外文翻译----数字图像处理和模式识别技术关于检测癌症的应用

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

引言

英文文献原文

Digital image processing and pattern recognition techniques for the detection of cancer

Cancer is the second leading cause of death for both men and women in the world , and is expected to become the leading cause of death in the next few decades . In recent years , cancer detection has become a significant area of research activities in the image processing and pattern recognition community .Medical imaging technologies have already made a great impact on our capabilities of detecting cancer early and diagnosing the disease more accurately . In order to further improve the efficiency and veracity of diagnoses and treatment , image processing and pattern recognition techniques have been widely applied to analysis and recognition of cancer , evaluation of the effectiveness of treatment , and prediction of the development of cancer . The aim of this special issue is to bring together researchers working on image processing and pattern recognition techniques for the detection and assessment of cancer , and to promote research in image processing and pattern recognition for oncology . A number of papers were submitted to this special issue and each was peer-reviewed by at least three experts in the field . From these submitted papers , 17were finally selected for inclusion in this special issue . These selected papers cover a broad range of topics that are representative of the state-of-the-art in computer-aided detection or diagnosis(CAD)of cancer . They cover several imaging modalities(such as CT , MRI , and mammography) and different types of cancer (including breast cancer , skin cancer , etc.) , which we summarize below .

Skin cancer is the most prevalent among all types of cancers . Three papers in this special issue deal with skin cancer . Y uan et al. propose a skin lesion segmentation method. The method is based on region fusion and narrow-band energy graph partitioning . The method can deal with challenging situations with skin lesions , such as topological changes , weak or false edges , and asymmetry . T ang proposes a snake-based approach using multi-direction gradient vector flow (GVF) for the segmentation of skin cancer images . A new anisotropic diffusion filter is developed as a preprocessing step . After the noise is removed , the image is segmented using a GVF

1

snake . The proposed method is robust to noise and can correctly trace the boundary of the skin cancer even if there are other objects near the skin cancer region . Serrano et al. present a method based on Markov random fields (MRF) to detect different patterns in dermoscopic images . Different from previous approaches on automatic dermatological image classification with the ABCD rule (Asymmetry , Border irregularity , Color variegation , and Diameter greater than 6mm or growing) , this paper follows a new trend to look for specific patterns in lesions which could lead physicians to a clinical assessment.

Breast cancer is the most frequently diagnosed cancer other than skin cancer and a leading cause of cancer deaths in women in developed countries . In recent years , CAD schemes have been developed as a potentially efficacious solution to improving radiologists’diagnostic accuracy in breast cancer screening and diagnosis . The predominant approach of CAD in breast cancer and medical imaging in general is to use automated image analysis to serve as a “second reader”, with the aim of improving radiologists’diagnostic performance . Thanks to intense research and development efforts , CAD schemes have now been introduces in screening mammography , and clinical studies have shown that such schemes can result in higher sensitivity at the cost of a small increase in recall rate . In this issue , we have three papers in the area of CAD for breast cancer . Wei et al. propose an image-retrieval based approach to CAD , in which retrieved images similar to that being evaluated (called the query image) are used to support a CAD classifier , yielding an improved measure of malignancy . This involves searching a large database for the images that are most similar to the query image , based on features that are automatically extracted from the images . Dominguez et al. investigate the use of image features characterizing the boundary contours of mass lesions in mammograms for classification of benign vs. Malignant masses . They study and evaluate the impact of these features on diagnostic accuracy with several different classifier designs when the lesion contours are extracted using two different automatic segmentation techniques . Schaefer et al. study the use of thermal imaging for breast cancer detection . In their scheme , statistical features are extracted from thermograms to quantify bilateral differences between left and right breast regions , which are used subsequently as input to a fuzzy-rule-based classification system for diagnosis.

Colon cancer is the third most common cancer in men and women , and also the third most

相关文档
最新文档