勾股定理的最短路径问题解题思路

勾股定理的最短路径问题解题思路

勾股定理是初中数学中比较基础的一个定理,但是在计算机科学中也有其应用。其中一个比较典型的应用就是最短路径问题。下面介绍一下如何运用勾股定理解决最短路径问题。

首先,我们假设有一个起点A和一个终点B,它们之间存在一些障碍物(例如,墙壁、建筑物等),我们需要找到一条最短的路径,使得从起点A到终点B的路径避开这些障碍物。

接下来,我们将地图分成一个个小方格,每个方格可以看做是一个节点。我们可以使用广度优先搜索或Dijkstra算法来找到从起点A到终点B的最短路径。

但是,如果我们将勾股定理应用于这个问题中,我们可以更快地找到最短路径。我们可以将地图上的每个点都看做是一个直角坐标系中的点,然后将起点A和终点B之间的连线视为斜边。接着,我们可以将每一条直线段都看做是勾股定理中的直角边,然后根据勾股定理计算出它们的斜边长度。最后,我们可以将所有的直线段的长度相加,得到从起点A到终点B的最短路径长度。

在实际操作中,我们可以将地图上的每个点都标记为1或0,1表示该点是障碍物,0表示该点可以通行。然后,我们可以使用勾股定理计算每条直线段的长度,然后将长度相加,得到最短路径的长度。

综上所述,勾股定理可以帮助我们更快地找到最短路径。在实际的应用中,我们可以将地图上的每个点看做是勾股定理中的一个直角坐标系中的点,然后通过计算斜边长度来确定每条直线段的长度,最

终得到最短路径的长度。

勾股定理解决最短路径问题及折叠问题

3、如图,长方体的长为 15cm ,宽为10cm ,高为20cm ,点B 到点C 的距离为5cm ,一只 蚂蚁如果要沿着长方体的表面从 A 点爬到 B 点,需要爬行的最短距离是多少? 勾股定理解决最短路径问题及折叠问题 1、如图,长方体的长为 15,宽为10,高为20,点B 离点 C 的距离为 沿着长方体的表面从点 A 爬到点B ,需要爬行的最短距离是多少? 5,—只蚂蚁如果要 2、如图,长方体的底面边长分别为 1cm 和3cm ,高为6cm .如果用一根细线从点 A 开始 经过4个侧面缠绕一圈到达点 B ,那么所用细线最短需要 ____________ cm ;如果从点 A 开始经过4个侧面缠绕n 圈到达点 B ,那么所用细线最短需要 I"

4、如图所示,正方形ABCD 的面积为12, △ ABE 是等边三角形,点E 在正方形 ABCD 内,在 对角线 AC 上有一点P ,使PD PE 的和最小,求这个最小值 5、恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世 ?著名的恩施大峡谷 (A )和世界级自然保护区星斗山( B )位于笔直的沪渝高速公路 X 同侧,AB = 50km , A 、 B 到直线X 的距离分别为10km 和40km ,要在沪渝高速公路旁修建一服务区 P,向A 、B 两景区运送游客?小民设计了两种方案,图 1是方案一的示意图(AP 与直线X 垂直,垂足 为P ), P 到A 、B 的距离之和Si = PA+PB,图2是方案二的示意图(点 A 关于直线X 的对 称点是A',连接BA'交直线X 于点P ), P 到A 、B 的距离之和 ◎= PA+PB. (1 )求S 、S 2,并比较它们的大小; (2 )请你说明PA+PB 的值为最小; (3 )拟建的恩施到张家界高速公路 Y 与沪渝高速公路垂直,建立如图 3所示的直角 C

数学难点【勾股定理最短路径问题】,经典例题答案解析

数学难点【勾股定理最短路径问题】,经典例题答案解析 勾股定理最短路径问题 例题1:如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少? 分析:通过图可以发现,是一个点到它相对的另外一个点的情形。先确定长方体的长宽高,分别为5、10、20。 这类问题相对来说比较简单,这样解题本质上还是展开图的三种情形。 2.长方体中爬行,不是到达相对的另外一个点 如果在长方体中爬行,不是到达相对的另外一个点,那就只有通过展开图来解决问题。 例题2:如图,长方体的底面边长为4cm和宽为2cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,求蚂蚁爬行的最短路径长为多少厘米?

