聚丙烯酸酯压敏胶

聚丙烯酸酯压敏胶
聚丙烯酸酯压敏胶

聚丙烯酸酯压敏胶

聚丙烯酸酯压敏胶的基体

丙烯酸酯压敏胶是由带有不饱和双键的单体在催化剂作用下自由基聚合而成的丙烯酸酯树脂用于聚合的单体可分为三种类型:

1,粘性单体,它是具有4-12个碳原子的丙烯酸烷基酯,具有粘性效应。聚合物的玻璃化转变温度为-XXXX。BOPP丙烯酸压敏胶包装胶带产量已达到12亿m2,生产厂家众多,主要集中在广东、江苏、浙江三省。

丙烯酸压敏胶带、双面胶带、保护带、遮蔽纸带、标签带和医用胶带不仅在产量上有了很大的提高,而且在粘合和涂布性能上也有了很大的提高,适用于各种用途的胶带产品不断涌现。尽管如此,丙烯酸压敏胶和胶带行业仍以通用型为主,品种单一,在粘合性能、耐水性、耐热性和防潮性等方面不能满足市场需求。,而地下专用胶带仍需进口。如高强度双面胶带、耐高温遮蔽带、阻燃带、魔术贴、太阳能薄膜和标志带等。分类

丙烯酸酯压敏胶带亚克力+热熔胶标签带亚克力+热熔胶聚氯乙烯带(电报绝缘带)橡胶保护带亚克力+橡胶双面胶带亚克力+热熔胶胶带热熔胶胶带

掩蔽纸胶带亚克力+橡胶医用胶带亚克力+橡胶

特种胶带亚克力+橡胶+硅酮防腐胶带橡胶

其他胶带亚克力+热熔胶+橡胶热熔胶

热熔胶它主要用于女性卫生巾、老人和儿童尿布、双面胶带、商标,

其成分主要是SIS和SBS弹性体和增粘树脂近年来,随着服装制造业的发展,服装热熔衬布用热熔胶粉的用量逐年增加。1998年,所需热熔胶粉的数量约为12,000吨,这不包括在我们的统计数字中。主要功能是聚乙烯约占50%,聚酰胺约占22%,其余为聚酯和EV A 热熔胶粉。

压敏胶入门知识

压敏胶xx知识 压敏胶 拼音: yaminjiao 英文名称: pressuresensitiveadhesive 说明: 压敏胶粘剂的简称。是一类具有对压力有敏感性的胶粘剂。主要用于制备压敏胶带。压敏胶的粘附力(胶粘带与被粘表面加压粘贴后所表现的剥离力)必须大于粘着力(即所谓用手指轻轻接触胶粘带时显示出来的手感粘力)。按其主要成分可分为橡胶型和树脂型两类。除主要成分外,还要加入其他辅助成分,如增粘树脂、增塑剂、填料、粘度调整剂、硫化剂、防老剂、溶剂等配合而成。 压敏胶带 拼音: yaminjiaodai 英文名称: pressure sensitive adhesive tape 说明: 一种特殊类型的胶粘剂。将胶粘剂涂于带状基材上制成。使用时,轻轻加压使胶带与被粘物表面粘结。 由压敏胶、基材、底胶、背面处理剂等构成(见图)。压敏胶是压敏胶带最重要的组成部分。其作用是使胶带具有对压力敏感粘附特性。用作基材的主

要地织物、塑料薄膜、纸类等。底胶是增加压敏胶与基材的粘结强度。广泛用于包装、电绝缘、医疗卫生、粘贴标签和作标记等。 聚丙烯酸酯压敏胶 丙烯酸酯型压敏胶的基体,是具有不饱和双键的单体在催化剂作用下进行自由基聚合反应制得的丙烯酸酯树脂。聚合时所采用的单体可分为三类: 1、粘性单体它是碳原子数为4-12的丙烯酸烷基酯,具有粘性作用,聚合物的玻璃化温度为-20——70°C,常用的有丙烯酸异辛酯和丙烯酸丁酯等。 2、内聚单体这是一些玻璃化温度较高的单体,它不仅能提高胶液的内聚力,而且对耐水性、胶接强度、透明性等也明显改善。 3、改性单体主要是一些带有反应性官能团的含有双急需的单体,如含羧基、羟基、酰胺基等的丙烯酸衍生物。它能与其它单体起交联作用,促进聚合反应,加快聚合速度,提高胶液的稳定性。 表十七列举了上述三种单体的种类及玻璃化温度 表十七丙烯酸酯型压敏胶的单体及玻璃化温度 单体类别单体各称玻璃化温度(°C) 粘性单体丙烯酸乙酯-22 丙烯酸丁酯-55 丙烯酸异辛酯-70 内聚单体醋酸乙烯酯22 丙烯腈97 丙烯酰胺165 苯乙烯80 甲基丙烯酸甲酯105

聚丙烯酸酯

聚丙烯酸酯 以丙烯酸酯类为单体的均聚物或共聚物。R、R'为取代基,取代基不同,聚合物性质也不同。丙烯酸酯在光、热及引发剂作用下非常容易聚合。 基本信息: ?中文名称聚丙烯酸酯 ?外文名称polyacrylate ?性状无色或微黄色透明粘稠液体 ?毒性无毒 性质应用: 聚丙烯酸酯易溶于丙酮、乙酸乙酯、苯及二氯乙烷,而不溶于水。由于其高分子链的柔顺性,它们的玻璃化温度(T g)较低,并随酯基的碳原子数及其支化情况而异,当碳原子数为8时最低。在相同碳原子数的酯基中,支化者玻璃化温度较高(见表)。 玻璃化温度聚丙烯酸酯能形成光泽好而耐水的膜,粘合牢固,不易剥落,在室温下柔韧而有弹性,耐候性好,但抗拉强度不高。可做高级装饰涂料。 聚丙烯酸酯有粘合性,可用作压敏性胶粘剂和热敏性胶粘剂。由于它的耐老化性能好,粘结污染小,使用方便,其产量增加较快。在纺织工业方面,聚丙烯酸酯可用于浆纱、印花和后整理,用它整理过的纺织品,挺括美观,手感好;它还可用作无纺布和植绒、植毛产品的粘合剂。聚丙烯酸酯可用于鞣制皮革,可增加皮革的光泽、防水性和弹性。 类型: 最简单的丙烯酸酯是丙烯酸甲酯,可由丙烯酸与甲醇酯化,或由氰乙醇与甲醇在浓硫酸作用下反应而得。它是具有异臭的液体,其沸点为80℃,密度为0.950

