遗传学中的细胞遗传学

合集下载

细胞遗传学复习资料

细胞遗传学复习资料

细胞遗传学复习资料第二章染色体的形态结构Chromosome:A molecular of DNA, and associated protein bound together.Each chromosome contains:Centromere, Kinetochore, Telomere, Euchromatin and Heterochromatin.染色质(Chromatin):在尚未分裂的细胞核中,显微镜下可见的可被碱性染料染色较深的、纤细的网状物。

染色体(Chromosome): 细胞分裂时,由染色质卷缩(螺旋化)而形成的呈现为一定数目和形态的细胞结构,是遗传物质的最主要的载体。

研究染色体形态最适合的时期:•有丝分裂中期•减数分裂第一次分裂前期I的粗线期第一节有丝分裂中期染色体大小:不同物种间染色体的大小差异很大,长度的变幅为(0.20-50 μm),宽度的变幅为(0.20-2.00 μm)。

(显微镜的最小分辨率δ=0.61λ/ NA ,λ=0.55 μm NA=1.4,δ约为0.25 μm。

NA为物镜的数值孔径)同一物种不同染色体宽度大致相同,其染色体大小主要对长度而言。

小麦:染色体平均长度11.2 μm,总长235.4 μm。

在细胞周期中,染色体处于动态的收缩过程中。

绝对长度:实际测量值。

相对长度:特定染色体的长度在单倍染色体组总长度中所占的比例。

染色体大、数目少的物种是细胞遗传学研究的优良实验材料,如果蝇(2n=8)、玉米、蚕豆、洋葱、麦类。

着丝粒(Centromere):A specialized chromosome region to which spindle fibers attach during cell division.着丝粒是细胞分裂时,纺锤丝附着(attachment)的区域,又称为着丝点。

着丝粒不会被染料染色,所以在光学显微镜下表现为染色体上一缢缩部位(无色间隔点),所以又称为主缢痕(primary constriction)。

遗传学细胞质遗传

遗传学细胞质遗传
形式存在于细胞之中。 能够自我复制,或者在核基因组作用下进行复制; 对寄主表现产生影响,类似细胞质遗传的效应。
㈡、草履虫放毒型的遗传:
1. 结构: 草履虫(Paramecium aurelia)是一种常见
的原生动物,种类很多。 大核(1个),是多倍体,主要负责营养; 小核(1~2个),是二倍体、主要负责遗传。
41
④.半自主性的细胞器: 线粒体内100多种蛋白质中,约有10种是线粒体本身
合成的,包括细胞色素氧化酶亚基、4种ATP酶亚基和1种 细胞色素b亚基。
∴线粒体的蛋白是由线粒体本身和核基因共同编码的, 是一种半自主性的细胞器。
42
第五节 共生体和质粒决定的染色体 外遗传
一、共生体的遗传:
㈠、共生体(symbionts): 不是细胞生存所必需的组成部分,仅以某种共生的
(二)持久的母性影响
例: 椎实螺外壳 的旋转方向受母亲基 因型控制,终生不变。 它受一对等位基因控 制,右旋(D)对左旋(d) 为显性。
椎实螺正反交,F1旋转方向都与各自母本相似,即右 旋或左旋,F2却都为右旋,F3才出现右旋和左旋的分 离。
P ♀DD × dd♂
右旋 左旋
♀dd × DD♂
左旋 右旋
36
线粒体数目及mt DNA大小:
生物种类 酵母
几种生物的 mt DNA
每细胞中 线粒体数
mt DNA 大小 (kb)
22
84
鼠(L 细胞)
500
16.2
人(Hela 细胞) 800
16.6
mt DNA 与 核 DNA 比值
0.18
0.002 0.01
37
㈡、线粒体基因组的构成:
1981年Kanderson最早测出人的mt DNA全序列为16569 bp。 人、鼠、牛的mtDAN全序列中测出:

遗传的细胞学基础

遗传的细胞学基础

(1)Spermatogenesis and Oogenesis in an animal cell
2.4生活周期
有机体的生活周期是从合子形成到个体死亡 的过程中所发生的一系列事件的总和。真核生 物中,减数分裂产生单倍体细胞,在此过程中, 亲代的遗传物质通过染色体分离和交换产生新 的组合。单倍体细胞的融合产生几乎无穷的新 的遗传重组,因此,有机体的生活周期为遗传 物质的重组创造了机会。
2.2.4遗传的染色体学说
Sutton以及Boveri于1902—1903年间首先提出了 遗传的染色体学说(chromosome theory of inheritance) 推测:“父本和母本染色体的联会配对以及随后通过减数 分裂的分离构成了孟德尔遗传定律的物质基础。” 1903年,Sutton提出孟德尔的遗传因子是由染色体携带的, 因为: ①每一个细胞包含每一染色体的两份拷贝以及每一基因的两份 拷贝。 ②全套染色体,如同孟德尔的全套基因一样,在从亲代传递给 后代时并没有改变。 ③减数分裂时,同源染色体配对,然后分配到不同的配子中, 就如同一对等位基因分离到不同的配子中。
减数分裂的遗传学意义在于:
①只有一个细胞周期,却有两次连续的核分裂 。染色体及其DNA只复制一次(间期S期),细 胞分裂却有两次(减数分裂Ⅰ、Ⅱ)。 ②“减数”并不是随机的。所谓“减数”,实 质上是配对的同源染色体的分开。这是使有性 生殖的生物保持种族遗传物质(染色体数目) 恒定性的机制;同源染色体的分离决定了等位 基因的准确分离,为非同源染色体随机重组提 供了条件。
(2)染色体的结构
每个核小体包括一个组蛋白 八聚体(H2A、H2B、H3和H4各两 个分子)及缠绕在该核心表面的 200个碱基对左右的DNA。 DNA双螺旋在组蛋白八聚体分 子的表面盘绕1.75圈,其长度 约为146bp,负超螺旋,这种组 蛋白的核心颗粒大小约为5.5 nm×11 nm的扁球形。 相邻的两个核小体之间一般 由约55 bp的DNA连接,称为连 接区 DNA,在连接区部位结合 有一个组蛋白分子H1。

细胞遗传学名词解释1

细胞遗传学名词解释1

染色质(chromatin)最早是1879年Flemming提出的用以描述核中染色后强烈着色的物质。

现在认为染色质是细胞间期细胞核内能被碱性染料染色的物质。

染色质的基本化学成分为脱氧核糖核酸核蛋白,它是由DNA、组蛋白、非组蛋白和少量RNA组成的复合物。

常染色质euchromatin指间期核内染色质纤维折叠压缩程度低,处于伸展状态,用碱性染料染色时着色浅的那些染色质。

异染色质heterochromatin在细胞周期中,间期、早期或中、晚期,某些染色体或染色体的某些部分的固缩常较其他的染色质早些或晚些,其染色较深或较浅,具有这种固缩特性的染色体称为异染色质组成性异染色质constitutive heterochromatin除S期以外在整个细胞周期均处于聚缩状态, DNA包装比基本不变,可构成多个染色中心。

又称,结构性异染色质,是异染色质的主要类型。

兼性异染色质(facultative heterochromatin)在一定的细胞类型或一定的发育阶段呈现凝集状态的异染色质。

在一定时期的特种细胞的细胞核内, 原来的常染色质可转变成兼性异染色质。

异染色质化heterochromatinization常染色质转变为异染色质的过程。

Y染色质:男性Y染色体长臂远侧由异染色质构成,如用荧光染料染色时,可出现强荧光。

凝聚染色质condensed chromatin处于凝缩状态的染色质。

核小体nucleosome核小体的形状类似一个扁平的碟子或一个圆柱体。

染色质就是由一连串的核小体所组成。

由DNA和组蛋白(histone)构成染色质凝聚chromatin condensation;chromatin agglutination染色质凝缩进一步形成染色体的过程。

