一种新型聚醚类聚羧酸减水剂的合成工艺及性能研究

合集下载

高性能聚羧酸减水剂合成研究

高性能聚羧酸减水剂合成研究

2020年11月Nov.2020化㊀学㊀工㊀业㊀与㊀工㊀程CHEMICAL㊀INDUSTRY㊀AND㊀ENGINEERING第37卷Vol.37㊀第6期No.6收稿日期:2020-03-16基金项目:山东省重点研发计划(2019GGX102021)㊂作者简介:邵致成(1994-),男,硕士研究生,现从事精细化学品方面的研究㊂通信作者:刘仕伟(1978-),E-mail:liushiweiqust@㊂Doi:10.13353/j.issn.1004.9533.20200114高性能聚羧酸减水剂合成研究邵致成,郭柯宇,刘仕伟∗,于世涛(青岛科技大学化工学院,山东青岛266042)摘要:为了节约能源和降低能耗,在模拟绝热的条件下,以异戊烯醇聚氧乙烯醚(TPEG )㊁丙烯酸(AA )㊁甲基丙烯磺酸钠(SMAS )为聚合单体,巯基乙酸(TGA )为链转移剂,在过硫酸铵-抗坏血酸(APS-Vc )氧化还原引发体系作用下,研究了高性能聚羧酸减水剂(PCE )的制备方法㊂考察了AA ㊁SMAS 和TGA 用量对所得PCE 分子结构及其性能的影响㊂结果表明,在n (TPEG )ʒn (AA )ʒn (SMAS )ʒn (TGA )=1.00ʒ4.00ʒ0.20ʒ0.18,反应初始温度15ħ㊁聚合时间4h 的条件下,所得的PCE 重均相对分子质量为42688㊁数均相对分子质量36409㊁相对分子质量分布1.1725,且其固含量㊁水泥净浆流动度㊁坍落度和减水率均优于传统恒温聚合方式所得PCE ;PCE 在应用中可延缓水泥水化硬化过程,促进钙矾石的紧密排列,提高水泥的抗压和抗折等机械强度㊂关键词:绝热反应;聚羧酸减水剂;流动性;水泥水化作用中图分类号:O632.52㊀文献标志码:A㊀文章编号:1004-9533(2020)06-0030-08Synthesis of High Performance Polycarboxylate SuperplasticizerShao Zhicheng,Guo Keyu,Liu Shiwei ∗,Yu Shitao(College of Chemical Engineering,Qingdao University of Science and Technology,Shandong Qingdao 266042,China)Abstract :In order to save energy and reduce energy consumption,a high-performance polycarboxylatesuperplasticizer (PCE)was synthesized by the method of the simulated adiabatic conditions,isopentenol polyoxyethylene ether (TPEG),acrylic acid (AA),sodium methacryl sulfonate (SMAS)as the poly-merization monomers,thioglycolic acid (TGA)as chain transfer agent,and ammonium persulfate-ascor-bic acid (APS-Vc)as redox initiation system.The effects of the amount of AA,SMAS and TGA on the properties of the PCE were investigated.The optimal reaction conditions were obtained as following:n (TPEG)ʒn (AA)ʒn (SMAS)ʒn (TGA)=1.00ʒ4.00ʒ0.20ʒ0.18,initial reaction temperature15ħand polymerization time 4h.Under the above reaction conditions,the weight average molecular weight,number average molecular weight and molecular weight distribution of the obtained PCE were42688,36409,and 1.1725,respectively.And the properties of its solid content,cement slurry fluidi-ty,slump and water reduction were better than those of PCE obtained by the traditional thermostatic poly-merization.In addition,PCE could delay the hydration and hardening process of cement,promote the close arrangement of ettringite,and improve the mechanical strength of the cement such as compressive and flexural resistance.Keywords :adiabatic reaction;polycarboxylate superplasticizer;fluidity;cement hydration process第37卷第6期邵致成,等:高性能聚羧酸减水剂合成研究㊀㊀减水剂是一种使用量大㊁使用范围广的混凝土添加剂,其发展经历了木质素磺酸盐㊁萘磺酸甲醛缩合物/三聚氰胺甲醛缩合物㊁聚羧酸梳型共聚物等3代主要产品[1]㊂第1代减水剂木质素磺酸盐具有产量高㊁价格低和来源广泛等优点[2],但制备过程中因存有缩合反应而导致产品表面活性低㊁减水性能差,影响了其应用㊂第2代水溶性树脂类减水剂包括萘系减水剂㊁三聚氰胺磺酸盐甲醛系减水剂等,其具有良好的耐高温特性和拌和性能,但存在生产成本高㊁减水率低和相容性差等缺点,限制了其应用[3]㊂第3代减水剂聚羧酸减水剂(PCE)具有低掺量㊁高减水率和低坍落度损失等优点[4],广泛应用于建筑㊁陶瓷[5]㊁SiO2悬浮液[6]㊁催化模板化硅化和合成有机金属骨架[7]等领域㊂近年来,PCE 