分析:要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短来求解。本题蚂蚁爬行了四个面,那就需要将四个面都展开来进行计算。 3.在圆柱体中爬行半圈或一圈 在圆柱体中爬行,要分两种情况,圆柱的侧面展开图是长方形,可能爬行了长方形的一半,也有可能爬行了整个长方形。 例题3:如图,一圆柱体的底面周长为24cm,高AB为9cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,则蚂蚁爬行的最短路程是多少厘米? 变式:一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点B,则蚂蚁爬行的最短路程是多少厘米?

4.正方体表面爬行 蚂蚁在正方体表面爬行时,一般就一种情形,可通过画图解决。 例题4:如图,点A的正方体左侧面的中心,点B是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A沿其表面爬到点B的最短路程是多少?

人教版八年级数学下册 勾股定理之最短路径问题 讲义

最短路径问题 解题技巧:先把立体图形展开成平面图形,再根据两点之间线段最短来解决问题 例1、如图,厨房里有一个圆柱体的糖罐,底面周长为20cm,高AB为4cm,BC是上底面的直径.一只饥饿的蚂蚁从点A出发,沿着圆柱的侧面爬行到点C偷糖吃,试求出爬行的最短路程 1、如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm。A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为 _________dm. 2、如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于捕获苍蝇充饥的蜘蛛所走的最短路线的长度.

3、如图,A、B两个小城镇在河流CD同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万元 (1)请你在河流CD上选择水厂的位置M,使铺设水管的费用最节约? (2)求出总费用是多少? 课后作业 1、在直角三角形ABC中,斜边AB=1,则AB2+BC2+AC2的值是() A.2 B.4 C.6 D.8 2、在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是() A.B.C.D. 3、如图所示,一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高为______m

4、如图,在平面直角坐标系中,点A、B的坐标分别为(-6,0)、(0,8)。以点A为圆 心,AB的长为半径画弧,交x正半轴于点C,则点C的坐标为___________ 5、如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°。 (1)求∠BAC的度数。 (2)若AC=2,求AD的长。 6、如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=5,则BC=________ 7、如图,在矩形ABCD中,点E在AD上,EC平分∠BED。 (1)△BEC是否为等腰三角形?为什么? (2)若AB=1,∠ABE=45°,求BC的长。

勾股定理最短路径

勾股定理最短路径 引言 勾股定理是初中数学中的重要定理之一,它描述了直角三角形中三条边之间的关系。而最短路径是图论中的一个经典问题,它涉及寻找两个顶点之间最短的路径。本文将探讨如何利用勾股定理来解决最短路径问题。 最短路径问题 最短路径问题是在一个图中寻找两个顶点之间的最短路径。在图论中,图由一组顶点和一组边组成,边连接两个顶点并表示它们之间的关系。最短路径问题有着广泛的应用,例如在网络路由、物流规划和导航系统中都需要找到最短路径。 勾股定理 勾股定理是由古希腊数学家毕达哥拉斯提出的。它表述为:直角三角形的斜边的平方等于两个直角边的平方和。即a2+b2=c2,其中c为斜边的长度,a和b为两个 直角边的长度。 最短路径算法 解决最短路径问题的算法有很多种,其中最著名的一种是迪杰斯特拉算法。该算法通过动态规划的思想,逐步更新起始点到其他所有点的最短路径。具体步骤如下: 1.创建一个集合S,用于存放已经找到最短路径的顶点。 2.初始化起始点到其他所有点的距离为无穷大,起始点到自身的距离为0。 3.选择一个距离最小的顶点v,将其加入集合S。 4.更新起始点到v的邻接点的距离,如果经过v的路径比当前路径短,则更新 距离。 5.重复步骤3和4,直到集合S包含了所有顶点。 6.最终得到起始点到其他所有点的最短路径。