克/厘米(25℃)。聚丙烯酸甲酯PMA在室温下是完全没有粘性的物质,强韧,略具弹性,硬度中等,能形成可挠性膜,其断裂伸长约为750%。 聚丙烯酸乙酯较聚丙烯酸甲酯柔软,伸长率为1800%。聚丙烯酸丁酯就更柔软,伸长率为2000%,并且在室温下具有很大的粘合性。酯基有8个碳原子的聚丙烯酸-2-乙基己酯的粘合性又大很多。所以,用聚丙烯酸酯作胶粘剂时,多通过这些酯的共聚合来综合调节其弹性、粘合性和可挠性等。 丙烯酸酯与丙烯酸的失水甘油酯、羟烷基酯或丙烯酸等反应性单体的共聚物,经加热固化后可得到表面硬度高、耐污染性和光泽良好的涂膜。 丙烯酸甲酯与季戊四醇、三羟甲基丙烷等反应,可得到多官能性交联剂,可用于光敏涂料、光敏油墨和感光树脂印刷版等方面。 α-氰代丙烯酸酯的-CN基的极性强,渗透性能又好,聚合后的粘合强度很高,是金属、玻璃、皮革、木材等的良好胶粘剂。α-氰代丙烯酸酯胶粘剂是以单体状态保存的胶粘剂,滴至粘合部位后很快就能聚合而粘合,称为瞬间胶粘剂。 聚丙烯酸酯乳液的改性 以丙烯酸或丙烯酸酯类为主要原料合成的丙烯酸酯乳液具有优异的光稳定性和耐候性,良好的耐水、耐碱、耐化学品性能和粘接性能,因此广泛地用作胶粘剂、涂料成膜剂以及日用化工、化学电源、功能膜、医用高分子、纳米材料以及水处理等方面。但是丙烯酸酯乳液存在着低温变脆、高温变黏失强、易回黏等缺点,限制了它的应用范围和使用价值。近年来,随着聚合技术的不断完善和发展,以及人们对环保产品的重视,丙烯酸酯乳液的改性受到了人们的广泛关注。一般来说,主要从两个方面对丙烯酸酯乳液进行改性:一是引入新的功能性单体;二是采用新的乳液聚合技术。 1.有机硅改性 丙烯酸酯聚合物具有优良的成膜性、粘接性、保光性、耐候性、耐腐烛性和柔韧性。但其本身是热塑性的,线性分子上又缺少交联点,难以形成三维网状交联胶膜,因此其耐水性、耐沾污性差,低温易变脆、高温易发黏。而有机硅树脂中的Si-O 键能(450kJ/mol)远大于C-C键能(351kJ/mol),内旋转能垒低,分子摩尔体积大,表面能小,具有良好的耐紫外光、耐候性、耐沾污性和耐化学介质性等特性。用有机桂改性丙烯酸酯乳液,可以综合二者的优点,改善丙稀酸酯乳液"热黏冷脆"、耐候、耐水等性能,将其应用范围扩大至胶粘剂、外墙涂料、皮革涂饰剂、织物整理剂和印花等领域。 有机硅改性聚丙稀酸酯分为物理改性和化学改性两种方法。其中,用有机硅氧烷对丙烯酸酯类乳液进行物理改性的方法通常有两种:一是有机硅氧烷单体作为粘附力促进剂和偶联剂直接加入到丙烯酸酯类乳液中进行改性;二是先将有机硅氧烷制成有机乳液,再将它与丙烯酸酯类乳液冷拼共混进行改性。化学改性法是基于聚硅氧烷和聚丙烯酸酯之间的化学反应,从而将有机硅分子和聚丙烯酸酯有机

紫外光固化技术及UV压敏胶的介绍

紫外固化技术及UV压敏胶的介绍 广州市常疆商贸有限公司 https://www.360docs.net/doc/e13583564.html,/

什么是紫外光固化技术 UV固化油墨或涂料(上光油)由:液态预聚固化油墨或涂料(上光油)由液态预聚物、单体、颜料、添加剂和光活性化合物(光引发剂)混合而成。当有适当波长和光强的紫外光投射该涂层时,其中的光引发剂便分解成游离基,游离基引发预聚物和单体上的不饱和基团发生快速的加成聚合反应。上的不饱和基团发生快速的加成聚合反应由于采用的是多功能单体和预聚物,以及游离基反应(例如接枝)的化学特性(快速加成聚合),使涂层迅速转化成不可溶性交联网状结构。

3该增长键近一步反应形成类似于乙烯基溶液聚合物3. 该增长键近步反应,形成类似于乙烯基溶液聚合物的那些聚合物链。如果增长着的分子含有一个以上的双键,则就会产生交联网状结构。 例如 例如:P* + CH 2=CHOOC—COOCH=CH 2 + CH 2=CH—R—CH= CH 2游离基稀释剂(单体)预聚物→~CH 2—CH—R—CH—CH 2—CHOOC—COOHC—CH 2P |||| CH 2CH 2交联聚合物网络|| CH CH R CH —CH—CH 2—R—CH | | 4UV 体系会因紫外灯源的红外辐射而经受额外的温升 4. UV 体系会因紫外灯源的红外辐射,而经受额外的温升。

紫外(UV)光谱 注:任何一种紫外线灯,都会同时产生紫外(UV)、可见光(VL)、红外线(IR ),紫外线和红外线都不可见,其中紫外线是固化过程所需要的,而红外线则是热量的主要来源。

UV灯(高压汞灯)灯管结构

NMR常见溶剂峰和水峰

注:JHD为溶剂本身的其他1H对与之相对应的1H之间的耦合常数,JCD为溶剂本身1H对13C的耦合常数,H2O和交换了D的HOD上的1H产生的即水峰的化学位移 氯仿:小、中小、中等极性 DMSO:芳香系统(日光下自然显色、紫外荧光)。对于酚羟基能够出峰。芳香化合物还是芳香甙,都为首选。 吡啶:极性大的,特别是皂甙 对低、中极性的样品,最常采用氘代氯仿作溶剂,因其价格远低于其它氘代试剂。极性大的化合物可采用氘代丙酮、重水等。 针对一些特殊的样品,可采用相应的氘代试剂:如氘代苯(用于芳香化合物、芳香高聚物)、氘代二甲基亚砜(用于某些在一般溶剂中难溶的物质)、氘代吡啶(用于难溶的酸性或芳香化合物)等。 丙酮:中等极性 甲醇:极性大 氯仿—甲醇: 石:乙 5;1小极性 石:丙 2:1——1:1中等极性 氯仿:甲醇6:1极性以上含有一个糖 2:1 含有两个糖 含有糖的三萜皂甙:一般用吡啶

