少于 20 个),现从 A、B 两家超市了解到:同型号的产品价格相同,书柜每张 210 元,书架每个 70 元,A 超市的优惠政策为每买一张书柜赠送一个书架,B 超市的优惠政策为所有商品打八折.设购买书架 a 个.
(1)若规定只能到其中一个超市购买所有物品,请分别用含有 a 的代数式写出在 A、B 两家超市购买所有物品所需的费用(要求:化简);
(2)在什么情况下到两家超市购买所用价钱一样?
24. (7分) (2018七上·从化期末) 如图,数轴上点A表示的数为8,B是数轴上一点,且AB=14,动点P 从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)点B表示的数为________,点P表示的数为________(用含t的式子表示);
(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P,H同时出发,问点P运动多少秒时追上点H?
参考答案一、单选题 (共8题;共16分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
二、填空题 (共8题;共8分)
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共8题;共72分)
17-1、答案:略
17-2、答案:略
17-3、答案:略
18-1、答案:略
19-1、
19-2、答案:略
20-1、答案:略
20-2、答案:略
20-3、
21-1、
22-1、
22-2、答案:略
22-3、答案:略
23-1、
23-2、
24-1、24-2、。