勾股定理最短路径算法 在某些特殊情况下,我们可以利用勾股定理来求解最短路径问题。假设我们有一个平面上的图,其中每个顶点表示一个点的坐标,边表示两个点之间的距离。如果我们要求解从起始点到目标点的最短路径,并且只能沿着直角边移动,那么我们可以利用勾股定理来解决这个问题。 具体步骤如下: 1.将平面上的点表示为二维坐标(x,y),其中x和y分别表示点在x轴和y轴上 的坐标。 2.计算起始点到所有其他点的直线距离,并将其作为初始最短路径。 3.对于每个顶点,计算其到目标点的直线距离,并利用勾股定理计算出最短路 径。 4.选择最短路径最小的顶点作为下一个移动的目标点。 5.重复步骤3和4,直到到达目标点。 6.最终得到起始点到目标点的最短路径。 示例 假设我们有一个平面上的图,其中起始点为A(0, 0),目标点为B(3, 4)。我们可以根据勾股定理来求解从A到B的最短路径。 1.计算起始点到所有其他点的直线距离: –A到B的直线距离为5。 –A到其他点的直线距离为无穷大。 2.对于每个顶点,计算其到目标点的直线距离,并利用勾股定理计算出最短路 径: –对于点C(1, 0),C到B的直线距离为4,根据勾股定理,A到C的最短路径为1。 –对于点D(0, 1),D到B的直线距离为3,根据勾股定理,A到D的最短路径为1。 –对于点E(2, 0),E到B的直线距离为3,根据勾股定理,A到E的最短路径为2。 –对于点F(0, 2),F到B的直线距离为2,根据勾股定理,A到F的最短路径为2。 3.选择最短路径最小的顶点作为下一个移动的目标点: –A到C的最短路径为1,选择C作为下一个目标点。 4.重复步骤3和4,直到到达目标点:

勾股定理在最短路径问题中的应用

勾股定理在最短路径问题中的应用 标题:勾股定理的在最短路径问题中的应用 导言: 最短路径问题是一类在图论中广泛应用的数学问题,它关注着在给定的网络中寻找两个节点之间最短路径所需经过的边或弧的集合。数学家们在求解最短路径问题的过程中,经过了数不清的探索和尝试。本文将介绍勾股定理在最短路径问题中的应用,通过深入讨论和具体案例分析,旨在帮助读者更加深入、全面地理解这一主题。 一、勾股定理概述 1.1 勾股定理定义 勾股定理,也称毕达哥拉斯定理,是三角学中一个经典的定理。它表明,在一个直角三角形中,设直角边的长度分别为a和b,斜边长度为c,则有a² + b² = c²。 二、最短路径问题介绍 2.1 最短路径问题的定义 最短路径问题是一个经典的图论问题,它要求在给定的加权有向图或无向图中,求解两个顶点之间的最短路径。这种路径可能经过一些中间节点,但其总权值和需要最小。

三、勾股定理在最短路径问题中的应用 3.1 最短路径问题的建模 在最短路径问题中,我们需要将问题建模为一个加权有向图或无向图。对于一个直角三角形,我们可以将直角边的长度作为边的权值,斜边 的长度作为两个节点之间的距离。 3.2 以勾股定理为基础的最短路径算法 基于勾股定理的最短路径算法利用了直角三角形的特性,将直角边长 度作为边的权值,通过计算两个节点之间的距离来求解最短路径。 3.3 实例分析:勾股定理在最短路径问题中的具体应用 通过一个具体的实例,我们可以更好地理解勾股定理在最短路径问题 中的应用。假设我们有一个城市地图,有一辆车位于城市的某个节点 A上,我们需要找到车从节点A到达另一个节点B的最短路径。 4. 总结与回顾 通过本文的讨论,我们了解了勾股定理在最短路径问题中的应用。勾 股定理提供了一种有效的方法来计算两个节点之间的距离,从而为最 短路径问题的求解提供了便利。通过建立一个适当的数学模型,我们 可以利用勾股定理来解决各种实际应用中的最短路径问题。 个人观点与理解:

专题 勾股定理中的最短路径问题

专题1.4 勾股定理中的最短路径问题 目标导航 1、熟练掌握勾股定理的最短路径问题(主要包含:长方体、圆柱、圆锥、将军饮马等)。 2、解决实际问题时,要善于构造直角三角形,把实际问题抽象成几何问题. 知识精讲 知识点01 最短路径问题 平面展开图-最短路径问题 几何体中最短路径基本模型如下: 基本思路:将立体图形展开成平面图形,利用两点之间线段最短确定最短路线,构造直角三角形,利用勾股定理求解。 【知识拓展1】圆柱有关的最短路径问题 【微点拨】计算跟圆柱有关的最短路径问题时,要注意圆柱的侧面展开图为矩形,利用两点之间线段最短结合勾股定理进行求解,注意展开后两个端点的位置,有时候需要用底面圆的周长进行计算,有时候需要用底面圆周长的一半进行计算。 要点总结:1)运用勾股定理计算最短路径时,按照展开—定点—连线—勾股定理的步骤进行计算; 2)缠绕类题型可以求出一圈的最短长度后乘以圈数。 例1.(2022·山东青岛·八年级期末)如图,一个圆桶,底面直径为16cm,高为18cm,则一只小虫从下底点A处爬到上底B处再回到A处,则小虫所爬的最短路径长是()( 取3)

A.60cm B.40cm C.30cm D.20cm 【答案】A 【分析】先将圆柱的侧面展开为一矩形,而矩形的长就是底面周长的一半,高就是圆柱的高,再根据勾股定理就可以求出其值. 【详解】解:展开圆柱的侧面如图, 根据两点之间线段最短就可以得知AB最短. 由题意,得AC=3×16÷2=24, 在Rt△ABC中,由勾股定理,得 2222 241830 AB AC BC =+=+=cm. ∵一只小虫从下底点A处爬到上底B处再回到A处, ∴最短路径长为60cm.故选:A. 【点睛】本题考查了圆柱侧面展开图的运用,两点之间线段最短的运用,勾股定理的运用.在解答时将圆柱的侧面展开是关键. 【即学即练】 1.(2022·吉林长春·八年级期末)如图,有一个圆柱,底面圆的直径AB=24 π cm,高BC=10cm,在BC的 中点P处有一块蜂蜜,聪明的蚂蚁能够找到距离食物的最短路径,则蚂蚁从点A爬到点P的最短路程为_____cm. 【答案】13

勾股定理求最短路径方法技巧

勾股定理求最短路径方法技巧 摘要: 1.引言 2.勾股定理简介 3.求最短路径方法技巧 4.应用实例与分析 5.结论 正文: 【引言】 在数学领域中,勾股定理及其求最短路径方法一直是备受关注的热点。本文将详细介绍勾股定理求最短路径的方法和技巧,帮助读者更好地理解和应用这一理论。 【勾股定理简介】 勾股定理,又称毕达哥拉斯定理,是指在直角三角形中,直角边平方和等于斜边的平方。其数学表达式为:a + b = c。其中a、b为直角边,c为斜边。 【求最短路径方法技巧】 利用勾股定理求最短路径,关键在于找到起点和终点之间的直角三角形,然后运用勾股定理计算出路径长度。这里有两种求最短路径的方法: 1.直接法:在平面上给定两个点A和B,找出一条直线路径,使得这条路径上的所有点与A、B两点的距离之和最小。可以通过构建直角三角形,利用