合成及应用技术的日渐成熟,极大地推动了自密实混凝土㊁超高强混凝土等特种混凝土的技术进步和发展[8]㊂PCE在混凝土中以较低掺量的条件下即可显著降低搅拌用水量,提高混凝土流动性和早期强度,且在生产过程中基本不污染环境,被认为是一种高效绿色减水剂[9]㊂PCE的合成研究起步于20世纪90年代,但目前的研究主要集中在聚合物分子构象㊁作用机理以及水泥适应性等;而有关其适应工业生产的合成方法研究少有文献报道㊂目前, PCE多采用水浴恒温聚合方式制备,聚合温度多为50~80ħ[10],由于聚合初期高反应物浓度使得聚合热急剧释放,需冷却控制反应物料的温度,而反应后期,低反应物浓度导致反应速率降低,需加热保温反应物料温度,导致生成过程控温程序繁杂㊁反应器需配置换热构件㊁生产周期长㊁能耗大和成本高等缺陷㊂绝热反应是反应系统与外界没有热量交换的反应,由此其反应器有结构简单㊁造价便宜㊁反应体积得到充分利用等优点㊂同时,反应过程中因无需使用冷却或加热媒介控制反应温度,能够达到节约能源和降低能耗的目的㊂目前,绝热反应在硝化[11]㊁磺化和烯烃聚合[12]等反应中均获得成功应用㊂因此,本研究以聚醚型大单体异戊烯醇聚氧乙烯醚(TP EG)㊁丙烯酸(AA)和甲基丙烯磺酸钠(SMAS)为原料,在模拟绝热的条件下研究制备高性能减水剂P CE,研究了绝热反应条件㊁AA用量㊁SMAS用量㊁TGA用量对P CE减水性能的影响,并且研究了P CE对水泥水化过程的影响㊂结果表明,所得产品P CE的水泥净浆流动度㊁坍落度和减水率均优于传统恒温聚合方式所得P CE,且其在应用中可延缓水泥水化硬化过程,促进钙矾石的紧密排列,提高水泥的抗压和抗折等机械强度㊂1㊀实验部分1.1㊀试剂与仪器异戊烯醇聚氧乙烯醚(TPEG):相对分子质量2400,工业品,山东卓星化工有限公司;丙烯酸(AA):AR,天津市北联精细化学品开发有限公司; SMAS:工业品,上海笛柏化学品技术有限公司;过硫酸铵(APS):AR,上海麦克林生化科技有限公司;抗坏血酸(Vc)㊁巯基乙酸(TGA)等均为市售分析纯;水泥:市售SH42.5号普通硅酸盐水泥㊂绝热反应器,实验室自制,该反应器是1个有真空保温夹套的玻璃反应器(即内壁和外壁之间的夹套层为真空),反应器内可放置磁力搅拌转子㊁开口配有可插温度计和冷凝管的玻璃塞㊂Tensor27傅里叶变换红外光谱仪,德国Bruker公司;凝胶渗透色谱仪,美国Waters公司;Rigaku Miniflex600X射线衍射仪,日本理学公司;JEOL-JSM-5200扫描电子显微镜,日本电子株式会社;NJ-160水泥净浆搅拌机,天津锡仪建材仪器厂;Zetasizer Nano ZS ZEN3600电位分析仪,英国Malvern Instruments 公司㊂1.2㊀实验操作将定量TPEG㊁APS和去离子水加入250mL绝热反应器中,搅拌待固体溶解后,同时分别用计量泵在20min内泵入混合液A(组成为:AA㊁SMAS和去离子水)和混合液B(组成为:TGA㊁Vc和去离子水),加料完毕后,控制反应初始温度为15ħ,搅拌反应4h;反应结束后将反应物倾倒至烧杯中冷却至室温,用质量分数为30%NaOH水溶液调节至pH 值为6~8,即得目标产物PCE㊂并按照标准GB/T 8077-2012的方法测定其水泥净浆流动性㊁固含量,制备PCE反应过程如式(1)所示㊂13化㊀学㊀工㊀业㊀与㊀工㊀程2020年11月(1)㊀㊀采用水泥净浆流动度为主要指标评价所得PCE样品的减水性能,其测定方法为:固定水灰比为m(水)ʒm(水泥)=0.29,称取水泥300g,自来水87g㊂测试时,所制备的PCE(固含量约40%)㊁水泥㊁自来水倒入搅拌锅内,将净浆流动机调为自动模式,先慢速搅拌120s,停15s,再快速搅拌120s,之后把搅拌好的净浆倒入平放在玻璃板上的截锥圆模中,用刮刀刮平,将截锥圆模按垂直方向提起,流淌30s后,用直尺量取互相垂直的2个方向的最大直径,取平均值作为水泥净浆流动度㊂此外,采用凝胶渗透色谱测定样品的相对分子质量及其分布:色谱柱由UltrahydragelTM120㊁Ultra-hydragelTM250㊁UltrahydragelTM500串联组成;柱温度40ħ,洗脱液0.1mol/L Na2SO4溶液的流速0.6 mL/min;用不同相对分子质量的分散性聚乙二醇校正标准曲线[13]㊂将各水化水泥试样到龄期后去除表皮,敲成0.2~0.3mm直径的小块,用玛瑙研钵将试样研磨至10μm以下,充分干燥后进行性能测试;XRD表征:使用Cu_Kα辐射在Rigaku Miniflex600(日本)衍射仪上测试样品,记录衍射角2θ为10ʎ~80ʎ㊂SEM表征:在场发射电子枪300kV下的JEOL-JSM-5200上进行测试,将一滴乙醇悬浮液沉积在硅晶片上制备SEM观察的样品㊂2㊀结果与讨论2.1㊀反应物起始温度和反应时间对反应过程温度及产物性能的影响在n(TPEG)ʒn(AA)ʒn(SMAS)ʒn(TGA)ʒn(APS)ʒn(Vc)=1.00ʒ4.00ʒ0.30ʒ0.18ʒ0.12ʒ0.01的反应条件下,考察了反应物起始温度对反应过程物料温度及产物性能的影响,结果见图1和表1㊂由图1可见,3个不同的起始温度(考虑季节的不同,设定了3个不同的起始温度),其聚合反应过程物料温度的变化较为相似,即反应初期,温度急图1㊀绝热体系中的温度变化Fig.1㊀Change of temperature in adiabatic systems㊀剧攀升,随后反应物料的温度趋平随后降低㊂这是因为该聚合反应为自由基反应机理,反应初期反应物浓度高,反应速度快,聚合热释放较为集中剧烈,导致反应物料温度攀升幅度较大;随着反应进行,反应物浓度降低,聚合反应速度降低,产生的聚合热,并且由于物料温度高于室温也可能引起热量的损耗,因此温度开始缓慢下降㊂表1给出了反应时间对产品的水泥净浆流动度影响的实验结果㊂表1㊀起始温度和反应时间对PCE减水性能的影响Table1㊀Effects of starting temperature and reactiontime on water reducing property of PCE物料起始温度/ħ净浆流动度/mm1h2h3h4h102262402462511523023924825020233240247250㊀㊀由表1可见,在不同的3种起始物料温度下制备的PCE净浆流动度较为相近(反应时间为3~4h时,净浆流动度在245~251mm),该指标能够满足实际的需要,表明采用绝热反应可实现PCE的稳定生产㊂因此,在随后的实验中,将重点考察反应物料初始温度为15ħ㊁反应时间为4h的条件下考察23第37卷第6期邵致成,等:高性能聚羧酸减水剂合成研究其他影响较大的因素对合成PCE性能的影响㊂此外,将反应初始温度15ħ㊁反应时间4h下制得的PCE用于混凝土性能测试,并与相同反应条件下于恒温30ħ制备的PCE在主要指标上进行了对比,结果如表2所示㊂表2㊀不同反应方式制备的PCE性能比较Table2㊀Performance