常见溶剂的化学位移 常见溶剂的1H在不同氘代溶剂中的化学位移值

常见溶剂的化学位移 常见溶剂的13C在不同氘代溶剂中的化学位移值

核磁知识(NMR) 一:样品量的选择 氢谱,氟谱,碳谱至少需要5mg. 1H-1H COSY, 1H-1H NOESY, 1H-13C HMBC, 1H-13C HSQC需要10-15mg. 碳谱需要30mg. 二:如何选择氘代溶剂 常用氘代溶剂: CDCl3, DMSO, D2O, CD3OD.特殊氘代溶剂: CD3COCD3, C6D6, CD3CN。 极性较大的化合物可以选择用D2O或CD3OD,如果想要观察活泼氢切记不能选择D2O和CD3OD。 CDCl3为人民币2-3元,D2O为人民币6元,DMSO为人民币10元,CD3OD为人民币30元。 Solvent 化学位移(ppm) 水峰位移(ppm) CDCl3 DMSO CD3OD D2O CD3COCD3

纳米二氧化钛/聚丙烯酸酯复合乳液的研究进展

纳米二氧化钛/聚丙烯酸酯复合乳液的研究进展 对纳米二氧化钛/聚丙烯酸酯复合乳液的制备方法进行了综述,并对其存在的问题和未来的发展前景进行了展望。 标签:纳米二氧化钛;聚丙烯酸酯;复合乳液;研究进展 1 前言 聚丙烯酸酯乳液具有良好的成膜性、透明性和耐候性以及优良的力学性能,可用作涂料、胶粘剂、油墨等[1]。但是聚丙烯酸酯乳胶膜高温发黏、低温变脆、硬度和耐水性较差等缺陷,一定程度上限制了其应用。通过在聚丙烯酸酯乳液中引入无机纳米二氧化钛(n-TiO2),制备纳米TiO2/聚丙烯酸酯复合乳液,可有效提高聚丙烯酸酯乳胶膜的耐热性、耐水性、力学性能等。 由于纳米二氧化钛的表面能高,与聚丙烯酸酯的相容性差,难以分散,从而影响聚丙烯酸酯乳液性能及乳胶膜性能的提高。国内外研究者通过多种方法来制备n-TiO2/聚丙烯酸酯复合乳液,以期获得具有优良性能的复合乳液,并已取得了较大进展。按照在制备过程中有无化学反应发生,可将n-TiO2/聚丙烯酸酯复合乳液的制备方法分为物理法和化学法,而化学法又可细分为原位分散聚合法、溶胶-凝胶法和溶胶-原位聚合法。本文主要针对近年来n-TiO2/聚丙烯酸酯复合乳液的制备方法进行了综述。 2 物理法 物理法,即机械共混法,主要是通过搅拌、研磨和震荡等物理方法,将n-TiO2分散于聚丙烯酸酯乳液中的方法。直接将n-TiO2分散到聚丙烯酸酯乳液中,容易发生团聚,通常需要外加助剂或偶联剂对其进行表面改性,才能获得较好的效果。 王全杰等[2]在n-TiO2颗粒分散液中加入适量的六偏磷酸钠作分散剂,再与丙烯酸甲酯乳液共混,制备了n-TiO2/聚丙烯酸酯复合乳液。研究发现,n-TiO2并未发生团聚,且n-TiO2颗粒与聚丙烯酸酯乳胶粒之间存在一定程度的结合,并稳定分布于胶乳粒之间。张旭昀等[3]将硅烷偶联剂改性后的纳米TiO2悬浮液加入到聚苯乙烯/丙烯酸酯乳液中,配以各种助剂,制备出n-TiO2/苯丙复合水性涂料。结果表明,与普通苯丙水性涂料相比,n-TiO2改性的水性涂料在乳胶膜的光泽度、流平性、耐碱性、耐水性、耐擦洗性等方面均得到明显提高。Lewis 等[4]将粒径为5~10 nm的TiO2加入到水性丙烯酸酯涂料中,通过中性盐试验和扫描电镜测试,发现当n-TiO2的加入量为3%时,水性丙烯酸酯涂料的耐腐蚀性能最好。 采用物理法制备n-TiO2/聚丙烯酸酯复合乳液具有工艺简单、易工业化、对纳米TiO2粒子的形态无特殊要求等优点,但所制备的复合乳液贮存稳定性较差,

压敏胶入门知识

压敏胶入门知识 压敏胶 拼音:yaminjiao 英文名称:pressure sensitive adhesive 说明:压敏胶粘剂的简称。是一类具有对压力有敏感性的胶粘剂。主要用于制备压敏胶带。压敏胶的粘附力(胶粘带与被粘表面加压粘贴后所表现的剥离力)必须大于粘着力(即所谓用手指轻轻接触胶粘带时显示出来的手感粘力)。按其主要成分可分为橡胶型和树脂型两类。除主要成分外,还要加入其他辅助成分,如增粘树脂、增塑剂、填料、粘度调整剂、硫化剂、防老剂、溶剂等配合而成。 压敏胶带 拼音:yaminjiaodai 英文名称:pressure sensitive adhesive tape 说明:一种特殊类型的胶粘剂。将胶粘剂涂于带状基材上制成。使用时,轻轻加压使胶带与被粘物表面粘结。由压敏胶、基材、底胶、背面处理剂等构成(见图)。压敏胶是压敏胶带最重要的组成部分。其作用是使胶带具有对压力敏感粘附特性。用作基材的主要地织物、塑料薄膜、纸类等。底胶是增加压敏胶与基材的粘结强度。广泛用于包装、电绝缘、医疗卫生、粘贴标签和作标记等。 聚丙烯酸酯压敏胶 丙烯酸酯型压敏胶的基体,是具有不饱和双键的单体在催化剂作用下进行自由基聚合反应制得的丙烯酸酯树脂。聚合时所采用的单体可分为三类: 1、粘性单体它是碳原子数为4-12的丙烯酸烷基酯,具有粘性作用,聚合物的玻璃化温度为 -20——70°C ,常用的有丙烯酸异辛酯和丙烯酸丁酯等。 2、内聚单体这是一些玻璃化温度较高的单体,它不仅能提高胶液的内聚力,而且对耐水性、胶接强度、透明性等也明显改善。 3、改性单体主要是一些带有反应性官能团的含有双急需的单体,如含羧基、羟基、酰胺基等的丙烯酸衍生物。它能与其它单体起交联作用,促进聚合反应,加快聚合速度,提高胶液的稳定性。 表十七列举了上述三种单体的种类及玻璃化温度 表十七丙烯酸酯型压敏胶的单体及玻璃化温度 单体类别单体各称玻璃化温度(°C ) 粘性单体丙烯酸乙酯-22 丙烯酸丁酯-55 丙烯酸异辛酯-70 内聚单体醋酸乙烯酯22 丙烯腈97 丙烯酰胺165 苯乙烯80 甲基丙烯酸甲酯105 丙烯酸甲酯8 改性单体甲基丙烯酸228 丙烯酸106 甲基丙烯酸羟乙酯86 甲基丙烯酸羟丙酯76 二胺基乙基甲基丙烯酸酯13