勾股定理求解路径长度。 2.间接法:先找到起点和终点之间的中间点C,然后分别计算从起点到C 点和从C点到终点的路径长度。最后在所有路径中选择长度最短的一条。同样可以利用勾股定理计算路径长度。 【应用实例与分析】 以一个简单的平面直角坐标系为例,设有两点A(0, 0)和B(3, 4)。现在需要求从A点到B点的最短路径。 首先,求出AB的中点C:(1.5, 2)。然后,分别计算从A到C和从C到B 的路径长度。 AC的长度:√((1.5-0) + (2-0)) = √(2.25 + 4) = √6.25 BC的长度:√((3-1.5) + (4-2)) = √(1.25 + 4) = √5.25 现在可以计算出从A点到B点的最短路径长度:√6.25 + √5.25 ≈ 7.27【结论】 通过以上分析,我们可以看出,利用勾股定理求最短路径方法是简单且实用的。只需找到起点和终点之间的直角三角形,然后运用勾股定理计算路径长度,最后在所有路径中选择长度最短的一条。

勾股定理应用长方体最短路径

勾股定理的应用之最短距离问题 个棱长为8cm 的正方体盒子,在顶点A 处有一只蚂蚁,它想沿正 2.如图,一圆柱高8cm,底面圆周长为12cm,一只蚂蚁从点A 爬到点B 处吃食, 4 .如图,有一棱长为2dm 的正方体盒子,现要按图中箭头所指方向从点 方体表面爬行到达顶点C 处,则蚂蚁爬行的最短路程是 cm. cm. 3.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm 的 点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿 的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为 3cm 与蜂蜜相对 cm (杯壁厚 A 到点 D 拉一条捆绑线纯,使线缆经过 ABFE BCGF EFGH CDHG 四个面,则所需 捆绑线缆的长至少为 度不计). P 琏蜜 H G 3

5.如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2, A和B是这个台阶两个 相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是 6.有一个如图所示的凹槽,各部分长度如图中所标.一只蜗牛从A点经过凹槽内壁爬到B点取食,最短的路径长是m. 7.如图,一长方体底面宽AN=5cm,长BN=10cm,高BC=16cm D为BC的中点, 一动点P从A点出发,在长方体表面移动到D点的最短距离是. A J V 8.如图,已知圆柱的底面直径BC聿,高AB=3,小虫在圆柱表面爬行,从点C J U 爬到点A,然后在沿另一面爬回点C,则小虫爬行的最短路程为 . 9.我国古代有这样一道数学问题:枯木一根直立地上,高二丈周三尺,有葛藤

自根缠绕而上,五周而达其顶,问葛藤之长几何?,题意是:如图所示,把 枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3 尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是多少尺? 10.如图是一个长、宽、高分别为12cm, 4cm, 3cm的木箱,在它里面放入一根细木条(木 条的粗细忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是多少?

利用勾股定理确定最短路径问题

利用勾股定理确定最短路径问题 我们知道,两点之间线段最短,但这两点之间的距离往往要通过适当的知识求出其大小,现介绍一种方法,用勾股定理确定最短问题. 例1如图1,长方体的长为15,宽为10,高为20,点B离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是() 分析根据“两点之间,线段最短”和“勾股定理”,蚂蚁如果要沿着长方体的表面从点A爬到点B,较短爬行路线有如图2所示的4条粗线段表示的距离.可以通过计算得知最短的是第2条. 说明在立体图形上找最短距离,通常要把立体图形转化为平面图形,即转化为表面展开图来解答,但是不同的展开图会有不同的答案,所以要分情况讨论. 例2如图1,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要___cm;如果从点A开始经过4个侧面缠绕n圈到达点B,那么所用细线最短需要___cm.

分析要求最短细线的长,得先能确定最短线路,于是,可画出长方体的侧面展开图,利用两点之间线段最短,结合勾股定理求得.若从点A开始经过4个侧面缠绕n圈到达点B,即相当于长方体的侧面展开图的一边长由3+1+3+1变成n(3+1+3+1),同样可以用勾股定理求解. 说明对于从点A开始经过4个侧面缠绕n圈到达点B的最短细线不能理解为就是n个底面周长. (3)若一辆大货车在限速路上由C处向西行驶,一辆小汽车在高等级公路上由A处向北行驶,设两车同时开出且小汽车的速度是大货车速度的2倍,求两车在匀速行驶过程中的最近距离是多少?