comparison of PCE prepared bydifferent reaction methods指标绝热制备PCE恒温30ħ制备PCEPCE质量指标相对分子质量426884172725000~80000 PDI 1.1725 1.9304<2.0固含量/%38.8036.82(30~40)水泥净浆流动度/mm251251>240坍落度/mm210205>200减水率/%37.236.5>35㊀㊀注:m(水泥)ʒm(河砂)ʒm(石)ʒm(水)=360ʒ815ʒ966ʒ250,PCE折固掺量0.4%㊂㊀㊀从表2可见,绝热制备的PCE水泥净浆流动度为251mm,坍落度为210mm,减水率为37.2%㊂上述指标满足市售商品的质量指标要求㊂对比恒温30ħ制备样品的性能可见,绝热制备的PCE在主要性能指标数比肩水浴制备的PCE性能,部分指标优于水浴制备的PCE㊂此外,由于绝热聚合技术还具有节约能耗㊁操作简易等优点,所以本实验选用绝热法制备PCE㊂2.2㊀丙烯酸用量对PCE减水性能的影响AA中有强极性的羧基基团,羧基基团是PCE 中发挥分散作用和减水作用的重要功能性基团之一,同时还有保坍和缓凝作用[14]㊂因此,在n(TPEG)ʒn(SMAS)ʒn(TGA)ʒn(APS)ʒn(Vc)= 1.0ʒ0.3ʒ0.18ʒ0.12ʒ0.01㊁初始物料温度15ħ㊁反应时间4h的条件下,考察了AA用量对PCE减水性能的影响,结果见图2㊂由图2可见,AA用量对所得产物PCE的减水性能影响显著㊂当n(AA)ʒn(TPEG)=4.0ʒ1.0时,相同的PCE掺量下,样品的水泥净浆流动度均为最高,并且在掺量为0.4%时,净浆流动性超过了251mm,随后再增加AA用量,对提高水泥净浆流动性的意义不大,这是因为过多的AA用量,稀释了反应体系中引发剂的浓度,导致聚合速度降低,在规定的反应时间内,并未从实质上提高PCE分子结构中羧酸基团的数量㊂并且AA是高聚合反应活性的单体之一,AA的使用主要是为了在PCE结构中图2㊀n(AA)ʒn(TPEG)对PCE性能的影响Fig.2㊀Effect of n(AA)ʒn(TPEG)onPCE performance㊀引入更多的羧酸基团,羧酸基团的增多可促进PCE分子更容易锚固在水泥颗粒表面,使长侧链更好地发挥空间位阻作用,从而水泥净浆流动度增加,实现减水的目的㊂因此,n(AA)ʒn(TPEG)以4.0ʒ1.0为宜㊂此外,PCE的相对分子质量对水泥浆体的流动性有着显著影响,而改变羧基引入量可以改变减水剂PCE的相对分子质量,进而影响其减水性能[15]㊂研究表明,PCE的相对分子质量为25000~80000时,其减水剂性能最优㊂如果PCE相对分子质量超过80000,则聚合时PCE会产生凝胶或凝聚现象,所得聚合液黏稠,使用时会增大水泥浆体的黏度,导致阴离子基团被屏蔽,难以发挥静电斥力作用;而PCE相对分子质量低于25000,PCE分子结构中的侧链数量不足,不能发挥其空间位阻作用,影响其使用性能㊂表3给出了AA用量对产物PCE相对分子质量及其分布影响的实验结果㊂表3㊀不同丙烯酸配比PCE相对分子质量及其相对分子质量分布Table3㊀Molecular weight and molecular weightdistribution of polycarboxylate superplasticizers withdifferent acrylic acid ratio样品编号n(AA)ʒn(TPEG)M w M n PDIPCE-A 3.0ʒ1.0553******* 1.3210PCE-B 3.5ʒ1.04656740316 1.1550PCE-C 4.0ʒ1.04268836409 1.1725PCE-D 4.5ʒ1.03422027720 1.2345PCE-E 5.0ʒ1.027******** 1.0679㊀㊀注:n(TPEG)ʒn(SMAS)ʒn(TGA)ʒn(APS)ʒn(Vc)=1.0ʒ0.3ʒ0.18ʒ0.12ʒ0.01㊁初始物料温度15ħ㊁反应时间4h㊂33化㊀学㊀工㊀业㊀与㊀工㊀程2020年11月㊀㊀由表3可见,随着n (AA)ʒn (TPEG)的增加,PCE 重均相对分子质量M w 和数均相对分子质量M n 分别从55369和41915降到27614和25856㊂这是因为AA 有较高的反应活性,相比于大单体TPEG,AA 更容易与链引发产生的单体自由基反应形成新的自由基,从而将羧基接枝到主链上;增加AA 的添加量会导致TPEG 大单体难以接枝在主链上,而TPEG 所提供的侧链对PCE 的相对分子质量贡献较大,所以聚羧酸减水剂的相对分子质量随着AA 添加量的增大而减小㊂聚合物的分散性指数PDI 均接近于1,说明合成产物的相对分子质量分布较为集中㊂图3给出了PCE 的FT-IR表征㊂图3㊀PCE 的FT-IR 谱图Fig.3㊀FT-IR spectra of PCE由图3可见,1104cm-1处的特征峰为C O C的伸缩振动峰,这表明PCE 中存在醚基;1286cm-1处的特征峰为S O 的伸缩振动峰,表明反应物SMAS 的官能团 SO 2-3引入到了PCE 结构中;1730cm-1处的特征峰为C O 的伸缩振动峰,表明AA 的羧基引入到了PCE 结构中㊂2.3㊀甲基丙烯磺酸钠的用量对PCE 减水性能的影响SMAS 的使用可在PCE 的结构中引入磺酸根,磺酸根的引入可调节PCE 主链上的支链密度,增加减水剂与水泥颗粒吸附层的厚度㊁增强空间位阻,同时磺酸基还有很好的静电斥力作用,两者的协同作用可显著提高水泥浆的分散性和流动性[16]㊂由此,在n (AA)ʒn (TPEG)=4.0ʒ1.0并且其他条件不变前提下,考察了SMAS 用量对PCE 减水性能的影响,结果见图4㊂由图4可见,n (SMAS)ʒn (TPEG)对产品PCE 的减水性能影响较大,随着n (SMAS)ʒn (TPEG)值图4㊀n (SMAS )ʒn (TPEG )对PCE 性能的影响Fig.4㊀Effect of n (SMAS )ʒn (TPEG )onPCE performance㊀的增大,相同PCE 的掺入量下,PCE 的减水性能先增后降,当n (SMAS)ʒn (TPEG)=0.3ʒ1.0时,PCE 的掺量仅为0.4%时,其减水性能较好,水泥净浆流动度大于250mm,实现了低掺入量高减水性㊂随后再增加SMAS 的用量,减水性能未见明显提高,这是因为SMAS 用量的进一步增加,虽然可提高PCE 分子结构中的磺酸根的数量,但致使起较强吸附性能的羧基在PCE 结构中的相对数量减少㊂因此,n (SMAS)ʒn (TPEG)=0.3ʒ1.0为宜㊂2.4㊀巯基乙酸用量对PCE 