聚丙烯酸酯在涂料中的应用

聚丙烯酸酯在涂料中的应用 专业:高分子材料与工程 班级: B090108 学号: B09010826 姓名:王梦梦

聚丙烯酸酯在涂料中的应用 摘要 目前,在整个涂料工业中,丙烯酸树脂涂料已经成为类型最多、综合性能最全、通用性最强的一类合成树脂涂料。与其他高分子树脂涂料相比,丙烯酸酯树脂涂料具有许多突出的优点:色浅、透明度高;耐光、耐候、户外曝晒耐久性好;在紫外线照射不易分解或变黄,长期使用仍可保持原有的光彩和色泽;耐热性及耐腐蚀性好等。丙烯酸树脂涂料已广泛用于汽车装饰和维修、家用电器、钢制家具、铝制品、卷材、机械、仪表电器、建筑、木材、造纸、胶黏剂和皮革等生产领域。本文主要介绍了丙烯酸树脂涂料的特性、发展情况及生产方法,并着重阐述了其在各方面的应用情况。 关键词:丙烯酸树脂,涂料,合成,应用 前言 丙烯酸单体和树脂的研究最早始于1805年,但由于当时条件的限制,直到1927年才由Rohm & Haas公司应用于工业化生产,而真正在涂料上的应用则是在1950年以后。以丙烯酸树脂为主要成膜物质的合成树脂涂料,在1950年由美国杜邦公司首先制成热塑性丙烯酸树脂涂料,应用于汽车涂装。1952年,加拿大工业公司获得了生产热固性丙烯酸树脂涂料的专利。发展到现在,丙烯酸树脂及涂料已成为和醇酸树脂及涂料齐名的涂料树脂。这类涂料不仅具有色浅、透明度高、光亮丰满、耐候、保色、保光、附着力强、耐腐蚀、坚硬、柔韧等特点,且可通过选择单体、调整配比、改变制备方法及改变拼用树脂,配制出一系列丙烯酸树脂涂料。丙烯酸树脂涂料既有优越的装饰性能,又有良好的保护性能,既可制成溶剂型涂料,又可制成水性涂料,还可制成无溶剂型涂料。因此,丙烯酸酯树脂涂料已成为目前最受关注、最受青睐的一大类涂料。 目前,丙烯酸酯涂料已广泛应用于飞机、汽车、机床、仪表、家用电器、高级木器及缝纫机、自行车等轻工产品的防护和装饰性涂装。 一、丙烯酸树脂涂料综述 1.1 丙烯酸树脂涂料的定义 以丙烯酸酯、甲基丙烯酸酯及苯乙烯等乙烯基类单体为主要原料合成的共聚物称为聚丙烯酸酯,也称丙烯酸树脂,以其为成膜基料的涂料称作丙烯酸树脂涂料。 1.2 丙烯酸树脂涂料的特性及用途 该类涂料具有色浅、保色、保光、耐候、耐腐蚀和耐污染等优点,使用温度

NMR常见溶剂峰和水峰

常数,H2O和交换了D的HOD上的1H产生的即水峰的化学位移 氯仿:小、中小、中等极性 DMSO:芳香系统(日光下自然显色、紫外荧光)。对于酚羟基能够出峰。芳香化合物还是芳香甙,都为首选。 吡啶:极性大的,特别是皂甙 对低、中极性的样品,最常采用氘代氯仿作溶剂,因其价格远低于其它氘代试剂。极性大的化合物可采用氘代丙酮、重水等。 针对一些特殊的样品,可采用相应的氘代试剂:如氘代苯(用于芳香化合物、芳香高聚物)、氘代二甲基亚砜(用于某些在一般溶剂中难溶的物质)、氘代吡啶(用于难溶的酸性或芳香化合物)等。丙酮:中等极性 甲醇:极性大 氯仿—甲醇: 石:乙 5;1小极性 石:丙 2:1——1:1中等极性 氯仿:甲醇6:1极性以上含有一个糖 2:1 含有两个糖 含有糖的三萜皂甙:一般用吡啶

常见溶剂的化学位移 常见溶剂的1H在不同氘代溶剂中的化学位移值 常见溶剂的化学位移 常见溶剂的13C在不同氘代溶剂中的化学位移值

核磁知识(NMR) 一:样品量的选择 氢谱,氟谱,碳谱至少需要5mg. 1H-1H COSY, 1H-1H NOESY, 1H-13C HMBC, 1H-13C HSQC需要10-15mg. 碳谱需要30mg. 二:如何选择氘代溶剂 常用氘代溶剂: CDCl3, DMSO, D2O, CD3OD.特殊氘代溶剂: CD3COCD3, C6D6, CD3CN。 极性较大的化合物可以选择用D2O或CD3OD,如果想要观察活泼氢切记不能选择D2O和CD3OD。CDCl3为人民币2-3元,D2O为人民币6元,DMSO为人民币10元,CD3OD为人民币30元。Solvent 化学位移(ppm) 水峰位移(ppm) CDCl3 ? ? ? ? DMSO? ? ? ? ? ? ? ? CD3OD? ? ? ? ? ? ? ? D2O? ? ? ? ? ? ? ? CD3COCD3? ? ? ? ? ? ? ?