例4恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷(A)和世界级自然保护区星斗山(B)位于笔直的沪渝高速公路X同侧,AB=50km,A、B到直线X的距离分别为10km和40km,要在沪渝高速公路旁修建一服务区P,向A、B两景区运送游客.小民设计了两种方案,图1是方案一的示意图(AP与直线X垂直,垂足为P),P到A、B的距离之和S1=PA+PB,图2是方案二的示意图(点A关于直线X的对称点是A′,连接BA′交直线X 于点P),P到A、B的距离之和S2=PA+PB. (1)求S1、S2,并比较它们的大小; (2)请你说明S2=PA+PB的值为最小; (3)拟建的恩施到张家界高速公路Y与沪渝高速公路垂直,建立如图3所示的直角坐标系,B到直线Y的距离为30km,请你在X旁和Y旁各修建一服务区P、Q,使P、A、B、Q组成的四边形的周长最小.并求出这个最小值.

勾股定理之长方体上的最短路径问题

勾股定理的之长方体上的最短路径问题【知识点】 求长方体(如图1)上A、B 两点之间的距离,将长方体相邻两个面展开有三种方式(如图2) (1)右侧面向前展开,如图①,此时AB2=(a+b)2+c2=a2+b2+c2+2ab (2)上底面向前展开,如图②,此时AB2=(c+b)2+a2=a2+b2+c2+2bc (3)上底面向左展开,如图③,此时AB2=(a+c)2+b2=a2+b2+c2+2ac 通过对三种展开方式的分析,我们得到: ①当c最大时,图①中AB最短 ②当a最大时,图②中AB最短 ③当b最大时,图③中AB最短 【练习题】 1.如图,长方体的高为3 cm,底面是正方形,其边长为 2 cm.现有一只蚂蚁从A处出发,沿长方体表面到达 C处,则蚂蚁爬行的最短路线的长为

2.如图,有一个长、宽各为2 m、高为3 m且封闭的长方体纸盒,一只昆虫要从 顶点A爬到顶点B,那么这只昆虫爬行的最短路程为 3.如图,一个三级台阶,它的每一级的长、宽和高分别是50 cm、30 cm、10 cm, A和B是这个台阶的两个相对的点,A点处有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶爬到B点,至少需爬cm 4.如图,已知长方体的长AC=2 cm,宽BC=1 cm,高AA′=4 cm.如果一只 蚂蚁沿长方体的表面从A点爬到B′点,那么最短路程是多少?

5.如图,长方体的底面相邻两边的长分别为1 cm和3 cm,高为6 cm,如果用一 根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要多长?如果从点A开始经过4个侧面缠绕n圈到达点B,那么所用细线最短时,其长度的平方是多少? 6.如图,圆柱形玻璃容器高10 cm,底面周长为30 cm,在外侧距下底1 cm的点 S处有一只蚂蚁,与蚂蚁相对的圆柱形容器的上口外侧距开口处1 cm的点F 处有食物,求蚂蚁要吃到食物所走最短路线的长度