减水性能的影响对醚类单体参加的自由基聚合,巯基乙酸TGA 是性能优良的相对分子质量调节剂,还具有优化相对分子质量分布的特性[17]㊂由此,在n (AA )ʒn (TPEG)=4.0ʒ1.0和n (SMAS)ʒn (TPEG)=0.3ʒ1.0,其他条件不变前提下,考察了TGA 用量对PCE 减水性能的影响,结果见图5㊂图5㊀n (TGA )ʒn (TPEG )对PCE 性能的影响Fig.5㊀Effect of n (SMAS )ʒn (TPEG )on PCE performance㊀由图5可见,随着TGA 用量增加,水泥净浆流动度呈现先上升后下降的变化规律,当n (TGA)ʒ43第37卷第6期邵致成,等:高性能聚羧酸减水剂合成研究n(TPEG)=0.18ʒ1.0,PCE仅掺入0.4%时,水泥净浆流动度就大于250mm,达到了低掺量高减水性能的目标㊂因此,n(TGA)ʒn(TPEG)=0.18ʒ1.0为宜㊂2.5㊀PCE对水泥水化过程的影响水泥的水化作用是其主要成分硅酸三钙(C3S)㊁硅酸二钙(C2S)㊁铝酸三钙(C3A)㊁铁铝酸四钙(C4AF)与水发生复杂的水化反应,最终生成钙矾石Aft(3CaO㊃Al2O3㊃3CaSO4㊃32H2O)[18],具体反应式如式(2)~(5)所示:2(3CaO㊃SiO2)+6H2O=3CaO㊃SiO2㊃3H2O+3Ca(OH)2(2)2(2CaO㊃SiO2)+4H2O=3CaO㊃SiO2㊃3H2O+Ca(OH)2(3) 3CaO㊃Al2O3+6H2O=3CaO㊃Al2O3㊃6H2O(4)4CaO㊃Al2O3㊃Fe2O3+7H2O=3CaO㊃Al2O3㊃6H2O+CaO㊃Fe2O3㊃H2O(5)㊀㊀为了更好地研究PCE对水泥水化过程的影响,采用XRD表征了水化后3和28d的水泥样品,结果如图6所示㊂由图6可见,在硬化3d后所得样品,含PCE的㊀㊀图6㊀水泥水化样品的XRD谱图Fig.6㊀XRD patterns of cement hydration samples㊀样品在29.40ʎ处衍射峰较高㊁34.36ʎ处衍射峰较低,可判断样品中C2S和C3S的含量依然很高,而生成的Aft较少,而空白的水泥样品C2S和C3S的衍射峰较低,Aft的衍射峰较高,表明PCE的使用在早期延缓了水泥水化反应㊂水化28d后所得样品峰强度基本一致,表明PCE对水泥后期水化过程影响较少㊂图7给出了水泥水化一定时间后所得样品的SEM图㊂图7㊀水泥水化样品的SEM图:a)3d的w(PCE)=0.3%样品,b)28d的w(PCE)=0.3%样品,c)3d的水泥样品,d)28d的水泥样品Fig.7㊀SEM image of cement hydration sample:a)3days,w(PCE)=0.3%;b)28days,w(PCE)=0.3%;c)3days,cement;d)28days,cement53化㊀学㊀工㊀业㊀与㊀工㊀程2020年11月㊀㊀由图7可见,水泥水化后硬化3d 时,使用PCE 所得样品多为紧密的层状晶体[图7a)],而未使用PCE 的样品多为松散棒状晶体Aft[图7c)],上述结果表明PCE 对水泥水化前期的延缓作用,有利于水泥硬化的紧密排列㊂硬化28d 时,使用PCE 所得多为紧密的层状晶体或棒状晶体[图7b )],未使用PCE 的水泥样品对位较松散的棒状晶体[图7d)],表明添加PCE 的水泥浆体硬化后期有更加紧密的结构,而这种作用可提高水泥的机械强度㊂图8给出了硬化后水泥样品的抗压性能和抗折性能测试结果㊂图8㊀水泥水化样品的抗压和抗折性能测试:a )抗压;b )抗折Fig.8㊀Compressive and flexural resistance test of cementhydration samples :a )compressive resistance ;b )flexural resistance由图8可见,与不加PCE 的水泥相比,掺加了PCE 的水泥样品具有更强抗压强度和抗折强度㊂这是因为PCE 的添加使水泥浆体更容易分散,对水泥硬化具有延缓作用,促进硬化过程中钙钒石的紧密排列,从而形成致密的结构和更小的空隙,从而拥有更好的机械性能㊂3㊀结论采用模拟绝热法合成了聚羧酸减水剂PCE,在n (TPEG )ʒn (AA )ʒn (SMAS )ʒn (TGA )=1.00ʒ4.00ʒ0.20ʒ0.18㊁物料起始温度15ħ㊁聚合时间4h的条件下,所得PCE 的重均相对分子质量为42688㊁数均相对分子质量36409㊁相对分子质量分布1.1725,且其固含量㊁水泥净浆流动度㊁坍落度和减水率均优于传统恒温聚合方式所得PCE;减水剂PCE 的使用,可延缓水化水泥的硬化过程,促进钙矾石的紧密排列,提高水泥的抗压和抗折等机械强度㊂参考文献:[1]㊀王子明.聚羧酸系高性能减水剂:制备㊃性能与应用[M].北京:中国建筑工业出版社,2009[2]㊀张坤,张莎莎,王晓俊,等.玉米秸秆糖醇黑液化学改性制备木质素基减水剂的研究[J].化工新型材料,2017,45(6):258-260Zhang Kun,Zhang Shasha,Wang Xiaojun,et al.Modi-fication product of black liquor of sugar alcohol from corn stover as ligno-sulfate based plasticizer [J].New Chemical Materials,2017,45(6):258-260(in Chi-nese)[3]㊀Yang Z,Yu M,Liu Y,et al.Synthesis and perform-ance of an environmentally friendly polycarboxylate su-perplasticizer based on modified poly (aspartic acid )[J].Construction and Building Materials,2019,202:154-161[4]㊀Tan H,Zhang X,Guo Y,et al.Improvement in fluidityloss of magnesia phosphate cement by incorporatingpolycarboxylate superplasticizer [J ].Construction andBuilding Materials,2018,165:887-897[5]㊀Sakthieswaran N,Sophia M.Effect of superplasticizerson the properties of latex modified