核小体核心nucleosome core由4种组蛋白各两分子组成的八聚体结构。

核小体核心颗粒nucleosome core particle由长度为146 bp的DNA区段与各两分子的H3/H4/H2A/H2B组蛋白八聚体组成。

医学遗传学课件第二章遗传的细胞学基础

医学遗传学课件第二章遗传的细胞学基础
内10nm 组蛋白
外30nm
螺旋管是在组蛋白H1协助下,6个核小体 缠绕一圈形成的中空性管.
solenoid
3 .三级结构:超螺旋管 它是由螺旋管进一步盘曲而形成。将螺
旋管长度压缩了40倍。
4. 四级结构:染色单体, 超螺旋管进一步 折叠又被压缩了5倍。
(二) 染色体支架-放射环模型
前期I(双线期)
diplotene
前期I(终变期)
diakinesis
(2)中期I Metaphase I
equatorial plate
中期I
(3)后期I Anaphase I
1.同源染色体分离,四分体二分体 2.非同源染色体随机组合。
(4)末期 I Telophase I
metaphase I
(二) Y染色质
正常男性在间期细胞,用荧光染料 染色后,在核内出现一强荧光小体,直 径0.3um,称y染色质。
Y染色质
y染色体长臂远端部分为异染色质,被荧 光染料染色后发出荧光,女性中不存在, 细胞中y染色质数目与y染色体数目相同。
核性别:间期细胞核中染色质的性别差异。
第三节 人类性别决定的染 色体机制
anaphase I
telophase I interphase
2 . 第二次减数分裂 Meiosis II
1. 二分体单分体 2.非姐妹染色单体随机组合。
前期 II
中期 II
后期 II
末期 II
(一)、减数分裂 I
1.同源染色体配对 1.二价体四分体 1.联会复合体消失
联会
2.非姐妹染色单 2.同源染色体某
结构异染色质:在所有细胞 类型及各发育阶段中均处于 凝集状态。 兼性异染色质:是在某些类 型或阶段,原有的常染色质 凝聚并丧失转录活性后转变 而成的异染色质,可转化为 常染色质。

人类细胞遗传学命名国际体系

人类细胞遗传学命名国际体系

人类细胞遗传学命名国际体系引言:人类细胞遗传学是研究人类细胞内基因组的组成、结构、功能和变异的学科。

为了统一国际间的遗传学研究,国际学术界制定了人类细胞遗传学命名国际体系,用于命名人类基因和染色体。

一、人类细胞遗传学命名国际体系的背景在遗传学研究中,命名是一项重要的任务,它能够确保研究成果的交流和共享。

然而,在不同国家和地区,对于命名规则和命名方式的理解和实践存在差异,这给国际合作和研究带来了一定的困难。

为了解决这个问题,国际学术界制定了人类细胞遗传学命名国际体系。

二、人类细胞遗传学命名国际体系的原则人类细胞遗传学命名国际体系遵循以下原则:1. 一致性原则:命名方式应统一、一致,便于国际间的交流和合作;2. 可读性原则:命名应简洁明了,易于阅读和理解;3. 唯一性原则:每个基因和染色体都应有唯一的名称,避免混淆;4. 可追溯性原则:命名应能够追溯到原始的研究成果和命名者。