勾股定理最短路径问题做题技巧

勾股定理是数学中的经典定理,被广泛应用于解决直角三角形中的各种问题。其中,勾股定理最短路径问题是一个常见而又有一定挑战性的问题,需要我们对勾股定理的应用进行深入理解和掌握。下面,我将共享一些在做勾股定理最短路径问题时的一些技巧和注意事项,希望能对大家有所帮助。 1. 确定直角三角形 在解决勾股定理最短路径问题时,首先需要确定问题中是否存在直角三角形。通常情况下,我们可以通过问题描述中给出的线段长度或角度信息来判断是否为直角三角形。一旦确定存在直角三角形,我们便可以应用勾股定理来解决最短路径问题。 2. 确认最短路径 在确定了直角三角形后,接下来我们需要确认问题中所要求的最短路径。这个最短路径可能是直角三角形中的某条边,也可能是直角三角形内部的某一段路径。在实际问题中,我们经常需要根据具体情况来判断最短路径的具体位置。 3. 应用勾股定理 一旦确定了直角三角形和最短路径,我们就可以开始应用勾股定理来求解问题了。勾股定理的表达式为a^2 + b^2 = c^2,其中a、b分别为直角三角形的两条直角边,c为斜边。我们可以根据勾股定理的这一表达式来进行问题的推理和计算,从而得出最终的最短路径结果。

4. 注意特殊情况 在应用勾股定理解决最短路径问题时,我们还需要特别注意一些特殊情况。当直角三角形的两条直角边长度相等时,斜边也将会最短,这种情况下我们可以直接应用勾股定理来得出结果。另外,当直角三角形的两条直角边长度有一个为0时,斜边也将为另一条直角边,这时最短路径也就不言而喻了。 5. 结合实际问题 当我们应用勾股定理解决最短路径问题时,需要将数学知识与实际问题相结合,确保解答的合理性和可行性。我们可以通过画图、列方程等方法来辅助求解,从而得出准确的最短路径结果。 在解决勾股定理最短路径问题时,我们需要确保对勾股定理的基本原理有充分的理解,同时要灵活运用对问题进行分析和求解。希望以上共享的技巧和注意事项能够帮助大家在做题时更加得心应手,解决问题时得心应手。经过以上的介绍,我们已经对勾股定理最短路径问题有了一定的了解,接下来,我们将继续探讨一些具体的例题,并结合实际情境来应用所学的技巧和注意事项。 例题一:田地中的最短路径 假设有一块矩形的田地,田地的一边长为20米,另一边长为15米。现在农夫需要从田地的一角走到对角的另一角,问农夫走的最短路径

人教版初二数学下册 勾股定理之最短路径问题 讲义

勾股定理中的最短路径问题(一) 解题技巧: 1、展开几何体的面 2、根据“两点之间线段最短”,可知最短路径就是两点间的连线 3、用勾股定理计算线段的长度 例1、一只蚂蚁从长、宽都是3cm ,高是8cm 的长方体纸盒的A 点沿着纸盒面爬到B 点偷糖吃,则它所行的最短路线的长度是( ) A 、cm )823( B 、10cm C 、14cm D 、16cm 1、如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是( ) A 、9 B 、10 C 、24 D 、172

2、如图,长方体的长为5,宽为3,高为12,点B 离点C 的距离为2,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( ) A 、119 B 、13 C 、125+ D 、15 3、如图是一个长为4m ,宽3m ,高2m 的有盖仓库,在其内壁的A 处(长的四等分)有一只壁虎,B 处(宽的三等分)有一只蚊子,则壁虎要爬过去吃蚊子的最短路径是( ) A 、4.8 B 、29 C 、5 D 、223+ 4、如图,有一圆锥形的粮堆,其主视图是边长为6m 的正三角形ABC ,母线AC 的中点P 处有一老鼠正在全神贯注偷吃粮食。可爱的小猫咪从B 处沿着圆锥表面对老鼠发起突击,则小猫经过的最短路径是____m

勾股定理中的最短路径问题(二) 解题技巧: 1、先轴对称,再连线,找出最短路径 2、用坐标系中的勾股定理221221)()(y y x x d -+-= 求出最短路径 例1、如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家。他要完成这件事情所走的最短路径是( ) A 、15km B 、16km C 、17km D 、18km 例2、如图,在△ABC 中,AC=BC=4,∠ACB=90°,D 是BC 边的中点,E 是AB 边上一动点,则EC+ED 的最小值是_______