gypsum plaster [J].Construction andBuildingMaterials,2018,179:675-691[6]㊀Mithanthaya I R,Marathe S,B S Rao N,et al.Influ-ence of superplasticizer on the properties of geopolymer concrete using industrial wastes [J].Materials Today:Proceedings,2017,4(9):9803-9806[7]㊀Shen Y.Carbothermal synthesis of metal-functionalizednanostructures for energy and environmental applications[J].Journal of Materials Chemistry,2015,3(25):13114-13188[8]㊀刘治华.不同羧基密度与功能基聚羧酸减水剂的合63第37卷第6期邵致成,等:高性能聚羧酸减水剂合成研究成及性能研究[D].北京:中国矿业大学(北京),2013Liu Zhihua.Research on synthesis,properties andmechanism of different carboxyl density and functional-lizing polycarboxylate superplasticizer[D].Beijing:China University of Mining&Technology(Beijing),2013(in Chinese)[9]㊀Matsuzawa K,Atarashi D,Miyauchi M,et al.Interac-tions between fluoride ions and cement paste containingsuperplasticizer[J].Cement and Concrete Research,2017,91:33-38[10]㊀Wang Q,Taviot-Gueho C,Leroux F,et al.Superplasti-cizer to layered calcium aluminate hydrate interfacecharacterized using model organic molecules[J].Ce-ment and Concrete Research,2018,110:52-69 [11]㊀白西凡,邢育红.硝基苯传统硝化工艺改进为绝热硝化工艺的讨论[J].甘肃科学学报,2008,20(1):156-158Bai Xifan,Xing Yuhong.The necessity of replacing tra-ditional nitrobenzene nitration technology by adiabaticnitration technology[J].Journal of Gansu Sciences,2008,20(1):156-158(in Chinese)[12]㊀郭峰,李传峰,杨爱武,等.乙烯基共聚物的溶液聚合生产技术[J].合成树脂及塑料,2010,27(2):64-68Guo Feng,Li Chuanfeng,Yang Aiwu,et al.Solutionpolymerization processing technology for vinyl copoly-mers[J].China Synthetic Resin and Plastics,2010,27(2):64-68(in Chinese)[13]㊀李顺,余其俊,韦江雄.聚羧酸减水剂的分子结构对水泥水化过程的影响[J].硅酸盐学报,2012,40(4):613-619Li Shun,Yu Qijun,Wei Jiangxiong.Effect of molecularstructure of polycarboxylate water reducers on hydrationof cement[J].Journal of the Chinese Ceramic Society,2012,40(4):613-619(in Chinese)[14]㊀Qian S,Yao Y,Wang Z,et al.Synthesis,characteriza-tion and working mechanism of a novel polycarboxylatesuperplasticizer for concrete possessing reduced viscosity[J].Construction and Building Materials,2018,169:452-461[15]㊀Lin X,Liao B,Zhang J,et al.Synthesis and character-ization of high-performance cross-linked polycarboxylatesuperplasticizers[J].Construction and Building Materi-als,2019,210:162-171[16]㊀LüS,Liu J,Zhou Q,et al.Synthesis of modified chi-tosan superplasticizer by amidation and sulfonation andits application performance and working mechanism[J].Industrial&Engineering Chemistry Research,2014,53(10):3908-3916[17]㊀Kong F,Pan L,Wang C,et al.Effects of polycarboxy-late superplasticizers with different molecular structureon the hydration behavior of cement paste[J].Construc-tion and Building Materials,2016,105:545-553 [18]㊀Arend J,Wetzel A,Middendorf B.In-situ-investigationof superplasticizer-particle-interaction by fluorescencemicroscopy[J].Materials Today:Proceedings,2018,5(7):15292-1529773。