三、人类细胞遗传学命名国际体系的组成人类细胞遗传学命名国际体系主要包括以下几个部分:1. 基因命名规则:根据基因的功能和特征,为基因命名。

基因名称通常由拉丁字母和数字组成,例如BRCA1、TP53等;2. 染色体命名规则:根据染色体的形状和大小,为染色体命名。

染色体名称通常由字母和数字组成,例如X染色体、Y染色体等;3. 突变命名规则:根据突变的类型和位置,为突变命名。

突变名称通常由基因名称、突变类型和突变位置组成,例如BRCA1 c.5266dupC、TP53 p.Arg273His等。

四、人类细胞遗传学命名国际体系的应用人类细胞遗传学命名国际体系广泛应用于人类遗传学研究和临床诊断中。

通过遵循命名规则,研究者和医生可以准确地识别和描述基因和染色体的变异情况,从而对遗传疾病的发生机制和诊断治疗提供更深入的理解。

五、人类细胞遗传学命名国际体系的进展和挑战随着遗传学研究的不断深入,人类细胞遗传学命名国际体系也在不断发展和完善。

近年来,随着高通量测序技术的广泛应用,大量新的基因和突变被发现,对命名体系提出了新的挑战。

遗传学第11章 细胞质遗传


●长度大小约80~600kb。最大的来自天竺葵 长度大小约 。最大的来自天竺葵cpDNA, , 只有85kb。 有 217kb,而一种绿藻的 ,而一种绿藻的cpDNA只有 只有 。 ●拷贝数:以显花植物为例,其每个叶肉细胞中约有 拷贝数:以显花植物为例 其每个叶肉细胞中约有 100 个叶绿体 每个叶绿体中又含有 个叶绿体,每个叶绿体中又含有 每个叶绿体中又含有100 多个质体基因组 拷贝。大麦:60个叶绿体 叶绿细胞,200个cpDNA分子 拷贝。大麦: 个叶绿体/叶绿细胞, 个 分子/ 个叶绿体 叶绿细胞 分子 叶绿体,> 分子/叶绿细胞 叶绿体,>10000个cpDNA分子 叶绿细胞;拟南芥:核 ,> 个 分子 叶绿细胞;拟南芥: 基因组、线粒体基因组和叶绿体基因组的比例 基因组、线粒体基因组和叶绿体基因组的比例=1:13:280
(2)叶绿体的序列结构与基因组成 ) ○反向重复序列(IRA和IRB) 反向重复序列( ○大单拷贝区(large single-copy region,LSC) 大单拷贝区( , ) ○小单拷贝区(small single-copy region,SSC) 小单拷贝区( , ) 含有87-183个基因,其中一半以上与蛋白质合 个基因, 含有 个基因 成有关。 成有关。
与紫茉莉花斑叶色一样, 与紫茉莉花斑叶色一样,天竺葵花斑叶性状也是通过细 胞质遗传的,但由于其精子中带有少量的细胞质, 胞质遗传的,但由于其精子中带有少量的细胞质,少数叶绿 精子中带有少量的细胞质 体则可以通过精子向后代传递,因此二者又是有区别的。 体则可以通过精子向后代传递,因此二者又是有区别的。 紫茉莉、 紫茉莉、天竺葵镶嵌花斑遗传的比较 紫 茉 莉 ♀ 亲 代 ♂ ♀ ♂ ♀ 天 竺 葵 ♂ ♀ ♂
绿色 × 花斑

遗传学—— 细胞质遗传


一、核质协同作用
?
一、核质协同作用
草履虫的放毒遗传
草履虫(1大核2小核) 草履虫的生殖
无性生殖 有性生殖
自体受精 异体接合
草履虫的放毒型与敏感型 草履虫放毒型与敏感型的接合
草履虫的自体受精
自体受精后新形成的二倍体均为纯合体
草履虫的异体接合
接合生殖遵循孟德尔规律
草履虫的放毒型与敏感型
已在43科、162属、320个种以上植物发现了 雄性不育。
2. 植物雄性不育类型
环境引起的雄性不育,染色体畸变造成的雄性不育和基因突变
引起的雄性不育。不育系、保持系、恢复系
⑴ 环境引起的雄性不育
① 物理杀雄 ② 化学杀雄
第九章 细胞质遗传
(细胞质遗传的概念)
第一节 细胞质遗传的主要特点和 遗传机制
第二节 细胞质基因和细胞核基因 的关系
细胞质遗传的概念
核遗传:染色体基因组所控制的遗传 现象和遗传规律。
细胞质遗传: 由细胞质基因所决定的 遗传现象和遗传规律,有时也称为核 外遗传或母性遗传。
第一节 细胞质遗传的主要特点 和遗传机制
♣ 不遵循孟德尔遗传,后代不出现一定的比 例(非孟德尔式遗传)。
精卵结合
P 配子
代表两种细胞核 代表两种质体 代表两种线粒体
F1
三、细胞质遗传的机制
1. 精卵结合形成的合子由父母双亲所提供的 遗传物质不均等。在受精卵的原生质体中, 核来自于父母双方,而细胞质却几乎完全 来自其母亲(精子受精时胞质很少甚至不 能进入卵细胞中)。
叶绿体基因组
质体DNA多为闭合环状分子,长约40~45μm, GC含量36~41%,比核DNA低。DNA裸露, 不和组蛋白结合。DNA中无甲基化(核DNA25% 左右的C是甲基化的)。120~160kb大小,多数为 150kb