NMR常见溶剂峰和水峰

. 的耦合常13C1H对为溶剂本身1H对与之相对应的1H之间的耦合常数,JCD注:JHD为溶剂本身的其他产生的即水峰的化学位移上的1HH2O和交换了D的HOD数,氯仿:小、中小、中等极性。对于酚羟基能够出峰。芳香化合物还是芳香甙,都为DMSO:芳香系统(日光下自然显色、紫外荧光)首选。吡啶:极性大的,特别是皂甙对低、中极性的样品,最常采用氘代氯仿作溶剂,因其价格远低于其它氘代试剂。极性大的化合物可采用氘代丙酮、重水等。、针对一些特殊的样品,可采用相应的氘代试剂:如氘代苯(用于芳香化合物、芳香高聚物) 、氘代吡啶(用于难溶的酸性或芳香化合物)氘代二甲基亚砜(用于某些在一般溶剂中难溶的物质)等。丙酮:中等极性甲醇:极性大氯仿—甲醇: 1小极性;石:乙 5 中等极性1:1——石:丙 2:1 含有一个糖 6氯仿:甲醇:1极性以上 1 含有两个糖: 2 含有糖的三萜皂甙:一般用吡啶 ,.. . 常见溶剂的化学位移

1H在不同氘代溶剂中的化学位移值常见溶剂multCO(CSCCCDCC(C7.20 7.571.97.12.57.22.03.34.7残余溶剂 8.7brs 4.90.42.83.32.14.74.81.5水 7.2CHC8.08.36.17.57.92.1C2.22.12.0(C1.52.02.01.6(C2.52.52.62.6S2.72.57.37.37.17.37.37.32.02.02.0 2.0C2.11.5C1.9C,s3.493.163.313.28O3.33.3C3.0OH,s1.04.02.13.18.62 8.588.528.538.538.588.728.57CH(2),m 7.357.297.457.397.206.667.337.44CH(3),m7.67.87.77.77.77.56.97.8CH(4),2.051.992.071.651.971.972.01,s C4.124.034.143.894.054.094.06,q CCOOC 1.261.171.240.921.201.241.20,tCH3s5.445.304.275.49CHCl5.635.76220.88 0.89 0.88 0.86 0.90 0.89 ,t CH3n-hexane 1.261.281.281.251.291.24,mCH21.25 0.96 1.19 1.12 1.12 1.06 1.17 ,t CH3OHCH52 3.723.603.543.653.573.443.34,qCH2 ,.. . 常见溶剂的化学位移 13C在不同氘代溶剂中的化学位移值常见溶剂的 CSOCCDC(CCC(C123.441.32206.26135.4339.549.0128.077.1溶剂 118.229.8149.8CHC79.177.777.379.179.479.1215.94207.43205.87204.43209.67206.31207.07C(C30.8 30.130.930.530.630.930.639.341.341.240.0S(C40.440.740.4129.1128.6129.3128.3129.3128.3119.6811 7.60116.43116.02118.06118.26117.91CC1.40.21.81.10.81.71.049.550.4OC49.948.549.849.749.9149.1 8150.07150.67150.27149.90150.76149.58 125.12123.75125.53127.76123.84124.57123.58138.2136.0136.5138.3135.9135.2136.821.1520.8320.8 820.5620.6821.1621.04 171.36 171.68170.96170.31172.89175.26170.44COOC60.4960.9861.5059.7460.5660.2162.32 14.113.914.114.514.414.414.5053.52Cl55.3254.78CH53.4654.8454.952214.14 14.45 14.43 14.32 13.88 14.34 22.70 23.40 23.04 22.05 23.28 n-hexane23.68 31.6432.3630.9532.3031.9632.73 ,.. . 核磁知识(NMR) 一:样品量的选择

核磁碳谱和氢谱的解析

碳谱、氢谱的解析 分析氢谱有如下的步骤。 (1) 区分出杂质峰、溶剂峰、旋转边带。 杂质含量较低,其峰面积较样品峰小很多,样品和杂质峰面积之间也无简单的整数比关系。据此可将杂质峰区别出来。氘代试剂不可能100%氘代,其微量氢会有相应的峰,如CDCl3中的微量CHCl3在约7.27ppm 处出峰。边带峰的区别请阅6.2.1。 (2) 计算不饱和度。 不饱和度即环加双键数。当不饱和度大于等于4时,应考虑到该化合物可能存在一个苯环(或吡啶环)。 (3) 确定谱图中各峰组所对应的氢原子数目,对氢原子进行分配。 根据积分曲线,找出各峰组之间氢原子数的简单整数比,再根据分子式中氢的数目,对各峰组的氢原子数进行分配。 (4) 对每个峰的δ、J 都进行分析。 根据每个峰组氢原子数目及δ值,可对该基团进行推断,并估计其相邻基团。 对每个峰组的峰形应仔细地分析。分析时最关键之处为寻找峰组中的等间距。每一种间距相应于一个耦合关系。一般情况下,某一峰组内的间距会在另一峰组中反映出来。通过此途径可找出邻碳氢原子的数目。 当从裂分间距计算J 值时,应注意谱图是多少兆周的仪器作出的,有了仪器的工作频率才能从化学位移之差Δδ(ppm)算出Δν(Hz)。当谱图显示烷基链3J 耦合裂分时,其间距(相应6-7Hz)也可以作为计算其它裂分间距所对应的赫兹数的基准。 (5) 根据对各峰组化学位移和耦合常数的分析,推出若干结构单元,最后组合为几种可能的结构式。每一可能的结构式不能和谱图有大的矛盾。 (6) 对推出的结构进行指认。 每个官能团均应在谱图上找到相应的峰组,峰组的δ值及耦合裂分(峰形和J 值大小)都应该和结构式相符。如存在较大矛盾,则说明所设结构式是不合理的,应予以去除。通过指认校核所有可能的结构式,进而找出最合理的结构式。必须强调:指认是推结构的一个必不可少的环节。 如果未知物的结构稍复杂,在推导其结构时就需应用碳谱。在一般情况下,解析碳谱和解析氢谱应结合进行。从碳谱本身来说,有一套解析步骤和方法。