聚羧酸系高效减水剂的合成及机理研究

聚羧酸系高效减水剂的合成及机理研究

第27卷第6期2010年12月Vol.27No.6Dec.2010吉林建筑工程学院学报Journal of Jilin Institute of Architecture&Civil Engineering聚羧酸系高效减水剂的合成及机理研究*肖力光闫存有(吉林建筑工程学院材料科学与工程学院,长春130118)摘要:概述了聚羧酸系高效减水剂的研究进展和发展现状,讨论了聚羧酸系减水剂的合成方法、分子结构、分子结构与性能的关系以及其作用机理,并提出了聚羧酸系减水剂有待解决的问题及其研究发展趋势.关键词:聚羧酸系;高效减水剂;水泥;混凝土中图分类号:TU5文献标志码:A文章编号:1009-0185(2010)06-0001-05Clustering of Carboxylic Acid Synthesis of Superplasticizer and Its MechanismXIAO Li-guang,YAN Cun-you(School of Material Science and Engineering,Jilin Institute of Architecture and Civil Engineering,Changchun,China130118)Abstract:The clustering of carboxylic acid superplasticizer research progress and development current situation are introduced,discussed the clustering of carboxylic acid synthesis methods of water-reducer,molecular structure, molecular structure and performance of the relationship and its mechanism,and puts forward the clustering of carboxylic acid water-reducing agent unsolved problems and development trend.Keywords:carboxylic acid;superplasticizer;cement;concrete当代混凝土技术的发展方向正由高强混凝土向高性能混凝土(HPC)、“绿色”混凝土和高耐久性、工作性、强度并重的趋势发展.由于聚羧酸系减水剂在减水率、泌水率、抗压强度、收缩率、坍落度保持性等关键性能方面比萘系等传统高效减水剂有明显的优势,应用越来越广泛.随着合成与表征聚合物减水剂及其化学结构与性能、制备改进工艺研究的不断深入,聚羧酸系减水剂将进一步朝着高性能、多功能化、生态化、国际标准化方向发展.1聚羧酸系高效减水剂的合成聚羧酸系减水剂共聚合成反应大致可分为以下3种:①可聚合单体直接共聚.此法一般先制备具有聚合活性大单体(通常为甲氧基聚乙二醇甲基丙烯酸酯),然后将一定配比的单体混合在一起直接采用溶液聚合而制得;②聚合后功能化法.该方法主要利用现有的聚合物改性,采用已知分子量的聚羧酸,在催化剂作用下与聚醚在较高温度下通过酯化进行接枝;③原位聚合与接枝.该法是为弥补聚合后功能化法的缺陷而开发的,以聚醚为羧酸类不饱和单体的反应介质进行聚合反应.1.1大分子单体聚氧烷基链的选择大分子单体侧链一般选用聚氧乙烯或聚氧丙烯作为基本结构单元.Tanaka Y[1]认为在(甲基)丙烯酸聚氧烷基酯中,聚氧烷基链长可以在1~100之间,如果要获得高的亲水性和立体斥力,n值最好在5~100之间. Satoh[2]却认为良好的水泥分散剂的聚氧烷基链长一般为25~30,最好在110~300之间。

聚羧酸类减水剂的制备及性能

聚羧酸类减水剂的制备及性能

聚羧酸类减水剂的制备及性能张赐容;黄易云;宁平【摘要】通过采用聚乙二醇单甲醚和丙烯酸在甲基苯磺酸的催化作用下合成得大分子单体聚乙二醇单甲基丙烯酸酯,再将大分子单体与丙烯酸、烯丙基磺酸盐按一定的摩尔比进行聚合,得到聚羧酸系高效减水剂。

研究了单体的不同比例对高效减水剂性能的影响;并将聚羧酸系高效减水剂在高强混凝土中的应用进行了测试和探讨。

结果表明:以聚乙二醇单甲醚、丙烯酸、烯丙基磺酸盐等为原材料合成聚羧酸系减水剂对水泥具有十分优越的分散性和分散稳定性。

在实验中选用了不同的阻聚剂,阻聚剂的品种及用量对酯化反应有较大的影响。

聚羧酸系高效减水剂中添加消泡剂可以降低混凝土的含气量,提高混凝土的强度。

%Poly-carboxyl superplasticizer was prepared by utilizing acrylic acid,sodium allyl sulfonate and PEG-M acrylic ester.The influences of different monomer ratios and reaction conditions on the superplasticizer performance were studied.The superplasticizer was used in high performance concrete,and had excellent water reduce ability in concrete even at low dosage and the strength of the concrete was also improved.Experiments showed that PEG-M,acrylic acid,and sodium allyl sulfonate used as raw materials in preparing poly-carboxyl superplasticizer which was a very good and stable disperser in cement.Different monomers ratio was used in the preparation process of superplasticizer.Carboxyl and sulfonic group content in superplasticizer had a larger influence on the cementhydration.Hydroquinone and phenothiazine as inhibitors were used in the esterification,and the experiments showed that the phenothiazine hadbetter inhibit ability,and the color of finish good was also lighter than that of using hydroquinone.Defoamer was used in poly-carboxyl superplasticizer to reduce air existing in the concrete and to improve the strength of the concrete.【期刊名称】《广州化工》【年(卷),期】2012(040)024【总页数】4页(P75-77,90)【关键词】聚羧酸;高效减水剂;高性能混凝土【作者】张赐容;黄易云;宁平【作者单位】广州从化鳌头凌丰树脂加工厂,广东从化510900;华南理工大学材料科学与工程学院,广东广州510641;华南理工大学材料科学与工程学院,广东广州510641【正文语种】中文【中图分类】TU528纵观我国50多年混凝土外加剂的发展历史,第一代木质素减水剂与第二代萘系减水剂对混凝土综合性能的提高、生产施工方式的改善起到了巨大的作用[1]。