细胞质遗传


(二)胞质不育型: 胞质不育型: 指由细胞质内的基因所决定的雄性不育类 型. 在不育系的细胞质内有雄性不育基因S 在不育系的细胞质内有雄性不育基因 S , 但在细胞核内没有相应的雄性不育基因和 可育基因. 可育基因. 这种雄性不育性仅受细胞质的基因所控制, 这种雄性不育性仅受细胞质的基因所控制, 具有S基因的个体是雄性不育的,具有N 具有S基因的个体是雄性不育的,具有N基 因的个体是雄性可育.因此,有性生殖不 因的个体是雄性可育.因此,有性生殖不 能恢复胞质不育型的育性. 能恢复胞质不育型的育性.
这表明卡巴粒只通过细胞质来传递, 这表明卡巴粒只通过细胞质来传递 , 但 是它们的保持却要依赖于核中显性基因K 是它们的保持却要依赖于核中显性基因K 的存在. 的存在. 然而, 基因型为Kk 的放毒型并不稳定, Kk的放毒型并不稳定 然而 , 基因型为 Kk 的放毒型并不稳定 , 一旦经自体受精 基因型分离为KK,Kk 自体受精, KK,Kk和 一旦经自体受精,基因型分离为KK,Kk和 kk, kk个体细胞质里的卡巴粒不能保持 kk , kk 个体细胞质里的卡巴粒不能保持 和增值, 几次无性分裂后, 和增值 , 几次无性分裂后 , 就将因卡巴 粒的消失而成为敏感型 敏感型. 粒的消失而成为敏感型.
2)线粒体基因组的半自主性
线粒体基因组的相对独立性 mtDNA合成的调节与核 DNA合成的调节彼 合成的调节与核DNA ① mtDNA 合成的调节与核 DNA 合成的调节彼 此独立,可能存在多种复制形式,其中D 此独立,可能存在多种复制形式,其中D 环复制是线粒体特有的复制形式; 环复制是线粒体特有的复制形式; 线粒体基因组有自己独立的表达系统, ② 线粒体基因组有自己独立的表达系统 , 自己编码两种rRNA 22~ 24种 tRNA, rRNA, 自己编码两种 rRNA , 22 ~ 24 种 tRNA , 在 线粒体内合成mtDNA编码的蛋白质; mtDNA编码的蛋白质 线粒体内合成mtDNA编码的蛋白质;

细胞遗传学复习

思考题第一章绪论1、成功的遗传学研究中实验材料的选择有什么特点?(1)生活周期短(2)容易培养(3)染色体数目少(4)染色体较大(5)有个别典型的形态特征(6)繁殖系数高2、举几例说明遗传学领域诺贝尔奖获得者及其在科学上的贡献。

3、对细胞遗传学简史的学习,你有何体会?4、“Cell Theory”(细胞学说)学说要点?(1)细胞是细胞生物的最小结构单位,是生物的基本单位(2)多细胞生物的每一个细胞要完成特定的工作,代表着一个工作单位(3)细胞只能从细胞分裂而来5、“Sutton—Boveri Theory of Chromosome inheritance”理论要点?鲍维里和萨顿于1902年发现,在雄雌配子形成和受精过程中,染色体的行为与孟德尔因子的行为是平行的,即:(1)孟德尔因子在个体的体细胞中是成对的,一个来自父本,一个来自母本,染色体也是这样。