核磁共振氢谱碳谱各种溶剂峰

show their degree of variability.Occasionally,in order to distinguish between peaks whose assignment was ambiguous,a further1-2μL of a specific substrate were added and the spectra run again. Table1.1H NMR Data proton mult CDCl3(CD3)2CO(CD3)2SO C6D6CD3CN CD3OD D2O solvent residual peak7.26 2.05 2.507.16 1.94 3.31 4.79 H2O s 1.56 2.84a 3.33a0.40 2.13 4.87 acetic acid CH3s 2.10 1.96 1.91 1.55 1.96 1.99 2.08 acetone CH3s 2.17 2.09 2.09 1.55 2.08 2.15 2.22 acetonitrile CH3s 2.10 2.05 2.07 1.55 1.96 2.03 2.06 benzene CH s7.367.367.377.157.377.33 tert-butyl alcohol CH3s 1.28 1.18 1.11 1.05 1.16 1.40 1.24 OH c s 4.19 1.55 2.18 tert-butyl methyl ether CCH3s 1.19 1.13 1.11 1.07 1.14 1.15 1.21 OCH3s 3.22 3.13 3.08 3.04 3.13 3.20 3.22 BHT b ArH s 6.98 6.96 6.877.05 6.97 6.92 OH c s 5.01 6.65 4.79 5.20 ArCH3s 2.27 2.22 2.18 2.24 2.22 2.21 ArC(CH3)3s 1.43 1.41 1.36 1.38 1.39 1.40 chloroform CH s7.268.028.32 6.157.587.90 cyclohexane CH2s 1.43 1.43 1.40 1.40 1.44 1.45 1,2-dichloroethane CH2s 3.73 3.87 3.90 2.90 3.81 3.78 dichloromethane CH2s 5.30 5.63 5.76 4.27 5.44 5.49 diethyl ether CH3t,7 1.21 1.11 1.09 1.11 1.12 1.18 1.17 CH2q,7 3.48 3.41 3.38 3.26 3.42 3.49 3.56 diglyme CH2m 3.65 3.56 3.51 3.46 3.53 3.61 3.67 CH2m 3.57 3.47 3.38 3.34 3.45 3.58 3.61 OCH3s 3.39 3.28 3.24 3.11 3.29 3.35 3.37 1,2-dimethoxyethane CH3s 3.40 3.28 3.24 3.12 3.28 3.35 3.37 CH2s 3.55 3.46 3.43 3.33 3.45 3.52 3.60 dimethylacetamide CH3CO s 2.09 1.97 1.96 1.60 1.97 2.07 2.08 NCH3s 3.02 3.00 2.94 2.57 2.96 3.31 3.06 NCH3s 2.94 2.83 2.78 2.05 2.83 2.92 2.90 dimethylformamide CH s8.027.967.957.637.927.977.92 CH3s 2.96 2.94 2.89 2.36 2.89 2.99 3.01 CH3s 2.88 2.78 2.73 1.86 2.77 2.86 2.85 dimethyl sulfoxide CH3s 2.62 2.52 2.54 1.68 2.50 2.65 2.71 dioxane CH2s 3.71 3.59 3.57 3.35 3.60 3.66 3.75 ethanol CH3t,7 1.25 1.12 1.060.96 1.12 1.19 1.17 CH2q,7d 3.72 3.57 3.44 3.34 3.54 3.60 3.65 OH s c,d 1.32 3.39 4.63 2.47 ethyl acetate CH3CO s 2.05 1.97 1.99 1.65 1.97 2.01 2.07 C H2CH3q,7 4.12 4.05 4.03 3.89 4.06 4.09 4.14 CH2C H3t,7 1.26 1.20 1.170.92 1.20 1.24 1.24 ethyl methyl ketone CH3CO s 2.14 2.07 2.07 1.58 2.06 2.12 2.19 C H2CH3q,7 2.46 2.45 2.43 1.81 2.43 2.50 3.18 CH2C H3t,7 1.060.960.910.850.96 1.01 1.26 ethylene glycol CH s e 3.76 3.28 3.34 3.41 3.51 3.59 3.65“grease”f CH3m0.860.870.920.860.88 CH2br s 1.26 1.29 1.36 1.27 1.29 n-hexane CH3t0.880.880.860.890.890.90 CH2m 1.26 1.28 1.25 1.24 1.28 1.29 HMPA g CH3d,9.5 2.65 2.59 2.53 2.40 2.57 2.64 2.61 methanol CH3s h 3.49 3.31 3.16 3.07 3.28 3.34 3.34 OH s c,h 1.09 3.12 4.01 2.16 nitromethane CH3s 4.33 4.43 4.42 2.94 4.31 4.34 4.40 n-pentane CH3t,70.880.880.860.870.890.90 CH2m 1.27 1.27 1.27 1.23 1.29 1.29 2-propanol CH3d,6 1.22 1.10 1.040.95 1.09 1.50 1.17 CH sep,6 4.04 3.90 3.78 3.67 3.87 3.92 4.02 pyridine CH(2)m8.628.588.588.538.578.538.52 CH(3)m7.297.357.39 6.667.337.447.45 CH(4)m7.687.767.79 6.987.737.857.87 silicone grease i CH3s0.070.130.290.080.10 tetrahydrofuran CH2m 1.85 1.79 1.76 1.40 1.80 1.87 1.88 CH2O m 3.76 3.63 3.60 3.57 3.64 3.71 3.74 toluene CH3s 2.36 2.32 2.30 2.11 2.33 2.32 CH(o/p)m7.177.1-7.27.187.027.1-7.37.16 CH(m)m7.257.1-7.27.257.137.1-7.37.16 triethylamine CH3t,7 1.030.960.930.960.96 1.050.99 CH2q,7 2.53 2.45 2.43 2.40 2.45 2.58 2.57 a In these solvents the intermolecular rate of exchange is slow enough that a peak due to HDO is usually also observed;it appears at 2.81and 3.30ppm in acetone and DMSO,respectively.In the former solvent,it is often seen as a1:1:1triplet,with2J H,D)1Hz. b2,6-Dimethyl-4-tert-butylphenol.c The signals from exchangeable protons were not always identified.d In some cases(see note a),the coupling interaction between the CH2and the OH protons may be observed(J)5Hz).e In CD3CN,the OH proton was seen as a multiplet atδ2.69,and extra coupling was also apparent on the methylene peak.f Long-chain,linear aliphatic hydrocarbons.Their solubility in DMSO was too low to give visible peaks.g Hexamethylphosphoramide.h In some cases(see notes a,d),the coupling interaction between the CH3and the OH protons may be observed(J)5.5Hz).i Poly(dimethylsiloxane).Its solubility in DMSO was too low to give visible peaks. Notes https://www.360docs.net/doc/e13583564.html,.Chem.,Vol.62,No.21,19977513