勾股定理的应用最短路径问题

14・2勾股定理的 应用 ■ 复习 B 一.勾股定理: 字母表示:如果在RtAABC 中,ZC=90° 弦C 那么a2+ b2= c2 语言叙述:直角三角形的两条直角边的 平方和等 于它斜边的平方。 勾a

股b 二•直角三角形的判定如果三角形的三边长a, b c满足/ +卩二『那么这个三角形是直角三角形。

做一做: 1.AABC 的两边AB=5,AC=12,则BC=13 ( X) 2•直角三角形ABC 中a=6,b=8,则c=10 ( J ) 3.能与3和4围成三角形的数有 无数个:能与3和4围 成直角三角形的有 2 个:能与3和4组成勾股数的 数有丄个。 4■一个直角三角形的三边长是不大于1 0的 三个连续偶数,则它的周长是04 ) 例1 •一圆柱体的底面周长为20cm,高AB 为 4cin,BC 是上底面的直径•一只蚂蚁从 点A 出发,沿着圆柱的侧面爬行到点C, 试求出爬 行的最短路程•(精确到0.01cm) 解:如图,由题意得: 在直角三角形ABC 中, CD=4, AD=204-2=109 根据勾股孚理得: 二 AC = ylAD 2 + CD? =JlO? +42 = 7114 a 10.77 答:最短路程为10.77厘米。••最短路程问题 D

沿着正方体的外表面爬到顶点B 的最短距离是多少? B A 分析:由于蚂蚁是沿正方体的外表面爬行的,故需 把正方体展开成平面图形(如右图)- 解:如图,由题意得:在直角三角形ABC 中, ACT, BC=2,根据勾股定理得. AB =」AC :十 BC? = J12 +2? = 75 答:最短路程为7^厘米。 变式:一只蚂蚁从点A 出发,沿着圆柱的侧面爬行到CD 试 求出爬行的最短路程。 的中点0,已知底面周长为10, 69 •三• 解:如图,由题意得: 在直角 三角形ABO 中, OD=4 -1- 2=2 9 AD=10 宁 2=5 根据勾股定理得: AO = J A D? +0/)2 = {52 +22 二® 答:最短路程为厘米。 例2・如图,边长为1的正方体中, 一只蚂蚁从顶点A 出发 o B

(完整版)初中数学[最短路径问题]典型题型及解题技巧

初中数学[最短路径问题]典型题型及解题技巧 最短路径问题中,关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。这对于我们解决此类问题有事半功倍的作用.理论依据:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图".教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”.考的较多的还是“饮马问题”。 知识点:“两点之间线段最短",“垂线段最短”,“点关于线对称",“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题",出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。 一、两点在一条直线异侧 例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB 最小。 解:连接AB,线段AB与直线L的交点P ,就是所求。(根据:两点之 间线段最短。) 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短. 解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线 “街道"的对称点A′,然后连接A′B,交“街道"于点C,则点C就是 所求的点. 三、一点在两相交直线内部 例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON 上各取一点B,C,组成三角形,使三角形周长最小。

解:分别作点A关于OM,ON的对称点A′,A″;连接A′,A″,分别交 OM,ON于点B、点C,则点B、点C即为所求 分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周长最小 例:如图,A。B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直) 解:1.将点B沿垂直与河岸的方向平移一个河宽到E, 2.连接AE交河对岸与点M, 则点M为建桥的位置,MN为所建的桥。 证明:由平移的性质,得 BN∥EM 且BN=EM, MN=CD, BD∥CE, BD=CE, 所以A。B两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD处,连接AC。CD。DB。CE, 则AB两地的距离为: AC+CD+DB=AC+CD+CE=AC+CE+MN, 在△ACE中,∵AC+CE>AE, ∴AC+CE+MN>AE+MN,即AC+CD+DB >AM+MN+BN 所以桥的位置建在CD处,AB两地的路程最短。 例:如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,•要在河边建一个抽水站,将河水送到A、B两地,问该站 ·· C D A B E a A· B M N E

相关文档
最新文档