(2)孟德尔因子在配子中不是成对的,而是单个存在的,染色体也是这样。

配子是单倍体。

(3)孟德尔因子能够产生跟自己相似的因子,有遗传性,它在杂交时能保持独立性和完整性。

染色体能复制出姐妹染色单体,它们在配子形成和受精时都保持独立性和完整性。

(4)孟德尔因子在形成配子时自由组合,染色体也是这样。

减数分裂时,来自父亲和来自母亲的同源染色体是随机地趋向两极,所以配子可能包含母本和父本染色体的任何组合状态。

辨别染色体形态的层次:(1)核型分析:染色体数目、染色体长度、着丝粒、臂比、次级缢痕(2)带型分析(3)染色体原位杂交技术第二章染色体结构1、名词解释:巴氏小体(Barr body)即性染色质。

无论一个个体有多少条X染色体,在体细胞中只有1条X染色体具有转录活性,其余的X染色体全部失活沉默,在细胞学上表现为异固缩,两个端粒互相靠近形成功能型异染色质体存在于核膜内侧,这种异染色质称性染色质,1949年由Barr发现,故称巴氏小体。

Lampbrush chromosome(灯刷染色体):为转录活跃的一类巨型染色体,存在于卵母细胞第一次减数分裂前期的双线期,二价染色体配对后,染色丝两侧产生无数突起,呈灯刷状,称灯刷染色体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遗传学中的细胞遗传学
遗传学是一门研究遗传规律及其应用的学科。

而细胞遗传学,则是研究细胞的
遗传现象。

在细胞遗传学中,涉及到DNA的复制、修复、重组等多个方面。

这些
现象对于生物的生长发育、疾病的产生如何治疗等方面都有着至关重要的影响。

一、DNA的复制
DNA复制是细胞遗传学中的基本过程。

每当一个细胞生长分裂时,就需要在
细胞核中对DNA进行复制。

DNA复制是一件极其复杂的过程。

它的错误可能会造成基因突变,从而导致细胞生长不正常,甚至疾病的发生。

DNA复制的过程中,首先需要将DNA链进行解旋,使得两个单链被分开。

在DNA的两条单链上,成对的碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和鸟嘧啶)会通过
氢键连接,并进行互补配对。

然后,在DNA链上,酶聚合酶将新的碱基加入到链
的末端,最终形成了两条完全相同的DNA分子。

二、DNA的重组
DNA重组是指两条不同的DNA链之间的碱基重新组合的过程。

这个过程涉及
到多种类型的DNA分子,包括基因、染色体、线粒体DNA等。

重组是一个非常
重要的过程,因为它可以促进基因的多样性,从而使生物种群更加适应环境的变化。

当两条不同的DNA链进行DNA重组时,它们交换了一些碱基。

这种基因交
流使得DNA分子具有新的序列中的碱基复合物。

这些新的碱基组合不仅仅会影响
基因的表达,还会改变染色体的结构。

三、DNA的修复
DNA修复是指一种细胞机制,可以对DNA分子中发生的环境损伤进行修复。

DNA的损伤通常是由于有害物质、电离辐射、太阳辐射以及氧自由基等产生的环
境因素引起的。

如果DNA没有被及时修复,会导致基因的改变,从而导致细胞生长不正常,甚至癌细胞的形成。

DNA修复有多种机制,包括碱基切除修复、互补修复、链断裂修复等。

每种修复机制都由一组特定的酶和蛋白质负责。

这些酶和蛋白质拥有不同的功能,可以识别和纠正DNA上的不同类型的损伤。

综上所述,细胞遗传学在生物学和医学等多个领域都有着重要影响。

DNA的复制、重组和修复都是细胞遗传学中的重要过程。

随着遗传学领域的不断发展,我们可以更进一步地理解这些复杂的细胞机制,为我们探索未知的治疗方法提供更多的乐观预期。

相关文档
最新文档