聚羧酸减水剂

聚羧酸减水剂
2)醚类:端基为烯丙、丁、戊基等不饱和烯基的聚乙二醇大单体(APEG、VPEG 和 TPEG)为醚类 PCE 重要的侧链大单体。由于其分子结构中自身含有不饱和键 因此,可直接与不饱和单体进行共聚合成 PCE。与酯类 PCE 的合成工艺相比,醚 类 PCE 合成工艺简单能耗低受到众多生产厂家青睐。近来有很多常温合成醚类聚 羧酸减水剂的报道,多采用氧化还原引发体系,能完全实现无热源生产。制备的 醚类聚羧酸系高性能减水剂具有掺量低减水率、高水泥适应性广、保坍性好和增 强效果好等突出优点。由于具有上述诸多优势,醚类 PCE 已迅速成为国内市场主 流并有完全取代酯类 PCE 的趋势。但是,由于一些客观原因,VPEG 和 TPEG 等类 型的醚类大单体在部分国家尚不能自主进行生产和使用,应用受到一定的限制。
1.张小芳:MPEGMA 大单体的合成及聚羧酸减水剂的制备[8] 合成原料:甲氧基聚乙二醇单甲醚(MPEG-1200 和 MPEG-2000)、甲基丙烯 酸甲酯(MMA)、NaOH、对苯二酚、甲基丙烯酸、2-丙烯酰胺-2-甲基丙磺酸(AMPS)。 合成步骤:在通入氮气的条件下,以 MPEG-1200/MPEG-2000 和 MMA 为原 料进行酯交换反应,合成制备聚羧酸减水剂的大单体甲氧基聚乙二醇甲基丙烯酸 酯(MPEGMA),其中,以 NaOH 为催化剂,对苯二酚为阻聚剂。将大单体 MPEGMA 与甲基丙烯酸、AMPS 进行共聚反制得聚羧酸减水剂 PC-2。 研究结果:与 PC-1 相比,PC-2 侧链中带有不同长度的链段而具有更好的保 塑性,PC-2 主链中引入了-COOH 和-SO3H 基团单体而具有更好的分散性。 2.张海波:用三乙胺催化合成聚羧酸减水剂研究[1] 设计思路:PCE 合成方法可分为可聚合单体直接共聚法,聚合后功能化法原 位聚合与接枝等,几种各种合成方法中都存在着酸醇酯化的过程,目前使用较多 的是酸性催化剂,而酸性酯化反应催化剂对金属合成设备的腐蚀性较强,采用碱 性催化剂则可以有效降低对合成设备的要求。 合成原料:水解聚马来酸酐(HPMA)、聚乙二醇单甲醚(MPEG)、浓硫酸、 对甲苯磺酸、三乙胺、NaOH。 合成步骤:以催化剂催化 HPMA 与 MPEG 的酯化反应,将 MPEG 接枝在 HPMA 上形成梳状结构的聚羧酸减水剂(如图 1 所示为减水剂分子示意图),此酯化反 应在浓硫酸催化作用下效果最佳,在对甲苯磺酸和三乙胺作用下效果相似,在 NaOH 作用下效果最差。

聚羧酸减水剂

聚羧酸减水剂

谢谢观看
应用范围
应用范围
适用于高速铁路、客运专线、工业与民用建筑、道路、桥梁、港口码头、机场等工程建设的预制和现浇混凝 土、钢筋混凝土及预应力混凝土。
特别适用于配制混凝土施工时间长,对混凝土坍落度保持要求高的工程,如核电工程。
使用方法
使用方法
掺量范围:一般情况下,折算20%含固量时掺量为胶凝材料重量的0.5~1.5%,推荐掺量为1.0%。
合成方法
合成方法
对于聚羧酸减水剂的合成,分子结构的设计是至关重要的,其中包括分子中主链基团、侧链密度以及侧链长 度等。合成方法主要包括原位聚合接枝法、先聚合后功能化法和单体直接共聚法。
1、原位聚合接枝法
以聚醚作为不饱和单体聚合反应的介质,使主链聚合以及侧链的引入同时进行,工艺简单,而且所合成的减 水剂分子质量能得到一定的控制,但这种方法涉及的酯化反应为可逆反应,在水溶液中进行导致接枝率比较低, 已经逐渐被淘汰E14]。
优劣特点
优劣特点
在很多混凝土工程中,萘系等传统高效混凝土由于技术性能的局限性,越来越不能满足工程需要。在国内外 备受的新一代减水剂,聚羧酸系高性能减水剂,由于真正做到了依据分散水泥作用机理设计有效的分子结构,具 有超分散型,能防止混凝土坍落度损失而不引起明显缓凝,低掺量下发挥较高的塑化效果,流动性保持性好、水 泥适应广分子构造上自由度大、合成技术多、高性能化的余地很大,对混凝土增强效果显著,能降低混凝土收缩, 有害物质含量极低等技术性能特点,赋予了混凝土出色的施工和易性、良好的强度发展、优良的耐久性、聚羧酸 系高性能减水剂具有良好的综合技术性能优势及环保特点,符合现代化混凝土工程的需要。因此,聚羧酸系高性 能减水剂正逐渐成为配制高性能混凝土的首选外加剂。据报道,日本聚羧酸外加剂使用量已占所有高性能外加剂 产品总量的80%以上,北美和欧洲也占了50%以上。在我国,聚羧酸系减水剂已成功应用仅在三峡大坝、苏通大桥、 田湾核电站、京沪高铁等国家大型水利、桥梁、核电、铁路工程,并取得了显著的成果。

聚羧酸类高性能减水剂的合成及复配--

聚羧酸类高性能减水剂的合成及复配--

聚羧酸类高性能减水剂的合成及复配-- 谢谢聚羧酸类高性能减水剂的合成及复配主要针对目前市场常用羧酸工艺北京科峰技术发展有限公司潘科锋一。

合成总述目前市场所使用聚羧酸类高性能减水剂人们习惯性的分为醚类和酯类。

酯类一般是指用不同分子量的MPEG(甲氧基封端的聚氧乙烯醚)在浓硫酸或者对甲苯磺酸等催化剂作用下与含有不饱和键的羧酸进行酯化。

形成所谓的“大单体”。

然后再用“大单体”和其他含有不饱和键的小分子单体在酸性条件下进行开链共聚,生成聚羧酸类高性能减水剂醚类是指直接用一定分子量的含有不饱和键封端的聚氧乙烯醚直接与其他含有不饱和键的小分子量单体在酸性条件下直接共聚成聚羧酸类高性能减水剂。