压敏胶介绍

什么是压敏胶? pressure sensitive adhesive 压敏胶粘剂的简称。是一类具有对压力有敏感性的胶粘剂。主要用于制备压敏胶带。一般压敏胶的剥离力(胶粘带与被粘表面加压粘贴后所表现的剥离力)<胶粘剂的内聚力(压敏胶分子之间的作用力)<胶粘剂的粘基力(胶粘剂与基材之间的附着力)。这样的压敏胶粘剂在使用过程中才不会有脱胶等现象的发生。压敏胶按照主体树脂成分可成分可分为橡胶型和树脂型两类。橡胶型又可分为天然橡胶和合成橡胶类;树脂型又主要包括丙烯酸类、有机硅类以及聚氨酯类。橡胶类压敏胶除主要成分为橡胶外,还要加入其他辅助成分,如增粘树脂、增塑剂、填料、粘度调整剂、硫化剂、防老剂、溶剂等配合而成。而树脂类压敏胶除主体树脂外,还需加入消泡剂、流平剂、润湿剂等助剂。 除以上分类方法外压敏胶还可按照分散介质不同,分为水性和溶剂型压敏胶;又可按用途不同分为包装、保护、绝缘、警示、标示、文具等产品。 目前市场上看到的以聚丙烯封箱、美纹纸(皱纹纸)、PVc电工胶带为多。 压敏胶主要是丙烯酸系和橡胶系的溶剂型或胶乳型胶粘剂。由于高速操作、合理涂布、排除溶剂公害问题的需要,发展了暖熔压敏胶,集热熔胶和压敏胶的特点于一体,无溶剂,无污染,使用比较方便。它在熔融状态下进行涂抹,冷却固化后施加轻度指压就能起到粘合作用。 它的应用范围很广,可用于尿布、妇女用品、双面胶带、标签、包装、医疗卫生、书籍装订、表面保护膜、木材加工、壁纸及制鞋等方面。其中,包装用HMP SA消费量最大,几乎占总量的一半。热熔压敏胶主成分较多应用苯乙烯类热塑弹性体。热熔压敏胶优点是无溶剂,因而无大气污染,且生产率高。但缺点是耐热性、内聚力不足。新的SEBS、SEPS、环氧化SBS等热塑性弹性体,用于制备更高性能的暖熔压敏胶。新的丙烯酸酯嵌

压敏胶研究综述

压敏胶研究综述 摘要:对于压敏胶做了一个总的概述,之后就是压敏胶的发展历程以及压敏胶不同分类中的不同形态以及在各个不同领域当中对不同性质不同结果的压敏胶的制备结果的一个总的结论。其中包括无皂丙烯酸酯乳液压敏胶与常规的乳液压敏胶相比,该无皂乳液压敏胶具有良好的耐水性和压敏胶粘性能。热熔压敏胶、导电压敏胶、丙烯酸性水溶性压敏胶等一系列不同领域中的研究成果。在这里我们可以了解到更多的压敏胶种类,性能,历程,以及他最多的用途在于哪里。 关键词:发展历程;各种类压敏胶;压敏胶性能 0前言 压敏胶是一类具有对压力有敏感性的胶粘剂。主要用于制备压敏胶带。一般压敏胶的剥离力(胶粘带与被粘表面加压粘贴后所表现的剥离力)<胶粘剂的内聚力(压敏胶分子之间的作用力)<胶粘剂的粘基力(胶粘剂与基材之间的附着力)。这样的压敏胶粘剂在使用过程中才不会有脱胶等现象的发生。压敏胶主要是丙烯酸系和橡胶系的溶剂型或胶乳型胶粘剂。由于高速操作、合理涂布、排除溶剂公害问题的需要,发展了暖熔压敏胶,集热熔胶和压敏胶的特点于一体,无溶剂,无污染,使用比较方便。它在熔融状态下进行涂抹,冷却固化后施加轻度指压就能起到粘合作用。只是在这里我们是对压敏胶有了个详细的介绍,不单单只有它的分类,以及各个类别中的一个代表的详细介绍。在本综述当中,我们可以查阅到压敏胶到底有哪些分类,以及这些类别在我们的生产工艺当中又是能够有哪些应用成果的。我们可以看到详细的论述。压敏胶行业曾长期被国际巨头和跨国公司所垄断,国内众多行业所需高端压敏胶均依赖进口或合资产品。自上世纪 90 年代起,国内企业、科研所等企事业单位逐渐开始进入该领域产品的自主研究和开发,经过多年的技术积累,逐步在高性能有机硅胶、丙烯酸酯胶、厌氧胶、环氧树脂胶和聚氨酯胶等产品上取得了自主知识产权,其产品多以替代进口为目标。整个国内压敏胶行业中有自主研发能力和一定生产规模,拥有自主品牌,并以压敏胶产品为主业的企业约有30 多家。因此目前国内压敏胶形成了跨国公司产品结构全面、技术领先;内资企业专注细分领域、增长较快,紧跟国外竞争对手的竞争格局,整体行业分散度较高。压敏胶是胶粘剂行业中的高端领域,对企业研发能力、产品技术水平、销售渠道等要求都很高。压敏胶经过十年的高速成长期,近几年增长有所减缓,现有生产能力过剩,市场竞争激烈,但应用领域不断被开拓,每年仍以二位数增长,近五年压敏胶产量逐

带你认识OCA 压敏胶基础理论介绍

带你认识真正的OCA——压敏胶基础理论 产业调研 2014-12-26 09:17:03来源: 南京汇鑫光电技术总监夏建明近年来,触控技术已经成为平板显示家族中的一名永久成员,全球对触控类产品近似贪婪的喜好引爆了触摸屏光学胶市场的急剧攀升,让高性能触控显示面板供不应求,同样也让OCA光学胶市场十分火爆,其中手机和平板电脑占据了触摸屏OCA光学胶的大部分市场。 OCA光学胶属于压敏胶的一类,为此,手机报特邀请南京汇鑫光电材料有限公司的夏建明技术总监为行业讲解OCA光学胶的核心技术知识——压敏胶的原理与检测。 一.概述 压敏胶全称为压力敏感型胶粘剂(PSA-pressure sensitive adhesive),俗称不干胶,一般通过将其涂布在各种基材上制成压敏胶制品,应用于被粘物的粘接。 压敏胶独特的粘接特性使其逐渐发展成为一个独立的门类。与结构胶黏剂和非结构胶黏剂相比,压敏胶使粘结过程大大简化,使压敏胶工业得到迅速发展。

压敏胶粘剂可分为溶剂型,乳液型,水溶型,热溶型,紫外光固化型,电子束固化型等。分子结构类型含橡胶,丙烯酸酯,聚乙烯基醚,聚氨酯,聚异丁烯和有机硅等。 压敏胶的基材有各种纸品,塑料薄膜,纺织品,金属箔,泡沫塑料等,加上压敏胶剂,底涂剂,防粘剂,离型纸(离型膜)等辅助材料组成。以双面胶带为例,其结构如下图所示: 二.压敏胶及其制品理论基础 1.压敏胶粘剂的粘合特性

压敏胶粘剂决定压敏胶制品的粘合特性。压敏胶粘剂是一类具有特殊性能的胶黏剂,本身处于半固化状态,使用时一般不需要进一步固化,只需施加一定压力就能使压敏胶润湿被粘表面并粘牢,形成实用且具有一定强度的胶接接头。 压敏胶对外加压力敏感的粘合特性由组成它们的高聚物的粘弹性质所决定。粘弹性是指高分子在外力作用下,高聚物发生弹性形变和粘性流动。粘弹性使压敏胶粘剂具有对外力敏感的粘合特性。 当压敏胶粘剂在适当、缓慢压力作用下,产生近似于液体那样的粘性流动,使压敏胶粘剂与被粘物表面紧密接触,并流入被粘物表面的坑洼沟槽中,增大有效接触面积,从而产生一定的粘合力。 当粘贴好的压敏胶粘制品在受到外力作用剥离时,压敏胶粘剂表现为近似于弹性的性质,具有较高的抗剥离能力,剥离速度越大,压敏胶粘制品的剥离强度越高。 压敏胶粘剂对被粘物表面的润湿性,能使它与被粘物表面达到分子接近的程度,产生分子间作用力,产生足够的界面粘合力。 2.压敏胶粘制品实用粘合性能及表征 压敏胶的粘合性能主要有初粘力,粘着力,内聚力和粘基力等宏观指标来表征。

核磁常见氘代溶剂峰

NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities Hugo E.Gottlieb,*Vadim Kotlyar,and Abraham Nudelman* Department of Chemistry,Bar-Ilan University, Ramat-Gan52900,Israel Received June27,1997 In the course of the routine use of NMR as an aid for organic chemistry,a day-to-day problem is the identifica-tion of signals deriving from common contaminants (water,solvents,stabilizers,oils)in less-than-analyti-cally-pure samples.This data may be available in the literature,but the time involved in searching for it may be considerable.Another issue is the concentration dependence of chemical shifts(especially1H);results obtained two or three decades ago usually refer to much more concentrated samples,and run at lower magnetic fields,than today’s practice. We therefore decided to collect1H and13C chemical shifts of what are,in our experience,the most popular “extra peaks”in a variety of commonly used NMR solvents,in the hope that this will be of assistance to the practicing chemist. Experimental Section NMR spectra were taken in a Bruker DPX-300instrument (300.1and75.5MHz for1H and13C,respectively).Unless otherwise indicated,all were run at room temperature(24(1°C).For the experiments in the last section of this paper,probe temperatures were measured with a calibrated Eurotherm840/T digital thermometer,connected to a thermocouple which was introduced into an NMR tube filled with mineral oil to ap-proximately the same level as a typical sample.At each temperature,the D2O samples were left to equilibrate for at least 10min before the data were collected. In order to avoid having to obtain hundreds of spectra,we prepared seven stock solutions containing approximately equal amounts of several of our entries,chosen in such a way as to prevent intermolecular interactions and possible ambiguities in assignment.Solution1:acetone,tert-butyl methyl ether,di-methylformamide,ethanol,toluene.Solution2:benzene,di-methyl sulfoxide,ethyl acetate,methanol.Solution3:acetic acid,chloroform,diethyl ether,2-propanol,tetrahydrofuran. Solution4:acetonitrile,dichloromethane,dioxane,n-hexane, HMPA.Solution5:1,2-dichloroethane,ethyl methyl ketone, n-pentane,pyridine.Solution6:tert-butyl alcohol,BHT,cyclo-hexane,1,2-dimethoxyethane,nitromethane,silicone grease, triethylamine.Solution7:diglyme,dimethylacetamide,ethyl-ene glycol,“grease”(engine oil).For D2O.Solution1:acetone, tert-butyl methyl ether,dimethylformamide,ethanol,2-propanol. Solution2:dimethyl sulfoxide,ethyl acetate,ethylene glycol, methanol.Solution3:acetonitrile,diglyme,dioxane,HMPA, pyridine.Solution4:1,2-dimethoxyethane,dimethylacetamide, ethyl methyl ketone,triethylamine.Solution5:acetic acid,tert-butyl alcohol,diethyl ether,tetrahydrofuran.In D2O and CD3OD nitromethane was run separately,as the protons exchanged with deuterium in presence of triethylamine. Results Proton Spectra(Table1).A sample of0.6mL of the solvent,containing1μL of TMS,1was first run on its own.From this spectrum we determined the chemical shifts of the solvent residual peak2and the water peak. It should be noted that the latter is quite temperature-dependent(vide infra).Also,any potential hydrogen-bond acceptor will tend to shift the water signal down-field;this is particularly true for nonpolar solvents.In contrast,in e.g.DMSO the water is already strongly hydrogen-bonded to the solvent,and solutes have only a negligible effect on its chemical shift.This is also true for D2O;the chemical shift of the residual HDO is very temperature-dependent(vide infra)but,maybe counter-intuitively,remarkably solute(and pH)independent. We then added3μL of one of our stock solutions to the NMR tube.The chemical shifts were read and are presented in Table 1.Except where indicated,the coupling constants,and therefore the peak shapes,are essentially solvent-independent and are presented only once. For D2O as a solvent,the accepted reference peak(δ)0)is the methyl signal of the sodium salt of3-(trimeth-ylsilyl)propanesulfonic acid;one crystal of this was added to each NMR tube.This material has several disadvan-tages,however:it is not volatile,so it cannot be readily eliminated if the sample has to be recovered.In addition, unless one purchases it in the relatively expensive deuterated form,it adds three more signals to the spectrum(methylenes1,2,and3appear at2.91,1.76, and0.63ppm,respectively).We suggest that the re-sidual HDO peak be used as a secondary reference;we find that if the effects of temperature are taken into account(vide infra),this is very reproducible.For D2O, we used a different set of stock solutions,since many of the less polar substrates are not significantly water-soluble(see Table1).We also ran sodium acetate and sodium formate(chemical shifts: 1.90and8.44ppm, respectively). Carbon Spectra(Table2).To each tube,50μL of the stock solution and3μL of TMS1were added.The solvent chemical shifts3were obtained from the spectra containing the solutes,and the ranges of chemical shifts (1)For recommendations on the publication of NMR data,see: IUPAC Commission on Molecular Structure and Spectroscopy.Pure Appl.Chem.1972,29,627;1976,45,217. (2)I.e.,the signal of the proton for the isotopomer with one less deuterium than the perdeuterated material,e.g.,C H Cl3in CDCl3or C6D5H in C6D6.Except for CHCl3,the splitting due to J HD is typically observed(to a good approximation,it is1/6.5of the value of the corresponding J HH).For CHD2groups(deuterated acetone,DMSO, acetonitrile),this signal is a1:2:3:2:1quintet with a splitting of ca.2 Hz. (3)In contrast to what was said in note2,in the13C spectra the solvent signal is due to the perdeuterated isotopomer,and the one-bond couplings to deuterium are always observable(ca.20-30Hz). Figure1.Chemical shift of H DO as a function of tempera-ture. https://www.360docs.net/doc/e13583564.html,.Chem.1997,62,7512-7515 S0022-3263(97)01176-6CCC:$14.00?1997American Chemical Society

相关文档
最新文档