目前市场上这种醚大概分为三种:1,APEG(烯丙基封端聚氧乙烯醚).2,HPEG(异丁烯醇封端聚氧乙烯醚)。

3,TPEG(异戊烯醇封端聚氧乙烯醚) 一。

酯类聚羧酸高性能减水剂合成工艺一般酯类聚羧酸高性能减水剂合成所用MPEG的分子量都是在600-1200左右;也有专门跟厂家订做分子量600。

800.1000的。

MPEG是环氧乙烷在碱性条件下,用甲醇做起始剂生产的。

一般成品都经过用醋酸中和后PH值在7左右。

所用含有不饱和键的酸一般为:(甲基)丙烯酸;衣糠酸;马来酸(酐);富马酸等。

目前使用最多的是甲基丙烯酸和衣糠酸。

催化剂一般使用浓硫酸和对甲苯磺酸酯化反应是可逆反应。

在隔绝空气或者厌氧条件下进行。

在酯类聚羧酸高性能减水剂合成中,酯化的好坏对最终产品的性能起决定作用,是控制的关键~酯化温度一般在125-135度。

由于在此温度下MAA有可能自聚。

所以要在反应中加对苯二酚或者吩噻嗪等做阻聚剂。

酯化后聚工艺比较灵活。

一般都在去离子水介质中自由聚合。

国内目前以过硫酸铵(APS)做引发剂参与共聚的小高分子也很多。

比如:(甲基)丙烯酸(AA,MAA);烯丙基磺酸钠(AS);甲基烯丙基磺酸钠(MAS);丙烯酰胺;2-丙烯酰胺-2-甲基丙烯磺酸钠(AMPS);(甲基)丙烯酸甲酯;丙烯酸羟乙酯;醋酸乙烯酯等参考实例:MPEG1000酯化和聚合工艺配方 1.主要原料: MPEG1000;对苯二酚;对甲苯磺酸;甲基丙烯酸(MAA,分子量86);甲基丙烯磺酸钠(MAS,分子量158.2);过硫酸铵(APS) 2.酯化配方: 摩尔比:MAA/MPEG 4/1 对苯二酚用量为MAA 重量的1% 对甲苯磺酸用量为MPEG1000重量的2% 注意:酯化反应是可逆反应。

聚羧酸的合成原理

聚羧酸的合成原理

聚羧酸系减水剂的合成原理及方法聚羧酸系有机材料目前受到广泛关注,它主要用于混凝土减水剂、洗涤添加剂、涂料及油墨中的颜料分散剂等领域。

该类表面活性剂具有优良的洗涤、渗透、分散、乳化、破乳等性能,特别是具有低温洗涤效果好、耐硬水、生物降解性能好、配位性能强等优点。

因此,应用范围很广,将聚羧酸型高分子用作混凝土减水剂的历史不长,日本是其首要研究开发国和使用国。

近年来,聚羧酸减水剂在混凝土业中被广泛接受,并受到国内外混凝土外加剂研究者及使用者的日益关注。

究其原因,与传统的减水剂萘磺酸和磺化三聚氰胺缩合物相比,他们能在低掺量下赋予混凝土高分散性、流动性及高分散体系稳定性防止坍落度损失。

同时,工业萘价格上涨、萘系减水剂生产周期长、环境污染严重等问题日益突出也使聚羧酸系减水剂的应用势在必行。

目前,日本常用高效引气减水剂的主要成分正从萘磺酸盐加反应性高分子向聚羧酸系过渡,欧美各国亦紧追其后。

有关聚羧酸减水剂研究进展特别是对该类减水剂制备原理、作用机理、发展前景等方面综述报道较少。

笔者拟对该类减水剂的制备原理、作用机理、发展前景等方面研究进展做一综述。

1制备原理聚羧酸盐高性能减水剂是由带有磺酸基、羧基、氨基以及含有聚氧乙烯侧链等的大分子化合物,在水溶液中,通过自由基共聚原理合成的具有梳型结构的高分子表面活性剂。

合成聚羧酸盐高性能减水剂所需的主要原料有:甲基丙烯酸、丙烯酸、丙烯酸乙酯、丙烯酸羟乙酯、烯丙基磺酸钠、甲基丙烯酸甲酯、2-丙烯酰胺基-2-甲基丙烯酸、甲氧基聚氧乙烯甲基丙烯酸酯、乙氧基聚乙二醇丙烯酸酯、烯丙基醚等,在聚合过程中可采用的引发剂为:过硫酸盐水性引发剂、过氧化苯甲酰、偶氮二异丁氰;链转移剂有:3-疏基丙酸、疏基乙酸、疏基乙醇以及异丙醇等。

合成方法为:在配有电动搅拌器、温度计、滴液装置、以及回流冷凝管的圆底烧瓶中,通过水浴加热的方法缓慢滴加聚合单体溶液和引发剂溶液,在选用聚合单体时,应充分考虑其竞聚率的大学。

含不饱和聚醚的新型聚羧酸类减水剂的合成与应用

含不饱和聚醚的新型聚羧酸类减水剂的合成与应用
M ATERI AND AI AD~Ⅲ CLE
含不饱 和聚醚 的新型聚羧酸 类减水剂 的合 成与应 用
寿 崇琦 。康杰分 。宋南京 。尚 盼 。刘生元 。石一垒
( 济南大学 化学化工学 院,山东 济南 2 0 2 ) 502

要 : 采用 了工业化 的不饱 和聚醚多元 醇为反应单体 , 成了一 种高减水率 , 合 长缓凝 时间的新 型聚羧酸 系高效减水剂 。

烯 二 酸 酐( D)分 析 纯 ) 过硫 酸铵 ( MA ( , 分析 纯 ) 甲基丙烯 酸 ,
( MA)分 析 纯 ) ( 。

聚羧酸系水泥高效减水由于其高减水率,低坍落度损失、
与水泥相容性好等特点成为近期研究 的热点[ 。近几 年国内也 1 ' ≈
12 试验 步骤 .
将 S S MAS或 S S溶 于水 中 , 到四 口瓶 中 , A 、 T 加 打开 回流
R R R
14 反 应 方程 式 .
R R R


R I


R I




R1 I

I ]
c2 H= +c H
R1 I
+c 2 H= — +十 H 一 2
c2 H一
R I

C2 H一 计
. J“
Hale Waihona Puke 3R —c 3 : H 一H R1- C O R : __ 一 s 3 : OH 3— < > 0 H (
装 置 , 断搅 拌加热升 温至 7  ̄ 在 (0 2 ℃时每隔半个 小时 不 0 C, 7  ̄ )
缓 慢滴 加丙烯 酸 、-00及过硫 酸铵 的? 合溶 液 , 5次滴 加 S10 昆 完毕 , 控制溶液的固含量约 2 %' 0 5 3 %。然后升温至 8 " 维持 0C, 恒 温反应 3 h后 , 生成棕红 色的溶液 , 利用 4 %的氢氧化钠溶液 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档